 # Diff of /trunk/doc/user/finley.tex

revision 1323 by ksteube, Wed Sep 26 04:39:14 2007 UTC revision 1324 by ksteube, Sun Sep 30 23:35:17 2007 UTC
# Line 281  degree \var{integrationOrder} \index{int Line 281  degree \var{integrationOrder} \index{int
281  an appropriate integration order is chosen independently.  an appropriate integration order is chosen independently.
282  \end{funcdesc}  \end{funcdesc}
283
\begin{funcdesc}{Interval}{n0,order=1,l0=1.,integrationOrder=-1, \\
periodic0=\False,useElementsOnFace=\False}
Generates a \Domain object representing a interval $[0,l0]$. The interval is filled with
\var{n0} elements.
For \var{order}=1 and \var{order}=2
\finleyelement{Line2} and
\finleyelement{Line3} are used, respectively.
In the case of \var{useElementsOnFace}=\False,
\finleyelement{Point1} are used to describe the boundary points.
In the case of \var{useElementsOnFace}=\True (this option should be used if gradients
are calculated on domain faces),
\finleyelement{Line2} and
\finleyelement{Line3} are used on both ends of the interval.
If \var{integrationOrder} is positive, a numerical integration scheme
chosen which is accurate on each element up to a polynomial of
degree \var{integrationOrder} \index{integration order}. Otherwise
an appropriate integration order is chosen independently. If
\var{periodic0}=\True, periodic boundary conditions \index{periodic boundary conditions}
along the $x_0$-directions are enforced. That means when for any solution of a PDE solved by \finley
the value at $x_0=0$ will be identical to the values at $x_0=\var{l0}$.
\end{funcdesc}

284  \begin{funcdesc}{Rectangle}{n0,n1,order=1,l0=1.,l1=1., integrationOrder=-1, \\  \begin{funcdesc}{Rectangle}{n0,n1,order=1,l0=1.,l1=1., integrationOrder=-1, \\
285    periodic0=\False,periodic1=\False,useElementsOnFace=\False}    periodic0=\False,periodic1=\False,useElementsOnFace=\False}
286  Generates a \Domain object representing a two dimensional rectangle between  Generates a \Domain object representing a two dimensional rectangle between

Legend:
 Removed from v.1323 changed lines Added in v.1324