24 |
% |
% |
25 |
\begin{figure} |
\begin{figure} |
26 |
\center |
\center |
27 |
\scalebox{0.8}{\includegraphics{figures/unitcircle.eps}} |
\scalebox{0.8}{\includegraphics{figures/unitcircle}} |
28 |
\caption{Implicit representation of the curve $x^2 + y^2 = 1$.} |
\caption{Implicit representation of the curve $x^2 + y^2 = 1$.} |
29 |
\label{UNITCIRCLE} |
\label{UNITCIRCLE} |
30 |
\end{figure} |
\end{figure} |
212 |
% |
% |
213 |
\begin{figure} |
\begin{figure} |
214 |
\center |
\center |
215 |
\scalebox{0.5}{\includegraphics{figures/LevelSetFlowChart.eps}} |
\scalebox{0.5}{\includegraphics{figures/LevelSetFlowChart}} |
216 |
\caption{Flow chart of Level Set Method procedure \cite{LIN2005}.} |
\caption{Flow chart of Level Set Method procedure \cite{LIN2005}.} |
217 |
\label{LEVELSET FLOWCHART} |
\label{LEVELSET FLOWCHART} |
218 |
\end{figure} |
\end{figure} |
247 |
% |
% |
248 |
\begin{figure} |
\begin{figure} |
249 |
\center |
\center |
250 |
\scalebox{0.7}{\includegraphics{figures/RT2Dsetup.eps}} |
\scalebox{0.7}{\includegraphics{figures/RT2Dsetup}} |
251 |
\caption{Parameters, initial interface and boundary conditions for the Rayleigh-Taylor instability problem. The interface is defined as $\phi=0.02cos(\frac{\pi x}{\lambda}) + 0.2$. The fluids have been assigned different densities and equal viscosity (isoviscous) \cite{BOURGOUIN2006}.} |
\caption{Parameters, initial interface and boundary conditions for the Rayleigh-Taylor instability problem. The interface is defined as $\phi=0.02cos(\frac{\pi x}{\lambda}) + 0.2$. The fluids have been assigned different densities and equal viscosity (isoviscous) \cite{BOURGOUIN2006}.} |
252 |
\label{RT2DSETUP} |
\label{RT2DSETUP} |
253 |
\end{figure} |
\end{figure} |
367 |
The simulation output is shown in Figures \ref{RT2D OUTPUT1} and \ref{RT2D OUTPUT1} showing the progression of the interface of the two fluids. A diapir can be seen rising on the left-hand side of the domain, and then later on, a second one rises on the right-hand side. |
The simulation output is shown in Figures \ref{RT2D OUTPUT1} and \ref{RT2D OUTPUT1} showing the progression of the interface of the two fluids. A diapir can be seen rising on the left-hand side of the domain, and then later on, a second one rises on the right-hand side. |
368 |
\begin{figure} |
\begin{figure} |
369 |
\center |
\center |
370 |
\subfigure[t=300]{\label{RT OUTPUT300}\includegraphics[scale=0.252]{figures/RT2D200by200t300.eps}} |
\subfigure[t=300]{\label{RT OUTPUT300}\includegraphics[scale=0.252]{figures/RT2D200by200t300}} |
371 |
\subfigure[t=600]{\label{RT OUTPUT600}\includegraphics[scale=0.252]{figures/RT2D200by200t600.eps}} |
\subfigure[t=600]{\label{RT OUTPUT600}\includegraphics[scale=0.252]{figures/RT2D200by200t600}} |
372 |
\subfigure[t=900]{\label{RT OUTPUT900}\includegraphics[scale=0.252]{figures/RT2D200by200t900.eps}} |
\subfigure[t=900]{\label{RT OUTPUT900}\includegraphics[scale=0.252]{figures/RT2D200by200t900}} |
373 |
\subfigure[t=1200]{\label{RT OUTPUT1200}\includegraphics[scale=0.252]{figures/RT2D200by200t1200.eps}} |
\subfigure[t=1200]{\label{RT OUTPUT1200}\includegraphics[scale=0.252]{figures/RT2D200by200t1200}} |
374 |
\caption{Simulation output of Rayleigh-Taylor instability, showing the movement of the interface of the fluids. The contour line represents the interface between the two fluids; the zero contour of the Level Set function. Velocity vectors are displayed showing the flow field. Computational mesh used was 200$\times$200 elements.} |
\caption{Simulation output of Rayleigh-Taylor instability, showing the movement of the interface of the fluids. The contour line represents the interface between the two fluids; the zero contour of the Level Set function. Velocity vectors are displayed showing the flow field. Computational mesh used was 200$\times$200 elements.} |
375 |
\label{RT2D OUTPUT1} |
\label{RT2D OUTPUT1} |
376 |
\end{figure} |
\end{figure} |
377 |
% |
% |
378 |
\begin{figure} |
\begin{figure} |
379 |
\center |
\center |
380 |
\subfigure[t=1500]{\label{RT OUTPUT1500}\includegraphics[scale=0.252]{figures/RT2D200by200t1500.eps}} |
\subfigure[t=1500]{\label{RT OUTPUT1500}\includegraphics[scale=0.252]{figures/RT2D200by200t1500}} |
381 |
\subfigure[t=1800]{\label{RT OUTPUT1800}\includegraphics[scale=0.252]{figures/RT2D200by200t1800.eps}} |
\subfigure[t=1800]{\label{RT OUTPUT1800}\includegraphics[scale=0.252]{figures/RT2D200by200t1800}} |
382 |
\caption{Simulation output of Rayleigh-Taylor instability.} |
\caption{Simulation output of Rayleigh-Taylor instability.} |
383 |
\label{RT2D OUTPUT2} |
\label{RT2D OUTPUT2} |
384 |
\end{figure} |
\end{figure} |