1 
% $Id$ 
2 

3 
\section{The First Steps} 
4 
\label{FirstSteps} 
5 

6 
\begin{figure} 
7 
\centerline{\includegraphics[width=\figwidth]{FirstStepDomain}} 
8 
\caption{Domain $\Omega=[0,1]^2$ with outer normal field $n$.} 
9 
\label{fig:FirstSteps.1} 
10 
\end{figure} 
11 

12 
In this chapter we will give an introduction how to use \escript to solve 
13 
a partial differential equation \index{partial differential equation} (PDE \index{partial differential equation!PDE}). The reader should be familiar with Python. The knowledge presented at the Python tutorial at \url{http://docs.python.org/tut/tut.html} 
14 
is sufficient. It is helpful if the reader has some basic knowledge of PDEs \index{partial differential equation}. 
15 

16 
The PDE \index{partial differential equation} we wish to solve is the Poisson equation \index{Poisson equation} 
17 
\begin{equation} 
18 
\Delta u =f 
19 
\label{eq:FirstSteps.1} 
20 
\end{equation} 
21 
for the solution $u$. The function $f$ is the given right hand side. The domain of interest, denoted by $\Omega$ 
22 
is the unit square 
23 
\begin{equation} 
24 
\Omega=[0,1]^2=\{ (x\hackscore 0;x\hackscore 1)  0\le x\hackscore{0} \le 1 \mbox{ and } 0\le x\hackscore{1} \le 1 \} 
25 
\label{eq:FirstSteps.1b} 
26 
\end{equation} 
27 
The domain is shown in \fig{fig:FirstSteps.1}. 
28 

29 
$\Delta$ denotes the Laplace operator\index{Laplace operator} which is defined by 
30 
\begin{equation} 
31 
\Delta u = (u\hackscore {,0})\hackscore{,0}+(u\hackscore{,1})\hackscore{,1} 
32 
\label{eq:FirstSteps.1.1} 
33 
\end{equation} 
34 
where, for any function $w$ and any direction $i$, $u\hackscore{,i}$ 
35 
denotes the partial derivative \index{partial derivative} of $u$ with respect to $i$. 
36 
\footnote{Some readers 
37 
may be more familiar with the Laplace operator\index{Laplace operator} being written 
38 
as $\nabla^2$, and written in the form 
39 
\begin{equation*} 
40 
\nabla^2 u = \nabla^t \cdot \nabla u = \frac{\partial^2 u}{\partial x\hackscore 0^2} 
41 
+ \frac{\partial^2 u}{\partial x\hackscore 1^2} 
42 
\end{equation*} 
43 
and \eqn{eq:FirstSteps.1} as 
44 
\begin{equation*} 
45 
\nabla^2 u = f 
46 
\end{equation*} 
47 
} 
48 
Basically, in the subindex of a function, any index to the left of the comma denotes a spatial derivative with respect 
49 
to the index. To get a more compact form we will write $w\hackscore{,ij}=(w\hackscore {,i})\hackscore{,j}$ 
50 
which leads to 
51 
\begin{equation} 
52 
\Delta u = u\hackscore{,00}+u\hackscore{,11}=\sum\hackscore{i=0}^2 u\hackscore{,ii} 
53 
\label{eq:FirstSteps.1.1b} 
54 
\end{equation} 
55 
In some cases, and we will see examples for this in the next chapter, 
56 
the usage of the nested $\sum$ symbols blows up the formulas and therefore 
57 
it is convenient to use the Einstein summation convention \index{summation convention}. This 
58 
drops the $\sum$ sign and assumes that a summation over a repeated index is performed 
59 
("repeated index means summation"). For instance we write 
60 
\begin{eqnarray} 
61 
x\hackscore{i}y\hackscore{i}=\sum\hackscore{i=0}^2 x\hackscore{i}y\hackscore{i} \\ 
62 
x\hackscore{i}u\hackscore{,i}=\sum\hackscore{i=0}^2 x\hackscore{i}u\hackscore{,i} \\ 
63 
u\hackscore{,ii}=\sum\hackscore{i=0}^2 u\hackscore{,ii} \\ 
64 
x\hackscore{ij}u\hackscore{i,j}=\sum\hackscore{j=0}^2\sum\hackscore{i=0}^2 x\hackscore{ij}u\hackscore{i,j} \\ 
65 
\label{eq:FirstSteps.1.1c} 
66 
\end{eqnarray} 
67 
With the summation convention we can write the Poisson equation \index{Poisson equation} as 
68 
\begin{equation} 
69 
 u\hackscore{,ii} =1 
70 
\label{eq:FirstSteps.1.sum} 
71 
\end{equation} 
72 
On the boundary of the domain $\Omega$ the normal derivative $n\hackscore{i} u\hackscore{,i}$ 
73 
of the solution $u$ shall be zero, ie. $u$ shall fulfill 
74 
the homogeneous Neumann boundary condition\index{Neumann 
75 
boundary condition!homogeneous} 
76 
\begin{equation} 
77 
n\hackscore{i} u\hackscore{,i}= 0 \;. 
78 
\label{eq:FirstSteps.2} 
79 
\end{equation} 
80 
$n=(n\hackscore{i})$ denotes the outer normal field 
81 
of the domain, see \fig{fig:FirstSteps.1}. Remember that we 
82 
are applying the Einstein summation convention \index{summation convention}, i.e 
83 
$n\hackscore{i} u\hackscore{,i}= n\hackscore{0} u\hackscore{,0} + 
84 
n\hackscore{1} u\hackscore{,1}$. 
85 
\footnote{Some readers may familiar with the notation 
86 
\begin{equation*} 
87 
\frac{\partial u}{\partial n} = n\hackscore{i} u\hackscore{,i} 
88 
\end{equation*} 
89 
for the normal derivative.} 
90 
The Neumann boundary condition of \eqn{eq:FirstSteps.2} should be fulfilled on the 
91 
set $\Gamma^N$ which is the top and right edge of the domain: 
92 
\begin{equation} 
93 
\Gamma^N=\{(x\hackscore 0;x\hackscore 1) \in \Omega  x\hackscore{0}=1 \mbox{ or } x\hackscore{1}=1 \} 
94 
\label{eq:FirstSteps.2b} 
95 
\end{equation} 
96 
On the bottom and the left edge of the domain which is defined 
97 
as 
98 
\begin{equation} 
99 
\Gamma^D=\{(x\hackscore 0;x\hackscore 1) \in \Omega  x\hackscore{0}=0 \mbox{ or } x\hackscore{1}=0 \} 
100 
\label{eq:FirstSteps.2c} 
101 
\end{equation} 
102 
the solution shall be identically zero: 
103 
\begin{equation} 
104 
u=0 \; . 
105 
\label{eq:FirstSteps.2d} 
106 
\end{equation} 
107 
This kind of boundary condition is called a homogeneous Dirichlet boundary condition 
108 
\index{Dirichlet boundary condition!homogeneous}. The partial differential equation in \eqn{eq:FirstSteps.1.sum} together 
109 
with the Neumann boundary condition \eqn{eq:FirstSteps.2} and 
110 
Dirichlet boundary condition in \eqn{eq:FirstSteps.2d} form a so 
111 
called boundary value 
112 
problem\index{boundary value problem} (BVP\index{boundary value problem!BVP}) for 
113 
the unknown 
114 
function $u$. 
115 

116 

117 
\begin{figure} 
118 
\centerline{\includegraphics[width=\figwidth]{FirstStepMesh}} 
119 
\caption{Mesh of $4 \time 4$ elements on a rectangular domain. Here 
120 
each element is a quadrilateral and described by four nodes, namely 
121 
the corner points. The solution is interpolated by a bilinear 
122 
polynomial.} 
123 
\label{fig:FirstSteps.2} 
124 
\end{figure} 
125 

126 
In general the BVP\index{boundary value problem!BVP} cannot be solved analytically and numerical 
127 
methods have to be used construct an approximation of the solution 
128 
$u$. Here we will use the finite element method\index{finite element 
129 
method} (FEM\index{finite element 
130 
method!FEM}). The basic idea is to fill the domain with a 
131 
set of points called nodes. The solution is approximated by its 
132 
values on the nodes\index{finite element 
133 
method!nodes}. Moreover, the domain is subdivided into small, 
134 
subdomain called elements \index{finite element 
135 
method!element}. On each element the solution is 
136 
represented by a polynomial of a certain degree through its values at 
137 
the nodes located in the element. The nodes and its connection through 
138 
elements is called a mesh\index{finite element 
139 
method!mesh}. \fig{fig:FirstSteps.2} shows an 
140 
example of a FEM mesh with four elements in the $x_0$ and four elements 
141 
in the $x_1$ direction over the unit square. 
142 
For more details we refer the reader to the literature, for instance 
143 
\Ref{Zienc,NumHand}. 
144 

145 
\escript provides the class \Poisson to define a Poisson equation \index{Poisson equation}. 
146 
(We will discuss a more general form of a PDE \index{partial differential equation!PDE} 
147 
that can be defined through the \LinearPDE class later). The instantiation of 
148 
a \Poisson class object requires the specification of the domain $\Omega$. In \escript 
149 
the \Domain class objects are used to describe the geometry of a domain but it also 
150 
contains information about the discretization methods and the actual solver which is used 
151 
to solve the PDE. Here we are using the FEM library \finley \index{finite element 
152 
method}. The following statements create the \Domain object \var{mydomain} from the 
153 
\finley method \method{Rectangle} 
154 
\begin{python} 
155 
from esys.finley import Rectangle 
156 
mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20) 
157 
\end{python} 
158 
In this case the domain is a rectangle with the lower, left corner at point $(0,0)$ and 
159 
the right, upper corner at $(\var{l0},\var{l1})=(1,1)$. 
160 
The arguments \var{n0} and \var{n1} define the number of elements in $x\hackscore{0}$ and 
161 
$x\hackscore{1}$direction respectively. For more details on \method{Rectangle} and 
162 
other \Domain generators within the \finley module, 
163 
see \Chap{CHAPTER ON FINLEY}. 
164 

165 
The following statements define the \Poisson class object \var{mypde} with domain \var{mydomain} and 
166 
the right hand side $f$ of the PDE to constant $1$: 
167 
\begin{python} 
168 
from esys.escript.linearPDEs import Poisson 
169 
mypde = Poisson(mydomain) 
170 
mypde.setValue(f=1) 
171 
\end{python} 
172 
We have not specified any boundary condition but the 
173 
\Poisson class implicitly assumes homogeneous Neuman boundary conditions \index{Neumann 
174 
boundary condition!homogeneous} defined by \eqn{eq:FirstSteps.2}. With this boundary 
175 
condition the BVP\index{boundary value problem!BVP} we have defined has no unique solution. In fact, with any solution $u$ 
176 
and any constant $C$ the function $u+C$ becomes a solution as well. We have to add 
177 
a Dirichlet boundary condition \index{Dirichlet boundary condition}. This is done 
178 
by defining a characteristic function \index{characteristic function} 
179 
which has positive values at locations $x=(x\hackscore{0},x\hackscore{1})$ where Dirichlet boundary condition is set 
180 
and $0$ elsewhere. In our case of $\Gamma^D$ defined by \eqn{eq:FirstSteps.2c}, 
181 
we need to construct a function \var{gammaD} which is positive for the cases $x\hackscore{0}=0$ or $x\hackscore{1}=0$. To get 
182 
an object \var{x} which represents locations in the domain one uses 
183 
\begin{python} 
184 
x=mydomain.getX() \;. 
185 
\end{python} 
186 
In fact \var{x} is a \Data object which we will learn more about in Chapter~\ref{X}. At this stage we only have to know 
187 
that \var{x} has a 
188 

189 
In the first statement, the method \method{getX} of the \Domain \var{mydomain} 
190 
gives access to locations 
191 
in the domain defined by \var{mydomain}. The object \var{x} is actually a \Data object which is 
192 
discussed in Chpater\ref{X} in more details. What we need to know here is that 
193 
\var{x} has \Rank (=number of dimensions) and a \Shape (=tuple of dimensions) which can be checked by 
194 
calling the \method{getRank} and \method{getShape} methods: 
195 
\begin{python} 
196 
print "rank ",x.getRank(),", shape ",x.getShape() 
197 
\end{python} 
198 
will print something like 
199 
\begin{python} 
200 
rank 1, shape (2,) 
201 
\end{python} 
202 
The \Data object also maintains type information which is represented by the 
203 
\FunctionSpace of the object. For instance 
204 
\begin{python} 
205 
print x.getFunctionSpace() 
206 
\end{python} 
207 
will print 
208 
\begin{python} 
209 
Function space type: Finley_Nodes on FinleyMesh 
210 
\end{python} 
211 
which tells us that the coordinates are stored on the nodes of a \finley mesh. 
212 
To get the $x\hackscore{0}$ coordinates of the locations we use the 
213 
statement 
214 
\begin{python} 
215 
x0=x[0] 
216 
\end{python} 
217 
Object \var{x0} 
218 
is again a \Data object now with \Rank $0$ and 
219 
\Shape $()$. It inherits the \FunctionSpace from \var{x}: 
220 
\begin{python} 
221 
print x0.getRank(),x0.getShape(),x0.getFunctionSpace() 
222 
\end{python} 
223 
will print 
224 
\begin{python} 
225 
0 () Function space type: Finley_Nodes on FinleyMesh 
226 
\end{python} 
227 
We can now construct the function \var{gammaD} by 
228 
\begin{python} 
229 
gammaD=whereZero(x[0])+whereZero(x[1]) 
230 
\end{python} 
231 
where 
232 
\code{whereZero(x[0])} creates function which equals $1$ where \code{x[0]} is (allmost) equal to zero 
233 
and $0$ elsewhere. 
234 
Similarly, \code{whereZero(x[1])} creates function which equals $1$ where \code{x[1]} is 
235 
equal to zero and $0$ elsewhere. 
236 
The sum of the results of \code{whereZero(x[0])} and \code{whereZero(x[1])} 
237 
gives a function on the domain \var{mydomain} which is exactly positive where $x\hackscore{0}$ or $x\hackscore{1}$ is equal to zero. 
238 
Note that \var{gammaD} has the same \Rank, \Shape and \FunctionSpace like \var{x0} used to define it. So from 
239 
\begin{python} 
240 
print gammaD.getRank(),gammaD.getShape(),gammaD.getFunctionSpace() 
241 
\end{python} 
242 
one gets 
243 
\begin{python} 
244 
0 () Function space type: Finley_Nodes on FinleyMesh 
245 
\end{python} 
246 
The additional parameter \var{q} of the \code{setValue} method of the \Poisson class defines the 
247 
characteristic function \index{characteristic function} of the locations 
248 
of the domain where homogeneous Dirichlet boundary condition \index{Dirichlet boundary condition!homogeneous} 
249 
are set. The complete definition of our example is now: 
250 
\begin{python} 
251 
from esys.linearPDEs import Poisson 
252 
x = mydomain.getX() 
253 
gammaD = whereZero(x[0])+whereZero(x[1]) 
254 
mypde = Poisson(domain=mydomain) 
255 
mypde = setValue(f=1,q=gammaD) 
256 
\end{python} 
257 
The first statement imports the \Poisson class definition form the \linearPDEs module \escript package. 
258 
To get the solution of the Poisson equation defined by \var{mypde} we just have to call its 
259 
\method{getSolution}. 
260 

261 
Now we can write the script to solve our test problem (Remember that 
262 
lines starting with '\#' are comment lines in Python) (available as \file{poisson.py} 
263 
in the \ExampleDirectory): 
264 
\begin{python} 
265 
from esys.escript import * 
266 
from esys.escript.linearPDEs import Poisson 
267 
from esys.finley import Rectangle 
268 
# generate domain: 
269 
mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20) 
270 
# define characteristic function of Gamma^D 
271 
x = mydomain.getX() 
272 
gammaD = whereZero(x[0])+whereZero(x[1]) 
273 
# define PDE and get its solution u 
274 
mypde = Poisson(domain=mydomain) 
275 
mypde.setValue(f=1,q=gammaD) 
276 
u = mypde.getSolution() 
277 
# write u to an external file 
278 
saveVTK("u.xml",sol=u) 
279 
\end{python} 
280 
The last statement writes the solution tagged with the name "sol" to the external file \file{u.xml} in 
281 
\VTK file format. \VTK is a software library 
282 
for the visualization of scientific, engineering and analytical data and is freely available 
283 
from \url{http://www.vtk.org}. There are a variaty of graphical user interfaces 
284 
for \VTK available, for instance \mayavi which can be downloaded from \url{http://mayavi.sourceforge.net/} but is also available on most 
285 
\LINUX distributions. 
286 

287 
\begin{figure} 
288 
\centerline{\includegraphics[width=\figwidth]{FirstStepResult.eps}} 
289 
\caption{Visualization of the Possion Equation Solution for $f=1$} 
290 
\label{fig:FirstSteps.3} 
291 
\end{figure} 
292 

293 
You can edit the script file using your favourite text editor (or the Integrated DeveLopment Environment IDLE 
294 
for Python, see \url{http://idlefork.sourceforge.net}). If the script file has the name \file{poisson.py} \index{scripts!\file{poisson.py}} you can run the 
295 
script from any shell using the command: 
296 
\begin{python} 
297 
python poisson.py 
298 
\end{python} 
299 
After the script has (hopefully successfully) been completed you will find the file \file{u.xml} in the current 
300 
directory. An easy way to visualize the results is the command 
301 
\begin{python} 
302 
mayavi d u.xml m SurfaceMap & 
303 
\end{python} 
304 
to show the results, see \fig{fig:FirstSteps.3}. 