# Annotation of /trunk/doc/user/notation.tex

Revision 2923 - (hide annotations)
Thu Feb 4 04:05:36 2010 UTC (10 years, 11 months ago) by jfenwick
File MIME type: application/x-tex
File size: 2654 byte(s)
Bringing non-release specific things from stage3.1 r2922 back to trunk


 1 ksteube 1811 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3 lgraham 1709 % 4 jfenwick 2881 % Copyright (c) 2003-2010 by University of Queensland 5 ksteube 1811 % Earth Systems Science Computational Center (ESSCC) 6 7 lgraham 1709 % 8 ksteube 1811 % Primary Business: Queensland, Australia 9 % Licensed under the Open Software License version 3.0 10 11 lgraham 1709 % 12 ksteube 1811 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 13 lgraham 1709 14 ksteube 1811 15 lgraham 1709 \section{Einstein Notation} 16 \label{EINSTEIN NOTATION} 17 18 Compact notation is used in equations such continuum mechanics and linear algebra; it is known as Einstein notation or the Einstein summation convention. It makes the conventional notation of equations involing tensors more compact, by shortening and simplifying them. 19 20 There are two rules which make up the convention: 21 22 firstly, the rank of the tensor is represented by an index. For example, $a$ is a scalar; $b\hackscore{i}$ represents a vector; and $c\hackscore{ij}$ represents a matrix. 23 24 jfenwick 2923 Secondly, if an expression contains repeated subscripted variables, they are assumed to be summed over all possible values, from $0$ to $n$. For example, for the following expression: 25 lgraham 1709 26 27 28 \begin{equation} 29 y = a\hackscore{0}b\hackscore{0} + a\hackscore{1}b\hackscore{1} + \ldots + a\hackscore{n}b\hackscore{n} 30 \label{NOTATION1} 31 \end{equation} 32 33 can be represented as: 34 35 \begin{equation} 36 y = \sum\hackscore{i=0}^n a\hackscore{i}b\hackscore{i} 37 \label{NOTATION2} 38 \end{equation} 39 40 then in Einstein notion: 41 42 \begin{equation} 43 y = a\hackscore{i}b\hackscore{i} 44 \label{NOTATION3} 45 \end{equation} 46 47 Another example: 48 49 \begin{equation} 50 \nabla p = \frac{\partial p}{\partial x\hackscore{0}}\textbf{i} + \frac{\partial p}{\partial x\hackscore{1}}\textbf{j} + \frac{\partial p}{\partial x\hackscore{2}}\textbf{k} 51 \label{NOTATION4} 52 \end{equation} 53 54 can be expressed in Einstein notation as: 55 56 \begin{equation} 57 \nabla p = p,\hackscore{i} 58 \label{NOTATION5} 59 \end{equation} 60 61 where the comma ',' indicates the partial derivative. 62 63 For a tensor: 64 65 \begin{equation} 66 \sigma \hackscore{ij}= 67 \left[ \begin{array}{ccc} 68 \sigma\hackscore{00} & \sigma\hackscore{01} & \sigma\hackscore{02} \\ 69 \sigma\hackscore{10} & \sigma\hackscore{11} & \sigma\hackscore{12} \\ 70 \sigma\hackscore{20} & \sigma\hackscore{21} & \sigma\hackscore{22} \\ 71 \end{array} \right] 72 \label{NOTATION6} 73 \end{equation} 74 75 76 The $\delta\hackscore{ij}$ is the Kronecker $\delta$-symbol, which is a matrix with ones for its diagonal entries ($i = j$) and zeros for the remaining entries ($i \neq j$). 77 78 \begin{equation} 79 \delta \hackscore{ij} = 80 \left \{ \begin{array}{cc} 81 1, & \mbox{if $i = j$} \\ 82 0, & \mbox{if $i \neq j$} \\ 83 \end{array} 84 \right. 85 \label{KRONECKER} 86 \end{equation}