ViewVC logotype

Contents of /trunk/doc/user/levelsetmodel.tex

Parent Directory Parent Directory | Revision Log Revision Log

Revision 2138 - (show annotations)
Mon Dec 8 02:27:07 2008 UTC (13 years, 8 months ago) by lgraham
File MIME type: application/x-tex
File size: 2553 byte(s)
starting a section for the Level Set class in the Models chapter.

1 \subsection{Level Set Method}
3 \subsection{Solution Method}
5 \subsection{Functions}
7 \begin{classdesc}{LevelSet}{domain, func, reinit\_max, reinit\_each, tolerance, smooth}
8 opens the LevelSet \index{Level Set} on the \Domain domain. \var{func} defines the initial Level Set function representing the interface between two fluids. \var{reinit\_max} sets the maximum number of interations to satisfy the normal condition, $|\nabla \phi|=1$, during the reinitilization of the Level Set function. \var{reinit\_each} sets the frequency of reinitialization for a number of time-steps. \var{tolerance} sets the convergence tolerance of the error to satisfy the normal condition during the reinitilization of the Level Set function. \var{smooth} sets the bandwidth of size 2$\alpha h$ along the interface to smooth the physical parameters of density and viscosity; $h$ is the size of the elements in the mesh and $\alpha$ is the smoothing parameter, usually set to 1.
9 \end{classdesc}
11 \begin{methoddesc}[LevelSet]{update\_parameter}{par1, par2}
12 updates the physical parameters using the sign of $\phi$. \var{par1} and \var{par2} are the physical parameter values for the two different fluids, for example, the densities of the two fluids. Usually this method is called twice during each time-step to update the density and viscosity of the two fluids.
13 \end{methoddesc}
15 \begin{methoddesc}[LevelSet]{update\_phi}{vel, dt, t\_step}
16 updates the Level Set function. It performs the advection and reinitialization procedures. \var{vel} is the velocity field of the fluids, \var{dt} is the time-step size, and \var{t\_step} is the current time-step to determine when to reinitialize.
17 \end{methoddesc}
20 %\begin{methoddesc}[LevelSet]{update}{\optional{f=Data(), \optional{fixed_u_mask=Data(), \optional{eta=1, \optional{surface_stress=Data(), \optional{stress=Data()}}}}}}
22 %\begin{methoddesc}[StokesProblemCartesian]{update\_phi}{v,p,
23 %\optional{max_iter=20, \optional{verbose=False, \optional{useUzawa=True}}}}
24 %solves the problem and return approximations for velocity and pressure.
25 %The arguments \var{v} and \var{p} define initial guess. The values of \var{v} marked
26 %by \var{fixed_u_mask} remain unchanged.
27 %If \var{useUzawa} is set to \True
28 %the Uzawa\index{Uszwa} scheme is used. Otherwise the problem is solved in coupled form. In most cases
29 %the Uzawa scheme is more efficient.
30 %\var{max_iter} defines the maximum number of iteration steps.
31 %If \var{verbose} is set to \True informations on the progress of of the solver are printed.
32 %\end{methoddesc}

  ViewVC Help
Powered by ViewVC 1.1.26