--- trunk/doc/user/heatedblock.tex 2008/09/03 00:41:24 1745 +++ trunk/doc/user/heatedblock.tex 2008/09/03 01:24:16 1746 @@ -75,8 +75,8 @@ We can easily identify the coefficients in~\eqn{LINEARPDE.SYSTEM.1 TUTORIAL}: \begin{eqnarray}\label{LINEARPDE ELASTIC COEFFICIENTS} A\hackscore{ijkl}=\lambda \delta\hackscore{ij} \delta\hackscore{kl} + \mu ( -+\delta\hackscore{ik} \delta\hackscore{jl} -\delta\hackscore{il} \delta\hackscore{jk}) \\ +\delta\hackscore{ik} \delta\hackscore{jl} ++ \delta\hackscore{il} \delta\hackscore{jk}) \\ X\hackscore{ij}=(\lambda+\frac{2}{3} \mu) \; \alpha \; (T-T\hackscore{ref})\delta\hackscore{ij} \\ \end{eqnarray} The characteristic function $q$ defining the locations and components where constraints are set is given by: @@ -104,9 +104,9 @@ After we have solved the Lame equation we want to analyse the actual stress distribution. Typically the von--Mises stress\index{von--Mises stress} defined by $$\sigma\hackscore{mises} = \sqrt{ -\frac{1}{6} ((\sigma\hackscore{00}-\sigma\hackscore{11})^2+ - (\sigma\hackscore{11}-\sigma\hackscore{22})^2 - (\sigma\hackscore{22}-\sigma\hackscore{00})^2) +\frac{1}{6} ((\sigma\hackscore{00}-\sigma\hackscore{11})^2 + + (\sigma\hackscore{11}-\sigma\hackscore{22})^2 + + (\sigma\hackscore{22}-\sigma\hackscore{00})^2) + \sigma\hackscore{01}^2+\sigma\hackscore{12}^2+\sigma\hackscore{20}^2}$$ is used to detect material damage. Here we want to calculate the von--Mises and write the stress to a file for visualization.