# Diff of /trunk/doc/user/finley.tex

revision 993 by gross, Fri Feb 23 06:39:38 2007 UTC revision 2793 by gross, Tue Dec 1 06:10:10 2009 UTC
# Line 1  Line 1
1  % $Id$
2    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3  %  %
4  %           Copyright © 2006, 2007 by ACcESS MNRF  % Copyright (c) 2003-2009 by University of Queensland
5  %               \url{http://www.access.edu.au  % Earth Systems Science Computational Center (ESSCC)
6  %         Primary Business: Queensland, Australia.  % http://www.uq.edu.au/esscc
7  %  %
8    % Primary Business: Queensland, Australia
11    %
12    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
13
14
15    \chapter{ The Module \finley}
\chapter{ The module \finley}
16   \label{CHAPTER ON FINLEY}   \label{CHAPTER ON FINLEY}
17
18  \begin{figure}  \begin{figure}
19  \centerline{\includegraphics[width=\figwidth]{figures/FinleyMesh.eps}}  \centerline{\includegraphics[width=\figwidth]{figures/FinleyMesh}}
20  \caption{Subdivision of an Ellipse into triangles order 1 (\finleyelement{Tri3})}  \caption{Subdivision of an Ellipse into triangles order 1 (\finleyelement{Tri3})}
21  \label{FINLEY FIG 0}  \label{FINLEY FIG 0}
22  \end{figure}  \end{figure}
23
24  \begin{figure}  \begin{figure}
25  \centerline{\includegraphics[width=\figwidth]{figures/FinleyContact.eps}}  \centerline{\includegraphics[width=\figwidth]{figures/FinleyContact}}
26  \caption{Mesh around a contact region (\finleyelement{Rec4})}  \caption{Mesh around a contact region (\finleyelement{Rec4})}
27  \label{FINLEY FIG 01}  \label{FINLEY FIG 01}
28  \end{figure}  \end{figure}
# Line 52  A\hackscore{jl} \cdot v\hackscore{,j}u\h Line 55  A\hackscore{jl} \cdot v\hackscore{,j}u\h
55
56
57  \section{Meshes}  \section{Meshes}
58    \label{FINLEY MESHES}
59  To understand the usage of \finley one needs to have an understanding of how the finite element meshes  To understand the usage of \finley one needs to have an understanding of how the finite element meshes
60  \index{FEM!mesh} are defined. \fig{FINLEY FIG 0} shows an example of the  \index{FEM!mesh} are defined. \fig{FINLEY FIG 0} shows an example of the
61  subdivision of an ellipse into so called elements \index{FEM!elements} \index{element}.  subdivision of an ellipse into so called elements \index{FEM!elements} \index{element}.
62  In this case, triangles have been used but other forms of subdivisions  In this case, triangles have been used but other forms of subdivisions
63  can be constructed, e.g. into quadrilaterals or, in the three dimensional case, into tetrahedrons  can be constructed, e.g. into quadrilaterals or, in the three dimensional case, into tetrahedrons
64  and hexahedrons. The idea of the finite element method is to approximate the solution by a function  and hexahedrons. The idea of the finite element method is to approximate the solution by a function
65  which is a polynomial of a certain order and is continuous across it boundary to neighbour elements.  which is a polynomial of a certain order and is continuous across it boundary to neighbor elements.
66  In the example of \fig{FINLEY FIG 0} a linear polynomial is used on each triangle. As one can see, the triangulation  In the example of \fig{FINLEY FIG 0} a linear polynomial is used on each triangle. As one can see, the triangulation
67  is quite a poor approximation of the ellipse. It can be improved by introducing a midpoint on each element edge then  is quite a poor approximation of the ellipse. It can be improved by introducing a midpoint on each element edge then
68  positioning those nodes located on an edge expected to describe the boundary, onto the boundary.  positioning those nodes located on an edge expected to describe the boundary, onto the boundary.
69  In this case the triangle gets a curved edge which requires a parametrization of the triangle using a  In this case the triangle gets a curved edge which requires a parameterization of the triangle using a
70  quadratic polynomial. For this case, the solution is also approximated by a piecewise quadratic polynomial  quadratic polynomial. For this case, the solution is also approximated by a piecewise quadratic polynomial
71  (which explains the name isoparametrical elements), see \Ref{Zienc,NumHand} for more details.    (which explains the name isoparametrical elements), see \Ref{Zienc,NumHand} for more details.
72    \finley supports macro elements\index{macro elements}. For these elements a piecewise linear approximation is used on an element which is further subdivided (in the case \finley halved). As such these elements do not provide more than a further mesh refinement but should be used in the case of incompressible flows, see \class{StokesProblemCartesian}. For these problems a linear approximation of the pressure across the element is used (use the \ReducedSolutionFS \FunctionSpace) while the refined element is used to approximate velocity. So a macro element provides a continuous pressure approximation together with a velocity approximation on a refined mesh. This approach is necessary to make sure that the  incompressible flow has a unique solution.
73
74  The union of all elements defines the domain of the PDE.  The union of all elements defines the domain of the PDE.
75  Each element is defined by the nodes used to describe its shape. In \fig{FINLEY FIG 0} the element,  Each element is defined by the nodes used to describe its shape. In \fig{FINLEY FIG 0} the element,
# Line 81  to second node the domain has to lie on Line 86  to second node the domain has to lie on
86  the domain has to lie on the left hand side when moving counterclockwise). If the gradient on the  the domain has to lie on the left hand side when moving counterclockwise). If the gradient on the
87  surface of the domain is to be calculated rich face elements face to be used. Rich elements on a face  surface of the domain is to be calculated rich face elements face to be used. Rich elements on a face
88  are identical to interior elements but with a modified order of nodes such that the 'first' face of the element aligns  are identical to interior elements but with a modified order of nodes such that the 'first' face of the element aligns
89  with the surface of the domian. In \fig{FINLEY FIG 0}  with the surface of the domain. In \fig{FINLEY FIG 0}
90  elements of the type \finleyelement{Tri3Face} are used.  elements of the type \finleyelement{Tri3Face} are used.
91  The face element reference number $20$ as a rich face element is defined by the nodes  The face element reference number $20$ as a rich face element is defined by the nodes
92  with reference numbers $11$, $0$ and $9$. Notice that the face element $20$ is identical to the  with reference numbers $11$, $0$ and $9$. Notice that the face element $20$ is identical to the
# Line 113  contact regions line up.  The rich versi Line 118  contact regions line up.  The rich versi
118  $4$ is of type \finleyelement{Rec4Face_Contact} and is defined by the nodes $9$, $12$, $16$, $18$, $6$, $5$, $0$ and  $4$ is of type \finleyelement{Rec4Face_Contact} and is defined by the nodes $9$, $12$, $16$, $18$, $6$, $5$, $0$ and
119  $2$.  $2$.
120
121
122
123  \tab{FINLEY TAB 1} shows the interior element types and the corresponding element types to be used  \tab{FINLEY TAB 1} shows the interior element types and the corresponding element types to be used
124  on the face and contacts. \fig{FINLEY.FIG:1}, \fig{FINLEY.FIG:2} and \fig{FINLEY.FIG:4} show the ordering of  on the face and contacts. \fig{FINLEY.FIG:1}, \fig{FINLEY.FIG:2} and \fig{FINLEY.FIG:4} show the ordering of
125  the nodes within an element.  the nodes within an element.
# Line 130  the nodes within an element. Line 137  the nodes within an element.
137  \linev{\finleyelement{Tet10}}{\finleyelement{Tri9}}{\finleyelement{Tet10Face}}{\finleyelement{Tri9_Contact}}{\finleyelement{Tet10Face_Contact}}  \linev{\finleyelement{Tet10}}{\finleyelement{Tri9}}{\finleyelement{Tet10Face}}{\finleyelement{Tri9_Contact}}{\finleyelement{Tet10Face_Contact}}
138  \linev{\finleyelement{Hex8}}{\finleyelement{Rec4}}{\finleyelement{Hex8Face}}{\finleyelement{Rec4_Contact}}{\finleyelement{Hex8Face_Contact}}  \linev{\finleyelement{Hex8}}{\finleyelement{Rec4}}{\finleyelement{Hex8Face}}{\finleyelement{Rec4_Contact}}{\finleyelement{Hex8Face_Contact}}
139  \linev{\finleyelement{Hex20}}{\finleyelement{Rec8}}{\finleyelement{Hex20Face}}{\finleyelement{Rec8_Contact}}{\finleyelement{Hex20Face_Contact}}  \linev{\finleyelement{Hex20}}{\finleyelement{Rec8}}{\finleyelement{Hex20Face}}{\finleyelement{Rec8_Contact}}{\finleyelement{Hex20Face_Contact}}
140    \linev{\finleyelement{Hex27}}{\finleyelement{Rec9}}{N\textbackslash A}{N\textbackslash A}{N\textbackslash A}
141    \linev{\finleyelement{Hex27Macro}}{\finleyelement{Rec9Macro}}{N\textbackslash A}{N\textbackslash A}{N\textbackslash A}
142    \linev{\finleyelement{Tet10Macro}}{\finleyelement{Tri6Macro}}{N\textbackslash A}{N\textbackslash A}{N\textbackslash A}
143    \linev{\finleyelement{Rec9Macro}}{\finleyelement{Line3Macro}}{N\textbackslash A}{N\textbackslash A}{N\textbackslash A}
144    \linev{\finleyelement{Tri6Macro}}{\finleyelement{Line3Macro}}{N\textbackslash A}{N\textbackslash A}{N\textbackslash A}
145  \end{tablev}  \end{tablev}
146  \caption{Finley elements and corresponding elements to be used on domain faces and contacts.  \caption{Finley elements and corresponding elements to be used on domain faces and contacts.
147  The rich types have to be used if the gradient of function is to be calculated on faces and contacts, resepctively.}  The rich types have to be used if the gradient of function is to be calculated on faces and contacts, respectively.}
148  \label{FINLEY TAB 1}  \label{FINLEY TAB 1}
149  \end{table}  \end{table}
150
# Line 176  for i in range(ContactElement_Num): Line 188  for i in range(ContactElement_Num):
188     for j in range(ContactElement_numNodes): print " %d"%ContactElement_Nodes[i][j]     for j in range(ContactElement_numNodes): print " %d"%ContactElement_Nodes[i][j]
189     print "\n"     print "\n"
190  # point sources (not supported yet)  # point sources (not supported yet)
191  write("Point1 0",face_element_typ,numFaceElements)  write("Point1 0",face_element_type,numFaceElements)
192  \end{python}  \end{python}
193
194  The following example of a mesh file defines the mesh shown in \fig{FINLEY FIG 01}:  The following example of a mesh file defines the mesh shown in \fig{FINLEY FIG 01}:
# Line 247  $7$, $10$, $15$ and $20$, respectively. Line 259  $7$, $10$, $15$ and $20$, respectively.
259  20 16 0 1.0  1.0  20 16 0 1.0  1.0
260  \end{verbatim}  \end{verbatim}
261
262    \clearpage
263    \input{finleyelements}
264    \clearpage
265
266    \begin{figure}[th]
267    \begin{center}
268    \subfigure[Triangle]{\label{FINLEY MACRO TRI}\includegraphics[scale=0.25]{figures/FinleyMacroTri}}
270    \includegraphics[scale=0.2]{figures/FinleyMacroLeg}
271    \end{center}
272    Macro elements in \finley.
273    \end{figure}
274
275    \section{Macro Elements}
276    \label{SEC FINLEY MACRO}
277    \finley supports the usage of macro elements~\index{macro elements} which can be used to
278    achieve LBB compliance when solving incompressible fluid flow problems. LBB compliance is required to
279    get a problem which has a unique solution for pressure and velocity. For macro elements the
280    pressure and velocity are approximated by a polynomial of order 1 but the velocity approximation bases on a refinement of the element. The nodes of a triangle and quadrilateral element is shown in Figures~\ref{FINLEY MACRO TRI} and~\ref{FINLEY MACRO REC}, respectively. In essence, the velocity uses the same nodes like a quadratic polynomial approximation but replaces the quadratic polynomial by piecewise linear polynomials. In fact, this is the
281    way \finley is defining the macro elements. In particular \finley uses the same local ordering of the nodes for the macro element as for the corresponding quadratic element. Another interpretation is that
282    one uses a linear approximation of the velocity together with a linear approximation of the pressure but on elements
283    created by combining elements to macro elements. Notice that the macro elements still use quadratic interpolation to represent the element and domain boundary. However, if elements have linear boundary
284    a macro element approximation for the velocity is equivalent to using a linear approximation on a mesh which is created through a one step, global refinement.
285    Typically macro elements are only required to use when an incompressible fluid flow problem
286    is solved, e.g the Stokes problem in Section \ref{STOKES PROBLEM}. Please see Section~\ref{FINLEY MESHES} for
287    more details on the supported macro elements.
288
\include{finleyelements}
289
\subsection{Linear Solvers in \LinearPDE}
Currently \finley supports the linear solvers \PCG, \GMRES, \PRESTWENTY and \BiCGStab.
For \GMRES the options \var{trancation} and \var{restart} of the \method{getSolution} can be
used to control the trunction and restart during iteration. Default values are
\var{truncation}=5 and \var{restart}=20.
The default solver is \BiCGStab  but if the symmetry flag is set \PCG is the default solver.
\finley supports the solver options \var{iter_max} which specifies the maximum number of iterations steps,
\var{verbose}=\True or \False and \var{preconditioner}=\constant{JACOBI} or \constant {ILU0}.
In some installations \finley supports the \Direct solver and the
solver options \var{reordering}=\constant{util.NO_REORDERING},
\constant{util.MINIMUM_FILL_IN} or \constant{util.NESTED_DISSECTION} (default is \constant{util.NO_REORDERING}),
\var{drop_tolerance} specifying the threshold for values to be dropped in the
incomplete elimation process (default is 0.01) and \var{drop_storage} specifying the maximum increase
in storage allowed in the
incomplete elimation process (default is 1.20).
290
291  \subsection{Functions}  \begin{table}
292  \begin{funcdesc}{Mesh}{fileName,integrationOrder=-1}  {\scriptsize
293    \begin{tabular}{l||c|c|c|c|c|c|c|c}
294    \member{setSolverMethod} & \member{DIRECT}& \member{PCG} & \member{GMRES} & \member{TFQMR} & \member{MINRES} & \member{PRES20} & \member{BICGSTAB} & \member{LUMPING} \\
295    \hline
296     \hline
297     \member{setReordering} & $\checkmark$ & & & & & &\\
298     \hline  \member{setRestart} &  & & $\checkmark$ & & & $20$ & \\
299     \hline\member{setTruncation} &  & & $\checkmark$ & & & $5$ & \\
300       \hline\member{setIterMax} &  & $\checkmark$& $\checkmark$ & $\checkmark$& $\checkmark$& $\checkmark$ & $\checkmark$ \\
301     \hline\member{setTolerance} &  & $\checkmark$& $\checkmark$ & $\checkmark$& $\checkmark$& $\checkmark$ & $\checkmark$ \\
302     \hline\member{setAbsoluteTolerance} &  & $\checkmark$& $\checkmark$ & $\checkmark$& $\checkmark$& $\checkmark$ & $\checkmark$ \\
303    \hline\member{setReordering} & $\checkmark$ & & & & & & & \\
304    \end{tabular}
305    }
306    \caption{Solvers available for
307    \finley
308    and the \PASO package and the relevant options in \class{SolverOptions}.
309    \MKL supports
310    \MINIMUMFILLIN
311    and
312    \NESTEDDESCTION
313    reordering.
314    Currently the \UMFPACK interface does not support any reordering.
315    \label{TAB FINLEY SOLVER OPTIONS 1} }
316    \end{table}
317
318    \begin{table}
319    {\scriptsize
320    \begin{tabular}{l||c|c|c|c|c|c|c|c}
321    \member{setPreconditioner} &
322    \member{NO_PRECONDITIONER} &
323    \member{AMG} &
324    \member{JACOBI} &
325    \member{GAUSS_SEIDEL}&
326    \member{REC_ILU}&
327    \member{RILU} &
328    \member{ILU0} &
329    \member{DIRECT} \\
330     \hline
331     status: &
332    later &
333    later &
334    $\checkmark$ &
335    $\checkmark$&
336    $\checkmark$ &
337    later &
338    $\checkmark$ &
339    later \\
340    \hline
341    \hline
342    \member{setCoarsening}&
343     &
344    $\checkmark$ &
345    &
346    &
347    &
348     &
349     &
350     \\
351
352
353    \hline\member{setLevelMax}&
354     &
355    $\checkmark$ &
356     &
357    &
358    &
359     &
360     &
361     \\
362
363    \hline\member{setCoarseningThreshold}&
364    &
365    $\checkmark$ &
366     &
367    &
368    &
369     &
370     &
371     \\
372
373    \hline\member{setMinCoarseMatrixSize} &
374     &
375    $\checkmark$ &
376     &
377    &
378    &
379     &
380     &
381     \\
382
383    \hline\member{setNumSweeps} &
384     &
385     &
386    $\checkmark$ &
387    $\checkmark$ &
388    &
389     &
390     &
391     \\
392
393    \hline\member{setNumPreSweeps}&
394     &
395    $\checkmark$ &
396      &
397     &
398     &
399      &
400      &
401      \\
402
403    \hline\member{setNumPostSweeps} &
404     &
405    $\checkmark$ &
406     &
407    &
408    &
409     &
410    &
411     \\
412
413    \hline\member{setInnerTolerance}&
414     &
415     &
416     &
417    &
418    &
419     &
420    &
421     \\
422
423    \hline\member{setDropTolerance}&
424     &
425     &
426     &
427    &
428    &
429     &
430    &
431     \\
432
433    \hline\member{setDropStorage}&
434     &
435     &
436     &
437    &
438    &
439     &
440    &
441     \\
442
443    \hline\member{setRelaxationFactor}&
444     &
445     &
446     &
447    &
448    &
449    $\checkmark$  &
450     &
451     \\
452
454     &
455     &
456     &
457    &
458    &
459     &
460    &
461     \\
462
463    \hline\member{setInnerIterMax}&
464     &
465     &
466     &
467    &
468    &
469     &
470    &
471     \\
472    \end{tabular}
473    }
474    \caption{Preconditioners available for \finley and the \PASO package and the relevant options in \class{SolverOptions}. \label{TAB FINLEY SOLVER OPTIONS 2}}
475    \end{table}
476
477    \section{Linear Solvers in \SolverOptions}
478    Table~\ref{TAB FINLEY SOLVER OPTIONS 1} and
479    Table~\ref{TAB FINLEY SOLVER OPTIONS 2} show the solvers and preconditioners supported by
480    \finley through the \PASO library. Currently direct solvers are not supported under MPI.
481    By default, \finley is using the iterative solvers \PCG for symmetric and \BiCGStab for non-symmetric problems.
482    If the direct solver is selected which can be useful when solving very ill-posed equations
483    \finley uses the \MKL \footnote{If the stiffness matrix is non-regular \MKL may return without
484    returning a proper error code. If you observe suspicious solutions when using MKL, this may cause by a non-invertible operator. } solver package. If \MKL is not available \UMFPACK is used. If \UMFPACK is not available
485    a suitable iterative solver from the \PASO is used.
486
487    \section{Functions}
489  creates a \Domain object form the FEM mesh defined in  creates a \Domain object form the FEM mesh defined in
490  file \var{fileName}. The file must be given the \finley file format.  file \var{fileName}. The file must be given the \finley file format.
491  If \var{integrationOrder} is positive, a numerical integration scheme  If \var{integrationOrder} is positive, a numerical integration scheme
492  chosen which is accurate on each element up to a polynomial of  chosen which is accurate on each element up to a polynomial of
493  degree \var{integrationOrder} \index{integration order}. Otherwise  degree \var{integrationOrder} \index{integration order}. Otherwise
494    an appropriate integration order is chosen independently.
495    By default the labeling of mesh nodes and element distribution is
496    optimized. Set \var{optimize=False} to switch off relabeling and redistribution.
497    \end{funcdesc}
498
499    \begin{funcdesc}{ReadGmsh}{fileName \optional{, \optional{integrationOrder=-1}, optimize=True\optional{, useMacroElements=False}}}
500    creates a \Domain object form the FEM mesh defined in
501    file \var{fileName}. The file must be given the \gmshextern file format.
502    If \var{integrationOrder} is positive, a numerical integration scheme
503    chosen which is accurate on each element up to a polynomial of
504    degree \var{integrationOrder} \index{integration order}. Otherwise
505  an appropriate integration order is chosen independently.  an appropriate integration order is chosen independently.
506    By default the labeling of mesh nodes and element distribution is
507    optimized. Set \var{optimize=False} to switch off relabeling and redistribution.
508    If \var{useMacroElements} is set, second order elements are interpreted as macro elements~\index{macro elements}.
509    Currently \function{ReadGmsh} does not support MPI.
510  \end{funcdesc}  \end{funcdesc}
511
512  \begin{funcdesc}{Interval}{n0,order=1,l0=1.,integrationOrder=-1, \\  \begin{funcdesc}{MakeDomain}{design\optional{, integrationOrder=-1\optional{, optimizeLabeling=True\optional{, useMacroElements=False}}}}
513    periodic0=\False,useElementsOnFace=\False}  Creates a Finley \Domain from a \class{Design} object from \pycad using \gmshextern.
514  Generates a \Domain object representing a interval $[0,l0]$. The interval is filled with  The \class{Design} \var{design} defines the geometry.
\var{n0} elements.
For \var{order}=1 and \var{order}=2
\finleyelement{Line2} and
\finleyelement{Line3} are used, respectively.
In the case of \var{useElementsOnFace}=\False,
\finleyelement{Point1} are used to describe the boundary points.
In the case of \var{useElementsOnFace}=\True (this option should be used if gradients
are calculated on domain faces),
\finleyelement{Line2} and
\finleyelement{Line3} are used on both ends of the interval.
515  If \var{integrationOrder} is positive, a numerical integration scheme  If \var{integrationOrder} is positive, a numerical integration scheme
516  chosen which is accurate on each element up to a polynomial of  chosen which is accurate on each element up to a polynomial of
517  degree \var{integrationOrder} \index{integration order}. Otherwise  degree \var{integrationOrder} \index{integration order}. Otherwise
518  an appropriate integration order is chosen independently. If  an appropriate integration order is chosen independently.
519  \var{periodic0}=\True, periodic boundary conditions \index{periodic boundary conditions}  Set \var{optimizeLabeling=False} to switch off relabeling and redistribution (not recommended).
520  along the $x_0$-directions are enforced. That means when for any solution of a PDE solved by \finley  If \var{useMacroElements} is set, macro elements~\index{macro elements} are used.
521  the value at $x_0=0$ will be identical to the values at $x_0=\var{l0}$.  Currently \function{MakeDomain} does not support MPI.
522  \end{funcdesc}  \end{funcdesc}
523
524
526    recovers a \Domain object from a dump file created by the \
527    \function{dump} method of a \Domain object defined in
528    file \var{fileName}.
529    \end{funcdesc}
530
531
532  \begin{funcdesc}{Rectangle}{n0,n1,order=1,l0=1.,l1=1., integrationOrder=-1, \\  \begin{funcdesc}{Rectangle}{n0,n1,order=1,l0=1.,l1=1., integrationOrder=-1, \\
533    periodic0=\False,periodic1=\False,useElementsOnFace=\False}    periodic0=\False, periodic1=\False, useElementsOnFace=\False, useMacroElements=\False, optimize=\False}
534  Generates a \Domain object representing a two dimensional rectangle between  Generates a \Domain object representing a two dimensional rectangle between
535  $(0,0)$ and $(l0,l1)$ with orthogonal edges. The rectangle is filled with  $(0,0)$ and $(l0,l1)$ with orthogonal edges. The rectangle is filled with
536  \var{n0} elements along the $x_0$-axis and  \var{n0} elements along the $x_0$-axis and
# Line 310  For \var{order}=1 and \var{order}=2 Line 541  For \var{order}=1 and \var{order}=2
541  In the case of \var{useElementsOnFace}=\False,  In the case of \var{useElementsOnFace}=\False,
542  \finleyelement{Line2} and    \finleyelement{Line2} and
543  \finleyelement{Line3} are used to subdivide the edges of the rectangle, respectively.  \finleyelement{Line3} are used to subdivide the edges of the rectangle, respectively.
544    If \var{order}=-1, \finleyelement{Rec8Macro} and \finleyelement{Line3Macro}~\index{macro elements}. This option should be used when solving incompressible fluid flow problem, e.g. \class{StokesProblemCartesian}.
545  In the case of \var{useElementsOnFace}=\True (this option should be used if gradients  In the case of \var{useElementsOnFace}=\True (this option should be used if gradients
546  are calculated on domain faces),  are calculated on domain faces),
547  \finleyelement{Rec4Face} and    \finleyelement{Rec4Face} and
# Line 324  the value on the line $x_0=0$ will be id Line 556  the value on the line $x_0=0$ will be id
556  Correspondingly,  Correspondingly,
557  \var{periodic1}=\False sets periodic boundary conditions  \var{periodic1}=\False sets periodic boundary conditions
558  in $x_1$-direction.  in $x_1$-direction.
559    If \var{optimize}=\True mesh node relabeling will be attempted to reduce the computation and also ParMETIS will be used to improve the mesh partition if running on multiple CPUs with MPI.
560  \end{funcdesc}  \end{funcdesc}
561
562  \begin{funcdesc}{Brick}{n0,n1,n2,order=1,l0=1.,l1=1.,l2=1., integrationOrder=-1, \\  \begin{funcdesc}{Brick}{n0,n1,n2,order=1,l0=1.,l1=1.,l2=1., integrationOrder=-1, \\
563    periodic0=\False,periodic1=\False,periodic2=\False,useElementsOnFace=\False}    periodic0=\False,periodic1=\False,periodic2=\False,useElementsOnFace=\False, useMacroElements=\False, optimize=\False}
564  Generates a \Domain object representing a three dimensional brick between  Generates a \Domain object representing a three dimensional brick between
565  $(0,0,0)$ and $(l0,l1,l2)$ with orthogonal faces. The brick is filled with  $(0,0,0)$ and $(l0,l1,l2)$ with orthogonal faces. The brick is filled with
566  \var{n0} elements along the $x_0$-axis,  \var{n0} elements along the $x_0$-axis,
# Line 343  In the case of \var{useElementsOnFace}=\ Line 576  In the case of \var{useElementsOnFace}=\
576  are calculated on domain faces),  are calculated on domain faces),
577  \finleyelement{Hex8Face} and    \finleyelement{Hex8Face} and
578  \finleyelement{Hex20Face} are used on the brick faces, respectively.    \finleyelement{Hex20Face} are used on the brick faces, respectively.
579    If \var{order}=-1, \finleyelement{Hex20Macro} and \finleyelement{Rec8Macro}~\index{macro elements}. This option should be used when solving incompressible fluid flow problem, e.g. \class{StokesProblemCartesian}.
580  If \var{integrationOrder} is positive, a numerical integration scheme  If \var{integrationOrder} is positive, a numerical integration scheme
581  chosen which is accurate on each element up to a polynomial of  chosen which is accurate on each element up to a polynomial of
582  degree \var{integrationOrder} \index{integration order}. Otherwise  degree \var{integrationOrder} \index{integration order}. Otherwise
# Line 352  along the $x_0$-directions are enforced. Line 586  along the $x_0$-directions are enforced.
586  the value on the plane $x_0=0$ will be identical to the values on $x_0=\var{l0}$. Correspondingly,  the value on the plane $x_0=0$ will be identical to the values on $x_0=\var{l0}$. Correspondingly,
587  \var{periodic1}=\False and \var{periodic2}=\False sets periodic boundary conditions  \var{periodic1}=\False and \var{periodic2}=\False sets periodic boundary conditions
588  in $x_1$-direction and $x_2$-direction, respectively.  in $x_1$-direction and $x_2$-direction, respectively.
589    If \var{optimize}=\True mesh node relabeling will be attempted to reduce the computation and also ParMETIS will be used to improve the mesh partition if running on multiple CPUs with MPI.
590  \end{funcdesc}  \end{funcdesc}
591
592  \begin{funcdesc}{GlueFaces}{meshList,safetyFactor=0.2,tolerance=1.e-13}  \begin{funcdesc}{GlueFaces}{meshList,safetyFactor=0.2,tolerance=1.e-13}
593  Generates a new \Domain object from the list \var{mehList} of \finley meshes.  Generates a new \Domain object from the list \var{meshList} of \finley meshes.
594  Nodes in face elements whose difference of coordinates is less then \var{tolerance} times the  Nodes in face elements whose difference of coordinates is less then \var{tolerance} times the
595  diameter of the domain are merged. The corresponding face elements are removed from the mesh.    diameter of the domain are merged. The corresponding face elements are removed from the mesh.
596
# Line 363  TODO: explain \var{safetyFactor} and sho Line 598  TODO: explain \var{safetyFactor} and sho
598  \end{funcdesc}  \end{funcdesc}
599
600  \begin{funcdesc}{JoinFaces}{meshList,safetyFactor=0.2,tolerance=1.e-13}  \begin{funcdesc}{JoinFaces}{meshList,safetyFactor=0.2,tolerance=1.e-13}
601  Generates a new \Domain object from the list \var{mehList} of \finley meshes.  Generates a new \Domain object from the list \var{meshList} of \finley meshes.
602  Face elements whose nodes coordinates have difference is less then \var{tolerance} times the  Face elements whose nodes coordinates have difference is less then \var{tolerance} times the
603  diameter of the domain are combined to form a contact element \index{element!contact}  diameter of the domain are combined to form a contact element \index{element!contact}
604  The corresponding face elements are removed from the mesh.    The corresponding face elements are removed from the mesh.

Legend:
 Removed from v.993 changed lines Added in v.2793