1 
jgs 
102 
% $Id$ 
2 



3 
jgs 
121 
\section{The First Steps} 
4 
jgs 
102 
\label{FirstSteps} 
5 



6 


\begin{figure} 
7 


\centerline{\includegraphics[width=\figwidth]{FirstStepDomain}} 
8 


\caption{Domain $\Omega=[0,1]^2$ with outer normal field $n$.} 
9 


\label{fig:FirstSteps.1} 
10 


\end{figure} 
11 



12 
jgs 
107 
In this chapter we will give an introduction how to use \escript to solve 
13 


a partial differential equation \index{partial differential equation} (PDE \index{partial differential equation!PDE}). The reader should be familiar with Python. The knowledge presented at the Python tutorial at \url{http://docs.python.org/tut/tut.html} 
14 


is sufficient. It is helpful if the reader has some basic knowledge of PDEs \index{partial differential equation}. 
15 
jgs 
102 

16 
jgs 
107 
The PDE \index{partial differential equation} we wish to solve is the Poisson equation \index{Poisson equation} 
17 
jgs 
102 
\begin{equation} 
18 


\Delta u =f 
19 


\label{eq:FirstSteps.1} 
20 


\end{equation} 
21 
jgs 
107 
for the solution $u$. The function $f$ is the given right hand side. The domain of interest, denoted by $\Omega$ 
22 
jgs 
102 
is the unit square 
23 


\begin{equation} 
24 


\Omega=[0,1]^2=\{ (x\hackscore 0;x\hackscore 1)  0\le x\hackscore{0} \le 1 \mbox{ and } 0\le x\hackscore{1} \le 1 \} 
25 


\label{eq:FirstSteps.1b} 
26 


\end{equation} 
27 
jgs 
107 
The domain is shown in \fig{fig:FirstSteps.1}. 
28 
jgs 
102 

29 


$\Delta$ denotes the Laplace operator\index{Laplace operator} which is defined by 
30 


\begin{equation} 
31 


\Delta u = (u\hackscore {,0})\hackscore{,0}+(u\hackscore{,1})\hackscore{,1} 
32 


\label{eq:FirstSteps.1.1} 
33 


\end{equation} 
34 
jgs 
107 
where, for any function $w$ and any direction $i$, $u\hackscore{,i}$ 
35 


denotes the partial derivative \index{partial derivative} of $u$ with respect to $i$. 
36 
jgs 
102 
\footnote{Some readers 
37 


may be more familiar with the Laplace operator\index{Laplace operator} being written 
38 


as $\nabla^2$, and written in the form 
39 


\begin{equation*} 
40 
jgs 
110 
\nabla^2 u = \nabla^t \cdot \nabla u = \frac{\partial^2 u}{\partial x\hackscore 0^2} 
41 
jgs 
102 
+ \frac{\partial^2 u}{\partial x\hackscore 1^2} 
42 


\end{equation*} 
43 


and \eqn{eq:FirstSteps.1} as 
44 


\begin{equation*} 
45 


\nabla^2 u = f 
46 


\end{equation*} 
47 


} 
48 
jgs 
107 
Basically, in the subindex of a function, any index to the left of the comma denotes a spatial derivative with respect 
49 
jgs 
102 
to the index. To get a more compact form we will write $w\hackscore{,ij}=(w\hackscore {,i})\hackscore{,j}$ 
50 


which leads to 
51 


\begin{equation} 
52 


\Delta u = u\hackscore{,00}+u\hackscore{,11}=\sum\hackscore{i=0}^2 u\hackscore{,ii} 
53 


\label{eq:FirstSteps.1.1b} 
54 


\end{equation} 
55 


In some cases, and we will see examples for this in the next chapter, 
56 


the usage of the nested $\sum$ symbols blows up the formulas and therefore 
57 
jgs 
107 
it is convenient to use the Einstein summation convention \index{summation convention}. This 
58 


drops the $\sum$ sign and assumes that a summation over a repeated index is performed 
59 
jgs 
102 
("repeated index means summation"). For instance we write 
60 


\begin{eqnarray} 
61 


x\hackscore{i}y\hackscore{i}=\sum\hackscore{i=0}^2 x\hackscore{i}y\hackscore{i} \\ 
62 


x\hackscore{i}u\hackscore{,i}=\sum\hackscore{i=0}^2 x\hackscore{i}u\hackscore{,i} \\ 
63 


u\hackscore{,ii}=\sum\hackscore{i=0}^2 u\hackscore{,ii} \\ 
64 
jgs 
107 
x\hackscore{ij}u\hackscore{i,j}=\sum\hackscore{j=0}^2\sum\hackscore{i=0}^2 x\hackscore{ij}u\hackscore{i,j} \\ 
65 
jgs 
102 
\label{eq:FirstSteps.1.1c} 
66 


\end{eqnarray} 
67 


With the summation convention we can write the Poisson equation \index{Poisson equation} as 
68 


\begin{equation} 
69 


 u\hackscore{,ii} =1 
70 


\label{eq:FirstSteps.1.sum} 
71 


\end{equation} 
72 


On the boundary of the domain $\Omega$ the normal derivative $n\hackscore{i} u\hackscore{,i}$ 
73 


of the solution $u$ shall be zero, ie. $u$ shall fulfill 
74 


the homogeneous Neumann boundary condition\index{Neumann 
75 


boundary condition!homogeneous} 
76 


\begin{equation} 
77 


n\hackscore{i} u\hackscore{,i}= 0 \;. 
78 


\label{eq:FirstSteps.2} 
79 


\end{equation} 
80 


$n=(n\hackscore{i})$ denotes the outer normal field 
81 


of the domain, see \fig{fig:FirstSteps.1}. Remember that we 
82 


are applying the Einstein summation convention \index{summation convention}, i.e 
83 
jgs 
107 
$n\hackscore{i} u\hackscore{,i}= n\hackscore{0} u\hackscore{,0} + 
84 


n\hackscore{1} u\hackscore{,1}$. 
85 
jgs 
102 
\footnote{Some readers may familiar with the notation 
86 


\begin{equation*} 
87 


\frac{\partial u}{\partial n} = n\hackscore{i} u\hackscore{,i} 
88 


\end{equation*} 
89 


for the normal derivative.} 
90 


The Neumann boundary condition of \eqn{eq:FirstSteps.2} should be fulfilled on the 
91 


set $\Gamma^N$ which is the top and right edge of the domain: 
92 


\begin{equation} 
93 


\Gamma^N=\{(x\hackscore 0;x\hackscore 1) \in \Omega  x\hackscore{0}=1 \mbox{ or } x\hackscore{1}=1 \} 
94 


\label{eq:FirstSteps.2b} 
95 


\end{equation} 
96 
jgs 
107 
On the bottom and the left edge of the domain which is defined 
97 
jgs 
102 
as 
98 


\begin{equation} 
99 


\Gamma^D=\{(x\hackscore 0;x\hackscore 1) \in \Omega  x\hackscore{0}=0 \mbox{ or } x\hackscore{1}=0 \} 
100 


\label{eq:FirstSteps.2c} 
101 


\end{equation} 
102 


the solution shall be identically zero: 
103 


\begin{equation} 
104 


u=0 \; . 
105 


\label{eq:FirstSteps.2d} 
106 


\end{equation} 
107 
jgs 
107 
This kind of boundary condition is called a homogeneous Dirichlet boundary condition 
108 
jgs 
102 
\index{Dirichlet boundary condition!homogeneous}. The partial differential equation in \eqn{eq:FirstSteps.1.sum} together 
109 


with the Neumann boundary condition \eqn{eq:FirstSteps.2} and 
110 


Dirichlet boundary condition in \eqn{eq:FirstSteps.2d} form a so 
111 


called boundary value 
112 
jgs 
107 
problem\index{boundary value problem} (BVP\index{boundary value problem!BVP}) for 
113 


the unknown 
114 
jgs 
102 
function $u$. 
115 



116 



117 


\begin{figure} 
118 


\centerline{\includegraphics[width=\figwidth]{FirstStepMesh}} 
119 


\caption{Mesh of $4 \time 4$ elements on a rectangular domain. Here 
120 


each element is a quadrilateral and described by four nodes, namely 
121 


the corner points. The solution is interpolated by a bilinear 
122 


polynomial.} 
123 


\label{fig:FirstSteps.2} 
124 


\end{figure} 
125 



126 


In general the BVP\index{boundary value problem!BVP} cannot be solved analytically and numerical 
127 


methods have to be used construct an approximation of the solution 
128 


$u$. Here we will use the finite element method\index{finite element 
129 


method} (FEM\index{finite element 
130 


method!FEM}). The basic idea is to fill the domain with a 
131 
jgs 
107 
set of points called nodes. The solution is approximated by its 
132 
jgs 
102 
values on the nodes\index{finite element 
133 
jgs 
107 
method!nodes}. Moreover, the domain is subdivided into small, 
134 


subdomain called elements \index{finite element 
135 
jgs 
102 
method!element}. On each element the solution is 
136 


represented by a polynomial of a certain degree through its values at 
137 


the nodes located in the element. The nodes and its connection through 
138 


elements is called a mesh\index{finite element 
139 
jgs 
107 
method!mesh}. \fig{fig:FirstSteps.2} shows an 
140 
jgs 
102 
example of a FEM mesh with four elements in the $x_0$ and four elements 
141 


in the $x_1$ direction over the unit square. 
142 


For more details we refer the reader to the literature, for instance 
143 


\Ref{Zienc,NumHand}. 
144 



145 


\escript provides the class \Poisson to define a Poisson equation \index{Poisson equation}. 
146 


(We will discuss a more general form of a PDE \index{partial differential equation!PDE} 
147 


that can be defined through the \LinearPDE class later). The instantiation of 
148 


a \Poisson class object requires the specification of the domain $\Omega$. In \escript 
149 


the \Domain class objects are used to describe the geometry of a domain but it also 
150 


contains information about the discretization methods and the actual solver which is used 
151 


to solve the PDE. Here we are using the FEM library \finley \index{finite element 
152 


method}. The following statements create the \Domain object \var{mydomain} from the 
153 


\finley method \method{Rectangle} 
154 


\begin{python} 
155 
jgs 
107 
from esys.finley import Rectangle 
156 


mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20) 
157 
jgs 
102 
\end{python} 
158 


In this case the domain is a rectangle with the lower, left corner at point $(0,0)$ and 
159 


the right, upper corner at $(\var{l0},\var{l1})=(1,1)$. 
160 
jgs 
107 
The arguments \var{n0} and \var{n1} define the number of elements in $x\hackscore{0}$ and 
161 
jgs 
102 
$x\hackscore{1}$direction respectively. For more details on \method{Rectangle} and 
162 


other \Domain generators within the \finley module, 
163 


see \Chap{CHAPTER ON FINLEY}. 
164 



165 
jgs 
107 
The following statements define the \Poisson class object \var{mypde} with domain \var{mydomain} and 
166 
jgs 
102 
the right hand side $f$ of the PDE to constant $1$: 
167 


\begin{python} 
168 
jgs 
107 
from esys.escript import Poisson 
169 


mypde = Poisson(mydomain) 
170 


mypde.setValue(f=1) 
171 
jgs 
102 
\end{python} 
172 


We have not specified any boundary condition but the 
173 


\Poisson class implicitly assumes homogeneous Neuman boundary conditions \index{Neumann 
174 


boundary condition!homogeneous} defined by \eqn{eq:FirstSteps.2}. With this boundary 
175 


condition the BVP\index{boundary value problem!BVP} we have defined has no unique solution. In fact, with any solution $u$ 
176 


and any constant $C$ the function $u+C$ becomes a solution as well. We have to add 
177 


a Dirichlet boundary condition \index{Dirichlet boundary condition}. This is done 
178 
jgs 
107 
by defining a characteristic function \index{characteristic function} 
179 


which has positive values at locations $x=(x\hackscore{0},x\hackscore{1})$ where Dirichlet boundary condition is set 
180 
jgs 
102 
and $0$ elsewhere. In our case of $\Gamma^D$ defined by \eqn{eq:FirstSteps.2c}, 
181 
jgs 
107 
we need a function which is positive for the cases $x\hackscore{0}=0$ or $x\hackscore{1}=0$: 
182 
jgs 
102 
\begin{python} 
183 


x=mydomain.getX() 
184 


gammaD=x[0].whereZero()+x[1].whereZero() 
185 


\end{python} 
186 
jgs 
107 
In the first statement, the method \method{getX} of the \Domain \var{mydomain} 
187 


gives access to locations 
188 


in the domain defined by \var{mydomain}. The object \var{x} is actually a \Data object 
189 


which we will learn more about later. \code{x[0]} returns the $x\hackscore{0}$ coordinates of the locations and 
190 
jgs 
102 
\code{x[0].whereZero()} creates function which equals $1$ where \code{x[0]} is (nearly) equal to zero 
191 
jgs 
107 
and $0$ elsewhere. 
192 


Similarly, \code{x[1].whereZero()} creates function which equals $1$ where \code{x[1]} is 
193 


equal to zero and $0$ elsewhere. 
194 


The sum of the results of \code{x[0].whereZero()} and \code{x[1].whereZero()} gives a function on the domain \var{mydomain} which is exactly positive where $x\hackscore{0}$ or $x\hackscore{1}$ is equal to zero. 
195 
jgs 
102 

196 
jgs 
107 
The additional parameter \var{q} of the \code{setValue} method of the \Poisson class defines the 
197 
jgs 
102 
characteristic function \index{characteristic function} of the locations 
198 


of the domain where homogeneous Dirichlet boundary condition \index{Dirichlet boundary condition!homogeneous} 
199 


are set. The complete definition of our example is now: 
200 


\begin{python} 
201 
jgs 
107 
from esys.linearPDEs import Poisson 
202 
jgs 
102 
x = mydomain.getX() 
203 


gammaD = x[0].whereZero()+x[1].whereZero() 
204 
jgs 
107 
mypde = Poisson(domain=mydomain) 
205 


mypde = setValue(f=1,q=gammaD) 
206 
jgs 
102 
\end{python} 
207 
jgs 
107 
The first statement imports the \Poisson class definition form the \linearPDEsPack module which is part of the \ESyS package. 
208 


To get the solution of the Poisson equation defined by \var{mypde} we just have to call its 
209 
jgs 
102 
\method{getSolution}. 
210 



211 


Now we can write the script to solve our test problem (Remember that 
212 
jgs 
107 
lines starting with '\#' are comment lines in Python) (available as \file{mypoisson.py} 
213 
jgs 
102 
in the \ExampleDirectory): 
214 


\begin{python} 
215 
jgs 
107 
from esys.finley import Rectangle 
216 
jgs 
102 
from esys.linearPDEs import Poisson 
217 


# generate domain: 
218 
jgs 
107 
mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20) 
219 
jgs 
102 
# define characteristic function of Gamma^D 
220 


x = mydomain.getX() 
221 


gammaD = x[0].whereZero()+x[1].whereZero() 
222 


# define PDE and get its solution u 
223 


mypde = Poisson(domain=mydomain,f=1,q=gammaD) 
224 


u = mypde.getSolution() 
225 


# write u to an external file 
226 


u.saveDX("u.dx") 
227 


\end{python} 
228 


The last statement writes the solution to the external file \file{u.dx} in 
229 


\OpenDX file format. \OpenDX is a software package 
230 


for the visualization of scientific, engineering and analytical data and is freely available 
231 


from \url{http://www.opendx.org}. 
232 



233 


\begin{figure} 
234 


\centerline{\includegraphics[width=\figwidth]{FirstStepResult.eps}} 
235 
jgs 
107 
\caption{\OpenDX Visualization of the Possion Equation Solution for $f=1$} 
236 
jgs 
102 
\label{fig:FirstSteps.3} 
237 


\end{figure} 
238 



239 
jgs 
107 
You can edit the script file using your favourite text editor (or the Integrated DeveLopment Environment IDLE 
240 


for Python, see \url{http://idlefork.sourceforge.net}). If the script file has the name \file{mypoisson.py} \index{scripts!\file{mypoisson.py}} you can run the 
241 
jgs 
102 
script from any shell using the command: 
242 


\begin{verbatim} 
243 


python mypoisson.py 
244 


\end{verbatim} 
245 


After the script has (hopefully successfully) been completed you will find the file \file{u.dx} in the current 
246 


directory. An easy way to visualize the results is the command 
247 


\begin{verbatim} 
248 
jgs 
107 
dx prompter & 
249 
jgs 
102 
\end{verbatim} 
250 
jgs 
110 
to start the generic data visualization interface of \OpenDX. \fig{fig:FirstSteps.3} shows the result. 