1 |
% $Id$ |
% $Id$ |
2 |
% |
% |
3 |
% Copyright © 2006 by ACcESS MNRF |
% Copyright © 2006, 2007 by ACcESS MNRF |
4 |
% \url{http://www.access.edu.au |
% \url{http://www.access.edu.au |
5 |
% Primary Business: Queensland, Australia. |
% Primary Business: Queensland, Australia. |
6 |
% Licensed under the Open Software License version 3.0 |
% Licensed under the Open Software License version 3.0 |
34 |
library through the \LinearPDE class of \escript supporting its full functionality. {\it finley} |
library through the \LinearPDE class of \escript supporting its full functionality. {\it finley} |
35 |
is parallelized using the OpenMP \index{OpenMP} paradigm. |
is parallelized using the OpenMP \index{OpenMP} paradigm. |
36 |
|
|
37 |
\subsection{Meshes} |
\section{Formulation} |
38 |
|
|
39 |
|
For a single PDE with a solution with a single component the linear PDE is defined in the |
40 |
|
following form: |
41 |
|
\begin{equation}\label{FINLEY.SINGLE.1} |
42 |
|
\begin{array}{cl} & |
43 |
|
\displaystyle{ |
44 |
|
\int\hackscore{\Omega} |
45 |
|
A\hackscore{jl} \cdot v\hackscore{,j}u\hackscore{,l}+ B\hackscore{j} \cdot v\hackscore{,j} u+ C\hackscore{l} \cdot v u\hackscore{,l}+D \cdot vu \; d\Omega } \\ |
46 |
|
+ & \displaystyle{\int\hackscore{\Gamma} d \cdot vu \; d{\Gamma} } |
47 |
|
+ \displaystyle{\int\hackscore{\Gamma^{contact}} d^{contact} \cdot [v][u] \; d{\Gamma} } \\ |
48 |
|
= & \displaystyle{\int\hackscore{\Omega} X\hackscore{j} \cdot v\hackscore{,j}+ Y \cdot v \; d\Omega }\\ |
49 |
|
+ & \displaystyle{\int\hackscore{\Gamma} y \cdot v \; d{\Gamma}} + |
50 |
|
\displaystyle{\int\hackscore{\Gamma^{contact}} y^{contact}\cdot [v] \; d{\Gamma}} \\ |
51 |
|
\end{array} |
52 |
|
\end{equation} |
53 |
|
|
54 |
|
\section{Meshes} |
55 |
To understand the usage of \finley one needs to have an understanding of how the finite element meshes |
To understand the usage of \finley one needs to have an understanding of how the finite element meshes |
56 |
\index{FEM!mesh} are defined. \fig{FINLEY FIG 0} shows an example of the |
\index{FEM!mesh} are defined. \fig{FINLEY FIG 0} shows an example of the |
57 |
subdivision of an ellipse into so called elements \index{FEM!elements} \index{element}. |
subdivision of an ellipse into so called elements \index{FEM!elements} \index{element}. |