/[escript]/trunk/doc/user/linearPDE.tex
ViewVC logotype

Diff of /trunk/doc/user/linearPDE.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1977 by jfenwick, Tue Nov 4 01:49:19 2008 UTC revision 1978 by artak, Thu Nov 6 04:21:23 2008 UTC
# Line 349  direct solver based on Cholevsky factori Line 349  direct solver based on Cholevsky factori
349  preconditioned conjugate gradient method, see~\Ref{WEISS}\index{linear solver!PCG}\index{PCG}. The solver will require a symmetric PDE.  preconditioned conjugate gradient method, see~\Ref{WEISS}\index{linear solver!PCG}\index{PCG}. The solver will require a symmetric PDE.
350  \end{memberdesc}  \end{memberdesc}
351    
352    \begin{memberdesc}[LinearPDE]{TFQMR}
353    transpose-free quasi-minimal residual method, see~\Ref{WEISS}\index{linear solver!TFQMR}\index{TFQMR}. \end{memberdesc}
354    
355  \begin{memberdesc}[LinearPDE]{GMRES}  \begin{memberdesc}[LinearPDE]{GMRES}
356  the GMRES method, see~\Ref{WEISS}\index{linear solver!GMRES}\index{GMRES}. Truncation and restart are controlled by the parameters  the GMRES method, see~\Ref{WEISS}\index{linear solver!GMRES}\index{GMRES}. Truncation and restart are controlled by the parameters
357  \var{truncation} and \var{restart} of \method{getSolution}.  \var{truncation} and \var{restart} of \method{getSolution}.
358  \end{memberdesc}  \end{memberdesc}
359    
360    \begin{memberdesc}[LinearPDE]{MINRES}
361    minimal residual method method, \index{linear solver!MINRES}\index{MINRES} \end{memberdesc}
362    
363  \begin{memberdesc}[LinearPDE]{LUMPING}  \begin{memberdesc}[LinearPDE]{LUMPING}
364  uses lumping to solve the system of linear equations~\index{linear solver!lumping}\index{lumping}. This solver technique  uses lumping to solve the system of linear equations~\index{linear solver!lumping}\index{lumping}. This solver technique
365  condenses the stiffness matrix to a diagonal matrix so the solution of the linear systems becomes very cheap. It can be used when  condenses the stiffness matrix to a diagonal matrix so the solution of the linear systems becomes very cheap. It can be used when
# Line 399  the algebraic--multi grid method, see~\R Line 405  the algebraic--multi grid method, see~\R
405  in a preconditioner.  in a preconditioner.
406  \end{memberdesc}  \end{memberdesc}
407    
408    \begin{memberdesc}[LinearPDE]{GS}
409    the symmetric Gauss-Seidel preconditioner, see~\Ref{Saad}.
410    \end{memberdesc}
411    
412  \begin{memberdesc}[LinearPDE]{RILU}  \begin{memberdesc}[LinearPDE]{RILU}
413  recursive incomplete LU factorization preconditioner, see~\Ref{RILU}. This method is similar to \ILUT but uses smoothing  recursive incomplete LU factorization preconditioner, see~\Ref{RILU}. This method is similar to \ILUT but uses smoothing
414  between levels. During the  LU-factorization element with  between levels. During the  LU-factorization element with

Legend:
Removed from v.1977  
changed lines
  Added in v.1978

  ViewVC Help
Powered by ViewVC 1.1.26