349 
preconditioned conjugate gradient method, see~\Ref{WEISS}\index{linear solver!PCG}\index{PCG}. The solver will require a symmetric PDE. 
preconditioned conjugate gradient method, see~\Ref{WEISS}\index{linear solver!PCG}\index{PCG}. The solver will require a symmetric PDE. 
350 
\end{memberdesc} 
\end{memberdesc} 
351 


352 

\begin{memberdesc}[LinearPDE]{TFQMR} 
353 

transposefree quasiminimal residual method, see~\Ref{WEISS}\index{linear solver!TFQMR}\index{TFQMR}. \end{memberdesc} 
354 


355 
\begin{memberdesc}[LinearPDE]{GMRES} 
\begin{memberdesc}[LinearPDE]{GMRES} 
356 
the GMRES method, see~\Ref{WEISS}\index{linear solver!GMRES}\index{GMRES}. Truncation and restart are controlled by the parameters 
the GMRES method, see~\Ref{WEISS}\index{linear solver!GMRES}\index{GMRES}. Truncation and restart are controlled by the parameters 
357 
\var{truncation} and \var{restart} of \method{getSolution}. 
\var{truncation} and \var{restart} of \method{getSolution}. 
358 
\end{memberdesc} 
\end{memberdesc} 
359 


360 

\begin{memberdesc}[LinearPDE]{MINRES} 
361 

minimal residual method method, \index{linear solver!MINRES}\index{MINRES} \end{memberdesc} 
362 


363 
\begin{memberdesc}[LinearPDE]{LUMPING} 
\begin{memberdesc}[LinearPDE]{LUMPING} 
364 
uses lumping to solve the system of linear equations~\index{linear solver!lumping}\index{lumping}. This solver technique 
uses lumping to solve the system of linear equations~\index{linear solver!lumping}\index{lumping}. This solver technique 
365 
condenses the stiffness matrix to a diagonal matrix so the solution of the linear systems becomes very cheap. It can be used when 
condenses the stiffness matrix to a diagonal matrix so the solution of the linear systems becomes very cheap. It can be used when 
405 
in a preconditioner. 
in a preconditioner. 
406 
\end{memberdesc} 
\end{memberdesc} 
407 


408 

\begin{memberdesc}[LinearPDE]{GS} 
409 

the symmetric GaussSeidel preconditioner, see~\Ref{Saad}. 
410 

\end{memberdesc} 
411 


412 
\begin{memberdesc}[LinearPDE]{RILU} 
\begin{memberdesc}[LinearPDE]{RILU} 
413 
recursive incomplete LU factorization preconditioner, see~\Ref{RILU}. This method is similar to \ILUT but uses smoothing 
recursive incomplete LU factorization preconditioner, see~\Ref{RILU}. This method is similar to \ILUT but uses smoothing 
414 
between levels. During the LUfactorization element with 
between levels. During the LUfactorization element with 