1 |
jgs |
102 |
% $Id$ |
2 |
gross |
625 |
% |
3 |
|
|
% Copyright © 2006 by ACcESS MNRF |
4 |
|
|
% \url{http://www.access.edu.au |
5 |
|
|
% Primary Business: Queensland, Australia. |
6 |
|
|
% Licensed under the Open Software License version 3.0 |
7 |
|
|
% http://www.opensource.org/licenses/osl-3.0.php |
8 |
|
|
% |
9 |
jgs |
102 |
|
10 |
gross |
625 |
|
11 |
gross |
599 |
\chapter{The module \linearPDEs} |
12 |
jgs |
102 |
|
13 |
|
|
\declaremodule{extension}{linearPDEs} \modulesynopsis{Linear partial pifferential equation handler} |
14 |
gross |
660 |
The module \linearPDEs provides an interface to define and solve linear partial |
15 |
|
|
differential equations within \escript. \linearPDEs does not provide any |
16 |
|
|
solver capabilities in itself but hands the PDE over to |
17 |
jgs |
102 |
the PDE solver library defined through the \Domain of the PDE. |
18 |
|
|
The general interface is provided through the \LinearPDE class. The |
19 |
|
|
\AdvectivePDE which is derived from the \LinearPDE class |
20 |
|
|
provides an interface to PDE dominated by its advective terms. The \Poisson |
21 |
|
|
class which is also derived form the \LinearPDE class should be used |
22 |
gross |
660 |
to define the Poisson equation \index{Poisson}. |
23 |
jgs |
102 |
|
24 |
|
|
\section{\LinearPDE Class} |
25 |
|
|
\label{SEC LinearPDE} |
26 |
|
|
|
27 |
|
|
The \LinearPDE class is used to define a general linear, steady, second order PDE |
28 |
|
|
for an unknown function $u$ on a given $\Omega$ defined through a \Domain object. |
29 |
|
|
In the following $\Gamma$ denotes the boundary of the domain $\Omega$. $n$ denotes |
30 |
gross |
660 |
the outer normal field on $\Gamma$. |
31 |
jgs |
102 |
|
32 |
gross |
660 |
For a single PDE with a solution with a single component the linear PDE is defined in the |
33 |
jgs |
102 |
following form: |
34 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.1} |
35 |
gross |
660 |
-(A\hackscore{jl} u\hackscore{,l})\hackscore{,j}-(B\hackscore{j} u)\hackscore{,j}+C\hackscore{l} u\hackscore{,l}+D u =-X\hackscore{j,j}+Y \; . |
36 |
jgs |
102 |
\end{equation} |
37 |
gross |
660 |
$u_{,j}$ denotes the derivative of $u$ with respect to the $j$-th spatial direction. Einstein's summation convention, ie. summation over indexes appearing twice in a term of a sum is performed, is used. |
38 |
|
|
The coefficients $A$, $B$, $C$, $D$, $X$ and $Y$ have to be specified through \Data objects in the |
39 |
|
|
\Function on the PDE or objects that can be converted into such \Data objects. |
40 |
|
|
$A$ is a \RankTwo, $B$, $C$ and $X$ are \RankOne and $D$ and $Y$ are scalar. |
41 |
jgs |
102 |
The following natural |
42 |
|
|
boundary conditions are considered \index{boundary condition!natural} on $\Gamma$: |
43 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.2} |
44 |
|
|
n\hackscore{j}(A\hackscore{jl} u\hackscore{,l}+B\hackscore{j} u)+d u=n\hackscore{j}X\hackscore{j} + y \;. |
45 |
|
|
\end{equation} |
46 |
gross |
660 |
Notice that the coefficients $A$, $B$ and $X$ are defined in the PDE. The coefficients $d$ and $y$ are |
47 |
|
|
each a \Scalar in the \FunctionOnBoundary. Constraints \index{constraint} for the solution prescribing the value of the |
48 |
jgs |
102 |
solution at certain locations in the domain. They have the form |
49 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.3} |
50 |
|
|
u=r \mbox{ where } q>0 |
51 |
|
|
\end{equation} |
52 |
|
|
$r$ and $q$ are each \Scalar where $q$ is the characteristic function |
53 |
|
|
\index{characteristic function} defining where the constraint is applied. |
54 |
|
|
The constraints defined by \eqn{LINEARPDE.SINGLE.3} override any other condition set by \eqn{LINEARPDE.SINGLE.1} |
55 |
gross |
660 |
or \eqn{LINEARPDE.SINGLE.2}. |
56 |
gross |
625 |
|
57 |
jgs |
102 |
For a system of PDEs and a solution with several components the PDE has the form |
58 |
|
|
\begin{equation}\label{LINEARPDE.SYSTEM.1} |
59 |
gross |
660 |
-(A\hackscore{ijkl} u\hackscore{k,l})\hackscore{,j}-(B\hackscore{ijk} u\hackscore{k})\hackscore{,j}+C\hackscore{ikl} u\hackscore{k,l}+D\hackscore{ik} u\hackscore{k} =-X\hackscore{ij,j}+Y\hackscore{i} \; . |
60 |
jgs |
102 |
\end{equation} |
61 |
gross |
660 |
$A$ is a \RankFour, $B$ and $C$ are each a \RankThree, $D$ and $X$ are each a \RankTwo and $Y$ is a \RankOne. |
62 |
jgs |
102 |
The natural boundary conditions \index{boundary condition!natural} take the form: |
63 |
|
|
\begin{equation}\label{LINEARPDE.SYSTEM.2} |
64 |
gross |
625 |
n\hackscore{j}(A\hackscore{ijkl} u\hackscore{k,l}+B\hackscore{ijk} u\hackscore{k})+d\hackscore{ik} u\hackscore{k}=n\hackscore{j}X\hackscore{ij}+y\hackscore{i} \;. |
65 |
jgs |
102 |
\end{equation} |
66 |
gross |
660 |
The coefficient $d$ is a \RankTwo and $y$ is a |
67 |
jgs |
102 |
\RankOne both in the \FunctionOnBoundary. Constraints \index{constraint} take the form |
68 |
|
|
\begin{equation}\label{LINEARPDE.SYSTEM.3} |
69 |
|
|
u\hackscore{i}=r\hackscore{i} \mbox{ where } q\hackscore{i}>0 |
70 |
|
|
\end{equation} |
71 |
gross |
660 |
$r$ and $q$ are each \RankOne. Notice that not necessarily all components must |
72 |
gross |
625 |
have a constraint at all locations. |
73 |
|
|
|
74 |
jgs |
102 |
\LinearPDE also supports solution discontinuities \index{discontinuity} over contact region $\Gamma^{contact}$ |
75 |
|
|
in the domain $\Omega$. To specify the conditions across the discontinuity we are using the |
76 |
|
|
generalised flux $J$ which is in the case of a systems of PDEs and several components of the solution |
77 |
gross |
660 |
defined as |
78 |
jgs |
102 |
\begin{equation}\label{LINEARPDE.SYSTEM.5} |
79 |
|
|
J\hackscore{ij}=A\hackscore{ijkl}u\hackscore{k,l}+B\hackscore{ijk}u\hackscore{k}-X\hackscore{ij} |
80 |
|
|
\end{equation} |
81 |
|
|
For the case of single solution component and single PDE $J$ is defined |
82 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.5} |
83 |
|
|
J\hackscore{j}=A\hackscore{jl}u\hackscore{,l}+B\hackscore{j}u\hackscore{k}-X\hackscore{j} |
84 |
|
|
\end{equation} |
85 |
gross |
660 |
In the context of discontinuities \index{discontinuity} $n$ denotes the normal on the |
86 |
jgs |
102 |
discontinuity pointing from side 0 towards side 1. For a system of PDEs |
87 |
|
|
the contact condition takes the form |
88 |
|
|
\begin{equation}\label{LINEARPDE.SYSTEM.6} |
89 |
|
|
n\hackscore{j} J^{0}\hackscore{ij}=n\hackscore{j} J^{1}\hackscore{ij}=y^{contact}\hackscore{i} - d^{contact}\hackscore{ik} [u]\hackscore{k} \; . |
90 |
|
|
\end{equation} |
91 |
|
|
where $J^{0}$ and $J^{1}$ are the fluxes on side $0$ and side $1$ of the |
92 |
|
|
discontinuity $\Gamma^{contact}$, respectively. $[u]$, which is the difference |
93 |
|
|
of the solution at side 1 and at side 0, denotes the jump of $u$ across $\Gamma^{contact}$. |
94 |
gross |
660 |
The coefficient $d^{contact}$ is a \RankTwo and $y^{contact}$ is a |
95 |
jgs |
102 |
\RankOne both in the \FunctionOnContactZero or \FunctionOnContactOne. |
96 |
|
|
In case of a single PDE and a single component solution the contact condition takes the form |
97 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.6} |
98 |
|
|
n\hackscore{j} J^{0}\hackscore{j}=n\hackscore{j} J^{1}\hackscore{j}=y^{contact} - d^{contact}[u] |
99 |
|
|
\end{equation} |
100 |
|
|
In this case the the coefficient $d^{contact}$ and $y^{contact}$ are eaach \Scalar |
101 |
|
|
both in the \FunctionOnContactZero or \FunctionOnContactOne. |
102 |
gross |
625 |
|
103 |
|
|
The PDE is symmetrical \index{symmetrical} if |
104 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.4} |
105 |
|
|
A\hackscore{jl}=A\hackscore{lj} \mbox{ and } B\hackscore{j}=C\hackscore{j} |
106 |
|
|
\end{equation} |
107 |
|
|
The system of PDEs is symmetrical \index{symmetrical} if |
108 |
|
|
\begin{eqnarray} |
109 |
|
|
\label{LINEARPDE.SYSTEM.4} |
110 |
|
|
A\hackscore{ijkl}=A\hackscore{klij} \\ |
111 |
|
|
B\hackscore{ijk}=C\hackscore{kij} \\ |
112 |
|
|
D\hackscore{ik}=D\hackscore{ki} \\ |
113 |
|
|
d\hackscore{ik}=d\hackscore{ki} \\ |
114 |
gross |
660 |
d^{contact}\hackscore{ik}=d^{contact}\hackscore{ki} |
115 |
gross |
625 |
\end{eqnarray} |
116 |
|
|
Note that different from the scalar case~\eqn{LINEARPDE.SINGLE.4} now the coefficients $D$, $d$ abd $d^{contact}$ |
117 |
|
|
have to be inspected. |
118 |
|
|
|
119 |
|
|
\section{\LinearPDE class} |
120 |
gross |
660 |
This is the general class to define a linear PDE in \escript. We list a selction of the most |
121 |
gross |
625 |
important methods of the class only and refer to reference guide \ReferenceGuide for a complete list. |
122 |
|
|
|
123 |
jgs |
102 |
\begin{classdesc}{LinearPDE}{domain,numEquations=0,numSolutions=0} |
124 |
|
|
opens a linear, steady, second order PDE on the \Domain \var{domain}. \var{numEquations} |
125 |
|
|
and \var{numSolutions} gives the number of equations and the number of solutiopn components. |
126 |
gross |
660 |
If \var{numEquations} and \var{numSolutions} is non-positive, the number of equations |
127 |
jgs |
102 |
and the number solutions, respctively, stay undefined until a coefficient is |
128 |
gross |
660 |
defined. |
129 |
jgs |
102 |
\end{classdesc} |
130 |
|
|
|
131 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{setValue}{ |
132 |
gross |
660 |
\optional{A}\optional{, B}, |
133 |
|
|
\optional{, C}\optional{, D} |
134 |
|
|
\optional{, X}\optional{, Y} |
135 |
|
|
\optional{, d}\optional{, y} |
136 |
|
|
\optional{, d_contact}\optional{, y_contact} |
137 |
|
|
\optional{, q}\optional{, r}} |
138 |
|
|
assigns new values to coefficients. By dafault all values are assumed to be zero\footnote{ |
139 |
|
|
In fact it is assumed they are not present by assigning the value \code{escript.Data()}. The |
140 |
|
|
can by used by the solver library to reduce computational costs. |
141 |
|
|
} |
142 |
gross |
625 |
If the new coefficient value is not a \Data object, it is converted into a \Data object in the |
143 |
jgs |
102 |
appropriate \FunctionSpace. |
144 |
|
|
\end{methoddesc} |
145 |
|
|
|
146 |
|
|
\begin{methoddesc}[LinearPDE]{getCoefficient}{name} |
147 |
gross |
660 |
return the value assigned to coefficient \var{name}. If \var{name} is not a valid name |
148 |
|
|
an exception is raised. |
149 |
jgs |
102 |
\end{methoddesc} |
150 |
|
|
|
151 |
|
|
\begin{methoddesc}[LinearPDE]{getShapeOfCoefficient}{name} |
152 |
|
|
returns the shape of coefficient \var{name} even if no value has been assigned to it. |
153 |
|
|
\end{methoddesc} |
154 |
|
|
|
155 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getFunctionSpaceForCoefficient}{name} |
156 |
jgs |
102 |
returns the \FunctionSpace of coefficient \var{name} even if no value has been assigned to it. |
157 |
|
|
\end{methoddesc} |
158 |
|
|
|
159 |
|
|
\begin{methoddesc}[LinearPDE]{setDebugOn}{} |
160 |
|
|
switches the debug mode to on. |
161 |
|
|
\end{methoddesc} |
162 |
|
|
|
163 |
|
|
\begin{methoddesc}[LinearPDE]{setDebugOff}{} |
164 |
|
|
switches the debug mode to on. |
165 |
|
|
\end{methoddesc} |
166 |
|
|
|
167 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{isUsingLumping}{} |
168 |
gross |
653 |
returns \True if \LUMPING is set as the solver for the system of lienar equations. |
169 |
|
|
Otherwise \False is returned. |
170 |
jgs |
102 |
\end{methoddesc} |
171 |
|
|
|
172 |
gross |
653 |
\begin{methoddesc}[LinearPDE]{setSolverMethod}{\optional{solver=LinearPDE.DEFAULT}\optional{, preconditioner=LinearPDE.DEFAULT}} |
173 |
gross |
625 |
sets the solver method and preconditioner to be used. It is pointed out that a PDE solver library |
174 |
gross |
660 |
may not know the specified solver method but may choose a similar method and preconditioner. |
175 |
jgs |
102 |
\end{methoddesc} |
176 |
|
|
|
177 |
gross |
653 |
\begin{methoddesc}[LinearPDE]{getSolverMethodName}{} |
178 |
|
|
returns the name of the solver method and preconditioner which is currently been used. |
179 |
|
|
\end{methoddesc} |
180 |
|
|
|
181 |
|
|
\begin{methoddesc}[LinearPDE]{getSolverMethod}{} |
182 |
|
|
returns the solver method and preconditioner which is currently been used. |
183 |
|
|
\end{methoddesc} |
184 |
|
|
|
185 |
|
|
\begin{methoddesc}[LinearPDE]{setSolverPackage}{\optional{package=LinearPDE.DEFAULT}} |
186 |
gross |
660 |
Set the solver package to be used by PDE library to solve the linear systems of equations. The |
187 |
gross |
653 |
specified package may not be supported by the PDE solver library. In this case, dependng on |
188 |
|
|
the PDE solver, the default solver is used or an exeption is thrown. |
189 |
gross |
660 |
If \var{package} is not specified, the default package of the PDE solver library is used. |
190 |
gross |
653 |
\end{methoddesc} |
191 |
|
|
|
192 |
|
|
\begin{methoddesc}[LinearPDE]{getSolverPackage}{} |
193 |
|
|
returns the linear solver package currently by the PDE solver library |
194 |
|
|
\end{methoddesc} |
195 |
|
|
|
196 |
|
|
|
197 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{setTolerance}{\optional{tol=1.e-8}}: |
198 |
|
|
resets the tolerance for solution. The actually meaning of tolerance is |
199 |
gross |
660 |
depending on the underlying PDE library. In most cases, the tolerance |
200 |
gross |
625 |
will only consider the error from solving the discerete problem but will |
201 |
|
|
not consider any discretization error. |
202 |
|
|
\end{methoddesc} |
203 |
jgs |
102 |
|
204 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getTolerance}{} |
205 |
|
|
returns the current tolerance of the solution |
206 |
jgs |
102 |
\end{methoddesc} |
207 |
|
|
|
208 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getDomain}{} |
209 |
|
|
returns the \Domain of the PDE. |
210 |
jgs |
102 |
\end{methoddesc} |
211 |
|
|
|
212 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getDim}{} |
213 |
|
|
returns the spatial dimension of the PDE. |
214 |
jgs |
102 |
\end{methoddesc} |
215 |
|
|
|
216 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getNumEquations}{} |
217 |
|
|
returns the number of equations. |
218 |
|
|
\end{methoddesc} |
219 |
jgs |
102 |
|
220 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getNumSolutions}{} |
221 |
|
|
returns the number of components of the solution. |
222 |
jgs |
102 |
\end{methoddesc} |
223 |
|
|
|
224 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{checkSymmetry}{verbose=\False} |
225 |
gross |
660 |
returns \True if the PDE is symmetric and \False otherwise. |
226 |
|
|
The method is very computational expensive and should only be |
227 |
gross |
625 |
called for testing purposes. The symmetry flag is not altered. |
228 |
|
|
If \var{verbose}=\True information about where symmetry is violated |
229 |
|
|
are printed. |
230 |
jgs |
102 |
\end{methoddesc} |
231 |
|
|
|
232 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getFlux}{u} |
233 |
|
|
returns the flux $J\hackscore{ij}$ \index{flux} for given solution \var{u} |
234 |
|
|
defined by \eqn{LINEARPDE.SYSTEM.5} and \eqn{LINEARPDE.SINGLE.5}, respectively. |
235 |
jgs |
102 |
\end{methoddesc} |
236 |
|
|
|
237 |
gross |
625 |
|
238 |
jgs |
102 |
\begin{methoddesc}[LinearPDE]{isSymmetric}{} |
239 |
|
|
returns \True if the PDE has been indicated to be symmetric. |
240 |
|
|
Otherwise \False is returned. |
241 |
|
|
\end{methoddesc} |
242 |
|
|
|
243 |
|
|
\begin{methoddesc}[LinearPDE]{setSymmetryOn}{} |
244 |
|
|
indicates that the PDE is symmetric. |
245 |
|
|
\end{methoddesc} |
246 |
|
|
|
247 |
|
|
\begin{methoddesc}[LinearPDE]{setSymmetryOff}{} |
248 |
|
|
indicates that the PDE is not symmetric. |
249 |
|
|
\end{methoddesc} |
250 |
|
|
|
251 |
|
|
\begin{methoddesc}[LinearPDE]{setReducedOrderOn}{} |
252 |
gross |
660 |
switches on the reduction of polynomial order for the solution and equation evaluation even if |
253 |
|
|
a quadratic or higher interpolation order is defined in the \Domain. This feature may not |
254 |
gross |
625 |
be supported by all PDE libraries. |
255 |
jgs |
102 |
\end{methoddesc} |
256 |
|
|
|
257 |
|
|
\begin{methoddesc}[LinearPDE]{setReducedOrderOff}{} |
258 |
gross |
660 |
switches off the reduction of polynomial order for the solution and |
259 |
jgs |
102 |
equation evaluation. |
260 |
|
|
\end{methoddesc} |
261 |
|
|
|
262 |
|
|
\begin{methoddesc}[LinearPDE]{getOperator}{} |
263 |
|
|
returns the \Operator of the PDE. |
264 |
|
|
\end{methoddesc} |
265 |
|
|
|
266 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getRightHandSide}{} |
267 |
jgs |
102 |
returns the right hand side of the PDE as a \Data object. If |
268 |
|
|
\var{ignoreConstraint}=\True the constraints are not considered |
269 |
|
|
when building up the right hand side. |
270 |
|
|
\end{methoddesc} |
271 |
|
|
|
272 |
|
|
\begin{methoddesc}[LinearPDE]{getSystem}{} |
273 |
|
|
returns the \Operator and right hand side of the PDE. |
274 |
|
|
\end{methoddesc} |
275 |
|
|
|
276 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getSolution}{ |
277 |
|
|
\optional{verbose=False} |
278 |
|
|
\optional{, reordering=LinearPDE.NO_REORDERING} |
279 |
|
|
\optional{, iter_max=1000} |
280 |
|
|
\optional{, drop_tolerance=0.01} |
281 |
|
|
\optional{, drop_storage=1.20} |
282 |
|
|
\optional{, truncation=-1} |
283 |
|
|
\optional{, restart=-1} |
284 |
|
|
} |
285 |
gross |
653 |
returns (an approximation of) the solution of the PDE. If \code{verbose=\True} some information during the solution process printed. |
286 |
gross |
660 |
\var{reordering} selects a reordering methods that is applied before or during the solution process |
287 |
gross |
653 |
(=\NOREORDERING ,\MINIMUMFILLIN ,\NESTEDDESCTION). |
288 |
gross |
660 |
\var{iter_max} specifies the maximum number of iteration steps that are allowed to reach the specified tolerance. |
289 |
gross |
625 |
\var{drop_tolerance} specifies a relative tolerance for small elements to be dropped when building a preconditioner |
290 |
gross |
653 |
(eg. in \ILUT). \var{drop_storage} limits the extra storage allowed when building a preconditioner |
291 |
gross |
660 |
(eg. in \ILUT). The extra storage is given relative to the size of the stiffness matrix, eg. |
292 |
|
|
\var{drop_storage=1.2} will allow the preconditioner to use the $1.2$ fold storage space than used |
293 |
|
|
for the stiffness matrix. \var{truncation} defines the truncation. |
294 |
jgs |
102 |
\end{methoddesc} |
295 |
|
|
|
296 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{DEFAULT} |
297 |
gross |
660 |
default method, preconditioner or package to be used to solve the PDE. An appropriate method should be |
298 |
gross |
625 |
chosen by the used PDE solver library. |
299 |
|
|
\end{memberdesc} |
300 |
jgs |
102 |
|
301 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{SCSL} |
302 |
gross |
660 |
the SCSL library by SGI,~\Ref{SCSL}\footnote{The SCSL library will only be available on SGI systems} |
303 |
gross |
625 |
\end{memberdesc} |
304 |
jgs |
102 |
|
305 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{MKL} |
306 |
gross |
653 |
the MKL library by Intel,~\Ref{MKL}\footnote{The MKL library will only be available when the intel compilation environment is used.}. |
307 |
gross |
625 |
\end{memberdesc} |
308 |
jgs |
102 |
|
309 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{UMFPACK} |
310 |
gross |
653 |
the UMFPACK,~\Ref{UMFPACK}. Remark: UMFPACK is not parallelized. |
311 |
gross |
625 |
\end{memberdesc} |
312 |
jgs |
102 |
|
313 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{PASO} |
314 |
gross |
653 |
the solver library of \finley, see \Sec{CHAPTER ON FINLEY}. |
315 |
gross |
625 |
\end{memberdesc} |
316 |
jgs |
102 |
|
317 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{ITERATIVE} |
318 |
gross |
653 |
the default iterative method and preconditioner. The actually used method depends on the |
319 |
gross |
660 |
PDE solver library and the solver package been choosen. Typically, \PCG is used for symmetric PDEs |
320 |
|
|
and \BiCGStab otherwise, both with \JACOBI preconditioner. |
321 |
gross |
625 |
\end{memberdesc} |
322 |
jgs |
102 |
|
323 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{DIRECT} |
324 |
gross |
660 |
the default direct linear solver. |
325 |
gross |
625 |
\end{memberdesc} |
326 |
jgs |
102 |
|
327 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{CHOLEVSKY} |
328 |
gross |
660 |
direct solver based on Cholevsky factorization (or similar), see~\Ref{Saad}. The solver will require a symmetric PDE. |
329 |
gross |
625 |
\end{memberdesc} |
330 |
jgs |
110 |
|
331 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{PCG} |
332 |
gross |
653 |
preconditioned conjugate gradient method, see~\Ref{WEISS}\index{linear solver!PCG}\index{PCG}. The solver will require a symmetric PDE. |
333 |
gross |
625 |
\end{memberdesc} |
334 |
jgs |
110 |
|
335 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{GMRES} |
336 |
gross |
653 |
the GMRES method, see~\Ref{WEISS}\index{linear solver!GMRES}\index{GMRES}. Truncation and restart are controlled by the parameters |
337 |
gross |
625 |
\var{truncation} and \var{restart} of \method{getSolution}. |
338 |
|
|
\end{memberdesc} |
339 |
jgs |
102 |
|
340 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{LUMPING} |
341 |
gross |
660 |
uses lumping to solve the system of linear equations~\index{linear solver!lumping}\index{lumping}. This solver technique |
342 |
|
|
condenses the stiffness matrix to a diagonal matrix so the solution of the linear systems becomes very cheap. It can be used when |
343 |
gross |
653 |
only \var{D} is present but in any case has to applied with care. The difference in the solutions with and without lumping can be significant |
344 |
gross |
660 |
but is expect to converge to zero when the mesh gets finer. |
345 |
|
|
Lumping does not use the linear system solver library. |
346 |
gross |
625 |
\end{memberdesc} |
347 |
jgs |
107 |
|
348 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{PRES20} |
349 |
gross |
653 |
the GMRES method with truncation after five residuals and |
350 |
gross |
625 |
restart after 20 steps, see~\Ref{WEISS}. |
351 |
gross |
653 |
\end{memberdesc}[LinearPDE]{CR} |
352 |
gross |
625 |
|
353 |
|
|
\begin{memberdesc}[LinearPDE]{CGS} |
354 |
|
|
conjugate gradient squared method, see~\Ref{WEISS}. |
355 |
jgs |
107 |
\end{memberdesc} |
356 |
|
|
|
357 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{BICGSTAB} |
358 |
gross |
660 |
stabilized bi-conjugate gradients methods, see~\Ref{WEISS}. |
359 |
jgs |
107 |
\end{memberdesc} |
360 |
|
|
|
361 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{SSOR} |
362 |
gross |
653 |
symmetric successive over-relaxation method, see~\Ref{WEISS}. Typically used as preconditioner but some linear solver libraries support |
363 |
gross |
660 |
this as a solver. |
364 |
gross |
625 |
\end{memberdesc} |
365 |
|
|
\begin{memberdesc}[LinearPDE]{ILU0} |
366 |
gross |
660 |
the incomplete LU factorization preconditioner with no fill-in, see~\Ref{Saad}. |
367 |
gross |
653 |
\end{memberdesc} |
368 |
|
|
|
369 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{ILUT} |
370 |
gross |
653 |
the incomplete LU factorization preconditioner with fill-in, see~\Ref{Saad}. During the LU-factorization element with |
371 |
|
|
relative size less then \var{drop_tolerance} are dropped. Moreover, the size of the LU-factorization is restricted to the |
372 |
gross |
660 |
\var{drop_storage}-fold of the stiffness matrix. \var{drop_tolerance} and \var{drop_storage} are both set in the |
373 |
|
|
\method{getSolution} call. |
374 |
gross |
653 |
\end{memberdesc} |
375 |
|
|
|
376 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{JACOBI} |
377 |
gross |
653 |
the Jacobi preconditioner, see~\Ref{Saad}. |
378 |
|
|
\end{memberdesc} |
379 |
|
|
|
380 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{AMG} |
381 |
gross |
660 |
the algebraic--multi grid method, see~\Ref{AMG}. This method can be used as linear solver method but is more robust when used |
382 |
gross |
653 |
in a preconditioner. |
383 |
|
|
\end{memberdesc} |
384 |
|
|
|
385 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{RILU} |
386 |
gross |
653 |
recursive incomplete LU factorization preconditioner, see~\Ref{RILU}. This method is similar to \ILUT but uses smoothing |
387 |
|
|
between levels. During the LU-factorization element with |
388 |
|
|
relative size less then \var{drop_tolerance} are dropped. Moreover, the size of the LU-factorization is restricted to the |
389 |
gross |
660 |
\var{drop_storage}-fold of the stiffness matrix. \var{drop_tolerance} and \var{drop_storage} are both set in the |
390 |
|
|
\method{getSolution} call. |
391 |
gross |
653 |
\end{memberdesc} |
392 |
jgs |
107 |
|
393 |
gross |
653 |
\begin{memberdesc}[LinearPDE]{NO_REORDERING} |
394 |
|
|
no ordering is used during factorization. |
395 |
|
|
\end{memberdesc} |
396 |
gross |
625 |
|
397 |
gross |
653 |
\begin{memberdesc}[LinearPDE]{MINIMUM_FILL_IN} |
398 |
|
|
applies reordering before factorization using a fill-in minimization strategy. You have to check with the particular solver library or |
399 |
|
|
linear solver package if this is supported. In any case, it is advisable to apply reordering on the mesh to minimize fill-in. |
400 |
|
|
\end{memberdesc} |
401 |
gross |
625 |
|
402 |
|
|
\begin{memberdesc}[LinearPDE]{NESTED_DISSECTION} |
403 |
gross |
653 |
applies reordering before factorization using a nested dissection strategy. You have to check with the particular solver library or |
404 |
|
|
linear solver package if this is supported. In any case, it is advisable to apply reordering on the mesh to minimize fill-in. |
405 |
|
|
\end{memberdesc} |
406 |
gross |
625 |
|
407 |
jgs |
102 |
\section{The \Poisson Class} |
408 |
|
|
The \Poisson class provides an easy way to define and solve the Poisson |
409 |
|
|
equation |
410 |
|
|
\begin{equation}\label{POISSON.1} |
411 |
|
|
-u\hackscore{,ii}=f\; . |
412 |
|
|
\end{equation} |
413 |
|
|
with homogeneous boundary conditions |
414 |
|
|
\begin{equation}\label{POISSON.2} |
415 |
|
|
n\hackscore{i}u\hackscore{,i}=0 |
416 |
|
|
\end{equation} |
417 |
|
|
and homogeneous constraints |
418 |
|
|
\begin{equation}\label{POISSON.3} |
419 |
|
|
u=0 \mbox{ where } q>0 |
420 |
|
|
\end{equation} |
421 |
|
|
$f$ has to be a \Scalar in the \Function and $q$ must be |
422 |
gross |
660 |
a \Scalar in the \SolutionFS. |
423 |
jgs |
102 |
|
424 |
|
|
\begin{classdesc}{Poisson}{domain} |
425 |
|
|
opens a Poisson equation on the \Domain domain. \Poisson is derived from \LinearPDE. |
426 |
|
|
\end{classdesc} |
427 |
|
|
\begin{methoddesc}[Poisson]{setValue}{f=escript.Data(),q=escript.Data()} |
428 |
|
|
assigns new values to \var{f} and \var{q}. |
429 |
|
|
\end{methoddesc} |
430 |
gross |
625 |
|
431 |
|
|
\section{The \Helmholtz Class} |
432 |
gross |
660 |
The \Helmholtz class defines the Helmholtz problem |
433 |
|
|
\begin{equation}\label{HZ.1} |
434 |
|
|
\omega \; u - (k\; u\hackscore{,j})\hackscore{,j} = f |
435 |
|
|
\end{equation} |
436 |
|
|
with natural boundary conditons |
437 |
|
|
\begin{equation}\label{HZ.2} |
438 |
|
|
k\; u\hackscore{,j} n\hackscore{,j} = g- \alpha \; u |
439 |
|
|
\end{equation} |
440 |
|
|
and constraints: |
441 |
|
|
\begin{equation}\label{HZ.3} |
442 |
|
|
u=r \mbox{ where } q>0 |
443 |
|
|
\end{equation} |
444 |
|
|
$\omega$, $k$, $f$ have to be a \Scalar in the \Function, |
445 |
|
|
$g$ and $\alpha$ must be a \Scalar in the \FunctionOnBoundary, |
446 |
|
|
and $q$ and $r$ must be a \Scalar in the \SolutionFS or must be mapped or interpolated into the particular \FunctionSpace. |
447 |
gross |
625 |
|
448 |
gross |
660 |
\begin{classdesc}{Helmholtz}{domain} |
449 |
|
|
opens a Helmholtz equation on the \Domain domain. \Helmholtz is derived from \LinearPDE. |
450 |
|
|
\end{classdesc} |
451 |
|
|
\begin{methoddesc}[Helmholtz]{setValue}{ \optional{omega} \optional{, k} \optional{, f} \optional{, alpha} \optional{, g} \optional{, r} \optional{, q}} |
452 |
|
|
assigns new values to \var{omega}, \var{k}, \var{f}, \var{alpha}, \var{g}, \var{r}, \var{q}. By default all values are set to be zero. |
453 |
|
|
\end{methoddesc} |
454 |
|
|
|
455 |
gross |
625 |
\section{The \Lame Class} |
456 |
gross |
660 |
The \Lame class defines a Lame equation problem: |
457 |
|
|
\begin{equation}\label{LE.1} |
458 |
|
|
-\mu (u\hackscore{i,j}+u\hackscore{j,i})+\lambda u\hackscore{k,k})\hackscore{j} = F\hackscore{i}-\sigma\hackscore{ij,j} |
459 |
|
|
\end{equation} |
460 |
|
|
with natural boundary conditons: |
461 |
|
|
\begin{equation}\label{LE.2} |
462 |
|
|
n\hackscore{j}(\mu \; (u\hackscore{i,j}+u\hackscore{j,i})+\lambda*u\hackscore{k,k}) = f\hackscore{i}+n\hackscore{j}\sigma\hackscore{ij} |
463 |
|
|
\end{equation} |
464 |
|
|
and constraint |
465 |
|
|
\begin{equation}\label{LE.3} |
466 |
|
|
u\hackscore{i}=r\hackscore{i} \mbox{ where } q\hackscore{i}>0 |
467 |
|
|
\end{equation} |
468 |
|
|
$\mu$, $\lambda$ have to be a \Scalar in the \Function, |
469 |
|
|
$F$ has to be a \Vector in the \Function, |
470 |
|
|
$\sigma$ has to be a \Tensor in the \Function, |
471 |
|
|
$f$ must be a \Vector in the \FunctionOnBoundary, |
472 |
|
|
and $q$ and $r$ must be a \Vector in the \SolutionFS or must be mapped or interpolated into the particular \FunctionSpace. |
473 |
gross |
625 |
|
474 |
gross |
660 |
\begin{classdesc}{Lame}{domain} |
475 |
|
|
opens a Lame equation on the \Domain domain. \Lame is derived from \LinearPDE. |
476 |
|
|
\end{classdesc} |
477 |
|
|
\begin{methoddesc}[Lame]{setValue}{ \optional{lame_lambda} \optional{, lame_mu} \optional{, F} \optional{, sigma} \optional{, f} \optional{, r} \optional{, q}} |
478 |
|
|
assigns new values to |
479 |
|
|
\var{lame_lambda}, |
480 |
|
|
\var{lame_mu}, |
481 |
|
|
\var{F}, |
482 |
|
|
\var{sigma}, |
483 |
|
|
\var{f}, |
484 |
|
|
\var{r} and |
485 |
|
|
\var{q} |
486 |
|
|
By default all values are set to be zero. |
487 |
|
|
\end{methoddesc} |
488 |
|
|
|