1 
% $Id$ 
2 
% 
3 
% Copyright © 2006 by ACcESS MNRF 
4 
% \url{http://www.access.edu.au 
5 
% Primary Business: Queensland, Australia. 
6 
% Licensed under the Open Software License version 3.0 
7 
% http://www.opensource.org/licenses/osl3.0.php 
8 
% 
9 

10 

11 
\section{The First Steps} 
12 
\label{FirstSteps} 
13 

14 
\begin{figure} 
15 
\centerline{\includegraphics[width=\figwidth]{figures/FirstStepDomain}} 
16 
\caption{Domain $\Omega=[0,1]^2$ with outer normal field $n$.} 
17 
\label{fig:FirstSteps.1} 
18 
\end{figure} 
19 

20 
In this chapter we will give an introduction how to use \escript to solve 
21 
a partial differential equation \index{partial differential equation} (PDE \index{partial differential equation!PDE}). The reader should be familiar with Python. The knowledge presented at the Python tutorial at \url{http://docs.python.org/tut/tut.html} 
22 
is sufficient. It is helpful if the reader has some basic knowledge of PDEs \index{partial differential equation}. 
23 

24 
The PDE \index{partial differential equation} we wish to solve is the Poisson equation \index{Poisson equation} 
25 
\begin{equation} 
26 
\Delta u =f 
27 
\label{eq:FirstSteps.1} 
28 
\end{equation} 
29 
for the solution $u$. The function $f$ is the given right hand side. The domain of interest, denoted by $\Omega$ 
30 
is the unit square 
31 
\begin{equation} 
32 
\Omega=[0,1]^2=\{ (x\hackscore 0;x\hackscore 1)  0\le x\hackscore{0} \le 1 \mbox{ and } 0\le x\hackscore{1} \le 1 \} 
33 
\label{eq:FirstSteps.1b} 
34 
\end{equation} 
35 
The domain is shown in \fig{fig:FirstSteps.1}. 
36 

37 
$\Delta$ denotes the Laplace operator\index{Laplace operator} which is defined by 
38 
\begin{equation} 
39 
\Delta u = (u\hackscore {,0})\hackscore{,0}+(u\hackscore{,1})\hackscore{,1} 
40 
\label{eq:FirstSteps.1.1} 
41 
\end{equation} 
42 
where, for any function $w$ and any direction $i$, $u\hackscore{,i}$ 
43 
denotes the partial derivative \index{partial derivative} of $u$ with respect to $i$. 
44 
\footnote{Some readers 
45 
may be more familiar with the Laplace operator\index{Laplace operator} being written 
46 
as $\nabla^2$, and written in the form 
47 
\begin{equation*} 
48 
\nabla^2 u = \nabla^t \cdot \nabla u = \frac{\partial^2 u}{\partial x\hackscore 0^2} 
49 
+ \frac{\partial^2 u}{\partial x\hackscore 1^2} 
50 
\end{equation*} 
51 
and \eqn{eq:FirstSteps.1} as 
52 
\begin{equation*} 
53 
\nabla^2 u = f 
54 
\end{equation*} 
55 
} 
56 
Basically, in the subindex of a function, any index to the left of the comma denotes a spatial derivative with respect 
57 
to the index. To get a more compact form we will write $w\hackscore{,ij}=(w\hackscore {,i})\hackscore{,j}$ 
58 
which leads to 
59 
\begin{equation} 
60 
\Delta u = u\hackscore{,00}+u\hackscore{,11}=\sum\hackscore{i=0}^2 u\hackscore{,ii} 
61 
\label{eq:FirstSteps.1.1b} 
62 
\end{equation} 
63 
In some cases, and we will see examples for this in the next chapter, 
64 
the usage of the nested $\sum$ symbols blows up the formulas and therefore 
65 
it is convenient to use the Einstein summation convention \index{summation convention}. This 
66 
drops the $\sum$ sign and assumes that a summation over a repeated index is performed 
67 
("repeated index means summation"). For instance we write 
68 
\begin{eqnarray} 
69 
x\hackscore{i}y\hackscore{i}=\sum\hackscore{i=0}^2 x\hackscore{i}y\hackscore{i} \\ 
70 
x\hackscore{i}u\hackscore{,i}=\sum\hackscore{i=0}^2 x\hackscore{i}u\hackscore{,i} \\ 
71 
u\hackscore{,ii}=\sum\hackscore{i=0}^2 u\hackscore{,ii} \\ 
72 
x\hackscore{ij}u\hackscore{i,j}=\sum\hackscore{j=0}^2\sum\hackscore{i=0}^2 x\hackscore{ij}u\hackscore{i,j} \\ 
73 
\label{eq:FirstSteps.1.1c} 
74 
\end{eqnarray} 
75 
With the summation convention we can write the Poisson equation \index{Poisson equation} as 
76 
\begin{equation} 
77 
 u\hackscore{,ii} =1 
78 
\label{eq:FirstSteps.1.sum} 
79 
\end{equation} 
80 
where $f=1$ in this example. 
81 

82 
On the boundary of the domain $\Omega$ the normal derivative $n\hackscore{i} u\hackscore{,i}$ 
83 
of the solution $u$ shall be zero, ie. $u$ shall fulfill 
84 
the homogeneous Neumann boundary condition\index{Neumann 
85 
boundary condition!homogeneous} 
86 
\begin{equation} 
87 
n\hackscore{i} u\hackscore{,i}= 0 \;. 
88 
\label{eq:FirstSteps.2} 
89 
\end{equation} 
90 
$n=(n\hackscore{i})$ denotes the outer normal field 
91 
of the domain, see \fig{fig:FirstSteps.1}. Remember that we 
92 
are applying the Einstein summation convention \index{summation convention}, i.e 
93 
$n\hackscore{i} u\hackscore{,i}= n\hackscore{0} u\hackscore{,0} + 
94 
n\hackscore{1} u\hackscore{,1}$. 
95 
\footnote{Some readers may familiar with the notation 
96 
\begin{equation*} 
97 
\frac{\partial u}{\partial n} = n\hackscore{i} u\hackscore{,i} 
98 
\end{equation*} 
99 
for the normal derivative.} 
100 
The Neumann boundary condition of \eqn{eq:FirstSteps.2} should be fulfilled on the 
101 
set $\Gamma^N$ which is the top and right edge of the domain: 
102 
\begin{equation} 
103 
\Gamma^N=\{(x\hackscore 0;x\hackscore 1) \in \Omega  x\hackscore{0}=1 \mbox{ or } x\hackscore{1}=1 \} 
104 
\label{eq:FirstSteps.2b} 
105 
\end{equation} 
106 
On the bottom and the left edge of the domain which is defined 
107 
as 
108 
\begin{equation} 
109 
\Gamma^D=\{(x\hackscore 0;x\hackscore 1) \in \Omega  x\hackscore{0}=0 \mbox{ or } x\hackscore{1}=0 \} 
110 
\label{eq:FirstSteps.2c} 
111 
\end{equation} 
112 
the solution shall be identically zero: 
113 
\begin{equation} 
114 
u=0 \; . 
115 
\label{eq:FirstSteps.2d} 
116 
\end{equation} 
117 
This kind of boundary condition is called a homogeneous Dirichlet boundary condition 
118 
\index{Dirichlet boundary condition!homogeneous}. The partial differential equation in \eqn{eq:FirstSteps.1.sum} together 
119 
with the Neumann boundary condition \eqn{eq:FirstSteps.2} and 
120 
Dirichlet boundary condition in \eqn{eq:FirstSteps.2d} form a so 
121 
called boundary value 
122 
problem\index{boundary value problem} (BVP\index{boundary value problem!BVP}) for 
123 
the unknown 
124 
function $u$. 
125 

126 

127 
\begin{figure} 
128 
\centerline{\includegraphics[width=\figwidth]{figures/FirstStepMesh.eps}} 
129 
\caption{Mesh of $4 \time 4$ elements on a rectangular domain. Here 
130 
each element is a quadrilateral and described by four nodes, namely 
131 
the corner points. The solution is interpolated by a bilinear 
132 
polynomial.} 
133 
\label{fig:FirstSteps.2} 
134 
\end{figure} 
135 

136 
In general the BVP\index{boundary value problem!BVP} cannot be solved analytically and numerical 
137 
methods have to be used construct an approximation of the solution 
138 
$u$. Here we will use the finite element method\index{finite element 
139 
method} (FEM\index{finite element 
140 
method!FEM}). The basic idea is to fill the domain with a 
141 
set of points called nodes. The solution is approximated by its 
142 
values on the nodes\index{finite element 
143 
method!nodes}. Moreover, the domain is subdivided into smaller 
144 
subdomains called elements \index{finite element 
145 
method!element}. On each element the solution is 
146 
represented by a polynomial of a certain degree through its values at 
147 
the nodes located in the element. The nodes and its connection through 
148 
elements is called a mesh\index{finite element 
149 
method!mesh}. \fig{fig:FirstSteps.2} shows an 
150 
example of a FEM mesh with four elements in the $x_0$ and four elements 
151 
in the $x_1$ direction over the unit square. 
152 
For more details we refer the reader to the literature, for instance 
153 
\Ref{Zienc,NumHand}. 
154 

155 
\escript provides the class \Poisson to define a Poisson equation \index{Poisson equation}. 
156 
(We will discuss a more general form of a PDE \index{partial differential equation!PDE} 
157 
that can be defined through the \LinearPDE class later). The instantiation of 
158 
a \Poisson class object requires the specification of the domain $\Omega$. In \escript 
159 
the \Domain class objects are used to describe the geometry of a domain but it also 
160 
contains information about the discretization methods and the actual solver which is used 
161 
to solve the PDE. Here we are using the FEM library \finley \index{finite element 
162 
method}. The following statements create the \Domain object \var{mydomain} from the 
163 
\finley method \method{Rectangle} 
164 
\begin{python} 
165 
from esys.finley import Rectangle 
166 
mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20) 
167 
\end{python} 
168 
In this case the domain is a rectangle with the lower, left corner at point $(0,0)$ and 
169 
the right, upper corner at $(\var{l0},\var{l1})=(1,1)$. 
170 
The arguments \var{n0} and \var{n1} define the number of elements in $x\hackscore{0}$ and 
171 
$x\hackscore{1}$direction respectively. For more details on \method{Rectangle} and 
172 
other \Domain generators within the \finley module, 
173 
see \Chap{CHAPTER ON FINLEY}. 
174 

175 
The following statements define the \Poisson class object \var{mypde} with domain \var{mydomain} and 
176 
the right hand side $f$ of the PDE to constant $1$: 
177 
\begin{python} 
178 
from esys.escript.linearPDEs import Poisson 
179 
mypde = Poisson(mydomain) 
180 
mypde.setValue(f=1) 
181 
\end{python} 
182 
We have not specified any boundary condition but the 
183 
\Poisson class implicitly assumes homogeneous Neuman boundary conditions \index{Neumann 
184 
boundary condition!homogeneous} defined by \eqn{eq:FirstSteps.2}. With this boundary 
185 
condition the BVP\index{boundary value problem!BVP} we have defined has no unique solution. In fact, with any solution $u$ 
186 
and any constant $C$ the function $u+C$ becomes a solution as well. We have to add 
187 
a Dirichlet boundary condition \index{Dirichlet boundary condition}. This is done 
188 
by defining a characteristic function \index{characteristic function} 
189 
which has positive values at locations $x=(x\hackscore{0},x\hackscore{1})$ where Dirichlet boundary condition is set 
190 
and $0$ elsewhere. In our case of $\Gamma^D$ defined by \eqn{eq:FirstSteps.2c}, 
191 
we need to construct a function \var{gammaD} which is positive for the cases $x\hackscore{0}=0$ or $x\hackscore{1}=0$. To get 
192 
an object \var{x} which represents locations in the domain one uses 
193 
\begin{python} 
194 
x=mydomain.getX() 
195 
\end{python} 
196 
In fact \var{x} is a \Data object which we will learn more about in Chapter~\ref{X}. At this stage we only have to know 
197 
that \var{x} has a 
198 

199 
In the first statement, the method \method{getX} of the \Domain \var{mydomain} 
200 
gives access to locations 
201 
in the domain defined by \var{mydomain}. The object \var{x} is actually a \Data object which is 
202 
discussed in Chpater\ref{X} in more details. What we need to know here is that 
203 
\var{x} has \Rank (=number of dimensions) and a \Shape (=tuple of dimensions) which can be checked by 
204 
calling the \method{getRank} and \method{getShape} methods: 
205 
\begin{python} 
206 
print "rank ",x.getRank(),", shape ",x.getShape() 
207 
\end{python} 
208 
will print something like 
209 
\begin{python} 
210 
rank 1, shape (2,) 
211 
\end{python} 
212 
The \Data object also maintains type information which is represented by the 
213 
\FunctionSpace of the object. For instance 
214 
\begin{python} 
215 
print x.getFunctionSpace() 
216 
\end{python} 
217 
will print 
218 
\begin{python} 
219 
Function space type: Finley_Nodes on FinleyMesh 
220 
\end{python} 
221 
which tells us that the coordinates are stored on the nodes of a \finley mesh. 
222 
To get the $x\hackscore{0}$ coordinates of the locations we use the 
223 
statement 
224 
\begin{python} 
225 
x0=x[0] 
226 
\end{python} 
227 
Object \var{x0} 
228 
is again a \Data object now with \Rank $0$ and 
229 
\Shape $()$. It inherits the \FunctionSpace from \var{x}: 
230 
\begin{python} 
231 
print x0.getRank(),x0.getShape(),x0.getFunctionSpace() 
232 
\end{python} 
233 
will print 
234 
\begin{python} 
235 
0 () Function space type: Finley_Nodes on FinleyMesh 
236 
\end{python} 
237 
We can now construct the function \var{gammaD} by 
238 
\begin{python} 
239 
from esys.escript import whereZero 
240 
gammaD=whereZero(x[0])+whereZero(x[1]) 
241 
\end{python} 
242 
where 
243 
\code{whereZero(x[0])} creates function which equals $1$ where \code{x[0]} is (allmost) equal to zero 
244 
and $0$ elsewhere. 
245 
Similarly, \code{whereZero(x[1])} creates function which equals $1$ where \code{x[1]} is 
246 
equal to zero and $0$ elsewhere. 
247 
The sum of the results of \code{whereZero(x[0])} and \code{whereZero(x[1])} 
248 
gives a function on the domain \var{mydomain} which is exactly positive where $x\hackscore{0}$ or $x\hackscore{1}$ is equal to zero. 
249 
Note that \var{gammaD} has the same \Rank, \Shape and \FunctionSpace like \var{x0} used to define it. So from 
250 
\begin{python} 
251 
print gammaD.getRank(),gammaD.getShape(),gammaD.getFunctionSpace() 
252 
\end{python} 
253 
one gets 
254 
\begin{python} 
255 
0 () Function space type: Finley_Nodes on FinleyMesh 
256 
\end{python} 
257 
The additional parameter \var{q} of the \code{setValue} method of the \Poisson class defines the 
258 
characteristic function \index{characteristic function} of the locations 
259 
of the domain where homogeneous Dirichlet boundary condition \index{Dirichlet boundary condition!homogeneous} 
260 
are set. The complete definition of our example is now: 
261 
\begin{python} 
262 
from esys.linearPDEs import Poisson 
263 
x = mydomain.getX() 
264 
gammaD = whereZero(x[0])+whereZero(x[1]) 
265 
mypde = Poisson(domain=mydomain) 
266 
mypde.setValue(f=1,q=gammaD) 
267 
\end{python} 
268 
The first statement imports the \Poisson class definition from the \linearPDEs module \escript package. 
269 
To get the solution of the Poisson equation defined by \var{mypde} we just have to call its 
270 
\method{getSolution}. 
271 

272 
Now we can write the script to solve our test problem (Remember that 
273 
lines starting with '\#' are comment lines in Python) (available as \file{poisson.py} 
274 
in the \ExampleDirectory): 
275 
\begin{python} 
276 
from esys.escript import * 
277 
from esys.escript.linearPDEs import Poisson 
278 
from esys.finley import Rectangle 
279 
# generate domain: 
280 
mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20) 
281 
# define characteristic function of Gamma^D 
282 
x = mydomain.getX() 
283 
gammaD = whereZero(x[0])+whereZero(x[1]) 
284 
# define PDE and get its solution u 
285 
mypde = Poisson(domain=mydomain) 
286 
mypde.setValue(f=1,q=gammaD) 
287 
u = mypde.getSolution() 
288 
# write u to an external file 
289 
saveVTK("u.xml",sol=u) 
290 
\end{python} 
291 
The last statement writes the solution tagged with the name "sol" to the external file \file{u.xml} in 
292 
\VTK file format. \VTK is a software library 
293 
for the visualization of scientific, engineering and analytical data and is freely available 
294 
from \url{http://www.vtk.org}. There are a variety of graphical user interfaces 
295 
for \VTK available, for instance \mayavi which can be downloaded from \url{http://mayavi.sourceforge.net/} but is also available on most 
296 
\LINUX distributions. 
297 

298 
\begin{figure} 
299 
\centerline{\includegraphics[width=\figwidth]{figures/FirstStepResult.eps}} 
300 
\caption{Visualization of the Poisson Equation Solution for $f=1$} 
301 
\label{fig:FirstSteps.3} 
302 
\end{figure} 
303 

304 
You can edit the script file using your favourite text editor (or the Integrated DeveLopment Environment IDLE 
305 
for Python, see \url{http://idlefork.sourceforge.net}). If the script file has the name \file{poisson.py} \index{scripts!\file{poisson.py}} you can run the 
306 
script from any shell using the command: 
307 
\begin{python} 
308 
python poisson.py 
309 
\end{python} 
310 
After the script has (hopefully successfully) been completed you will find the file \file{u.xml} in the current 
311 
directory. An easy way to visualize the results is the command 
312 
\begin{python} 
313 
mayavi d u.xml m SurfaceMap & 
314 
\end{python} 
315 
to show the results, see \fig{fig:FirstSteps.3}. 