1 |
gross |
993 |
\chapter{The module \pycad} |
2 |
|
|
\label{PYCAD CHAP} |
3 |
|
|
|
4 |
gross |
999 |
|
5 |
|
|
|
6 |
|
|
\section{Introduction} |
7 |
|
|
|
8 |
|
|
|
9 |
|
|
\section{\pycad Classes} |
10 |
|
|
\declaremodule{extension}{esys.pycad} |
11 |
gross |
993 |
\modulesynopsis{Python geometry description and meshing interface} |
12 |
|
|
|
13 |
gross |
999 |
\subsection{Primitives} |
14 |
gross |
993 |
|
15 |
gross |
999 |
\begin{classdesc}{Point}{} |
16 |
|
|
|
17 |
|
|
\end{classdesc} |
18 |
|
|
|
19 |
|
|
\begin{classdesc}{Manifold1D}{} |
20 |
|
|
|
21 |
|
|
\end{classdesc} |
22 |
|
|
|
23 |
|
|
\begin{classdesc}{Manifold2D}{} |
24 |
|
|
|
25 |
|
|
\end{classdesc} |
26 |
|
|
|
27 |
|
|
\begin{classdesc}{Manifold3D}{} |
28 |
|
|
|
29 |
|
|
\end{classdesc} |
30 |
|
|
|
31 |
|
|
%============================================================================================================ |
32 |
|
|
\subsection{Transformations} |
33 |
|
|
|
34 |
|
|
Transformations are used to move geometrical objects in the 3-dimensional space: |
35 |
|
|
|
36 |
|
|
\begin{datadesc}{DEG} |
37 |
|
|
The unit of degree. For instance use \code{90*DEG} for $90$ degrees. |
38 |
|
|
\end{datadesc} |
39 |
|
|
|
40 |
|
|
\begin{datadesc}{RAD} |
41 |
|
|
The unit of radiant. For instance use \code{math.pi*RAD} for $180$ degrees. |
42 |
|
|
\end{datadesc} |
43 |
|
|
|
44 |
|
|
\begin{classdesc}{Translation}{\optional{b=[0,0,0]}} |
45 |
|
|
defines a translation $x \to x+b$. \var{b} can be any object that can be converted |
46 |
|
|
into a \numarray object of shape $(3,)$. |
47 |
|
|
\end{classdesc} |
48 |
|
|
|
49 |
|
|
\begin{classdesc}{Rotatation}{\optional{axis=[1,1,1], \optional{ point = [0,0,0], \optional{angle=0*RAD} } } } |
50 |
|
|
defines a rotation by \var{angle} around axis through point \var{point} and direction \var{axis}. |
51 |
|
|
\var{axis} and \var{point} can be any object that can be converted |
52 |
|
|
into a \numarray object of shape $(3,)$. |
53 |
|
|
\var{axis} does not have to be normalized but must have positive length. The right hand rule~\cite{RIGHTHANDRULE} |
54 |
|
|
applies. |
55 |
|
|
\end{classdesc} |
56 |
|
|
|
57 |
|
|
|
58 |
|
|
\begin{classdesc}{Dilation}{\optional{factor=1., \optional{center=[0,0,0]}}} |
59 |
|
|
defines a dilation by the expansion/contraction \var{factor} with |
60 |
|
|
\var{center} as the dilation center. |
61 |
|
|
\var{center} can be any object that can be converted |
62 |
|
|
into a \numarray object of shape $(3,)$. |
63 |
|
|
\end{classdesc} |
64 |
|
|
|
65 |
|
|
\begin{classdesc}{Reflection}{\optional{normal=[1,1,1], \optional{offset=0}}} |
66 |
|
|
defines a reflection on a plane defined in normal form $n^t x = d$ |
67 |
|
|
where $n$ is the surface normal \var{normal} and $d$ is the plane \var{offset}. |
68 |
|
|
\var{normal} can be any object that can be converted |
69 |
|
|
into a \numarray object of shape $(3,)$. |
70 |
|
|
\var{normal} does not have to be normalized but must have positive length. |
71 |
|
|
\end{classdesc} |
72 |
|
|
|
73 |
|
|
\subsection{Properties} |
74 |
|
|
|
75 |
|
|
Property sets are used to bundle a set of geometrical objects in a group. The group |
76 |
|
|
is identified by a name. Typically a property set is used to mark |
77 |
|
|
subregions with share the same material properties or to mark portions of the boundary. |
78 |
|
|
For efficiency, the \Design class object assigns a integer to each of its property sets, |
79 |
|
|
a so-called tag \index{tag}. The appropriate tag is attached to the elements at generation time. |
80 |
|
|
|
81 |
gross |
1044 |
|
82 |
gross |
999 |
\begin{classdesc}{PropertySet}{name,*items} |
83 |
|
|
defines a group geometrical objects which can be accessed through a \var{name} |
84 |
|
|
The objects in the tuple \var{items} mast all be \ManifoldOneD, \ManifoldTwoD or \ManifoldThreeD objects. |
85 |
|
|
\end{classdesc} |
86 |
|
|
|
87 |
|
|
|
88 |
|
|
\begin{methoddesc}[PropertySet]{getManifoldClass}{} |
89 |
|
|
returns the manifold class \ManifoldOneD, \ManifoldTwoD or \ManifoldThreeD expected from the items |
90 |
|
|
in the property set. |
91 |
|
|
\end{methoddesc} |
92 |
|
|
|
93 |
|
|
\begin{methoddesc}[PropertySet]{getDim}{} |
94 |
|
|
returns the spatial dimension of the items |
95 |
|
|
in the property set. |
96 |
|
|
\end{methoddesc} |
97 |
|
|
|
98 |
|
|
\begin{methoddesc}[PropertySet]{getName}{} |
99 |
|
|
returns the name of the set |
100 |
|
|
\end{methoddesc} |
101 |
|
|
|
102 |
|
|
\begin{methoddesc}[PropertySet]{setName}{name} |
103 |
|
|
sets the name. This name should be unique within a \Design. |
104 |
|
|
\end{methoddesc} |
105 |
|
|
|
106 |
|
|
\begin{methoddesc}[PropertySet]{addItem}{*items} |
107 |
|
|
adds a tuple of items. They need to be objects of class \ManifoldOneD, \ManifoldTwoD or \ManifoldThreeD. |
108 |
|
|
\end{methoddesc} |
109 |
|
|
|
110 |
|
|
\begin{methoddesc}[PropertySet]{getItems}{} |
111 |
|
|
returns the list of items |
112 |
|
|
\end{methoddesc} |
113 |
|
|
|
114 |
|
|
\begin{methoddesc}[PropertySet]{clearItems}{} |
115 |
|
|
clears the list of items |
116 |
|
|
\end{methoddesc} |
117 |
|
|
|
118 |
|
|
\begin{methoddesc}[PropertySet]{getTag}{} |
119 |
|
|
returns the tag used for this property set |
120 |
|
|
\end{methoddesc} |
121 |
|
|
|
122 |
|
|
\section{Interface to \gmshextern} |
123 |
|
|
\declaremodule{extension}{esys.pycad.gmsh} |
124 |
|
|
\modulesynopsis{Python geometry description and meshing interface} |
125 |
|
|
|
126 |
|
|
\begin{classdesc}{Design}{ |
127 |
|
|
\optional{dim=3, \optional{element_size=1., \optional{order=1, \optional{keep_files=False}}}}} |
128 |
|
|
The \class{Design} describes the geometry defined by primitives to be meshed. |
129 |
|
|
The \var{dim} specifies the spatial dimension. The argument \var{element_size} defines the global |
130 |
|
|
element size which is multiplied by the local scale to set the element size at each \Point. |
131 |
|
|
The argument \var{order} defines the element order to be used. If \var{keep_files} is set to |
132 |
|
|
\True temporary files a kept otherwise they are removed when the instance of the class is deleted. |
133 |
|
|
\end{classdesc} |
134 |
|
|
|
135 |
|
|
|
136 |
|
|
\begin{methoddesc}[Design]{setDim}{\optional{dim=3}} |
137 |
|
|
sets the spatial dimension which needs to be $1$, $2$ or $3$. |
138 |
|
|
\end{methoddesc} |
139 |
|
|
|
140 |
|
|
\begin{methoddesc}[Design]{getDim}{} |
141 |
|
|
returns the spatial dimension. |
142 |
|
|
\end{methoddesc} |
143 |
|
|
|
144 |
|
|
\begin{methoddesc}[Design]{setElementOrder}{\optional{order=1}} |
145 |
|
|
sets the element order which needs to be $1$ or $2$. |
146 |
|
|
\end{methoddesc} |
147 |
|
|
|
148 |
|
|
\begin{methoddesc}[Design]{getElementOrder}{} |
149 |
|
|
returns the element order. |
150 |
|
|
\end{methoddesc} |
151 |
|
|
|
152 |
|
|
|
153 |
|
|
\begin{methoddesc}[Design]{setElementSize}{\optional{element_size=1}} |
154 |
|
|
set the global element size. The local element size at a point is defined as |
155 |
|
|
the global element size multipied by the local scale. The element size must be positive. |
156 |
|
|
\end{methoddesc} |
157 |
|
|
|
158 |
|
|
|
159 |
|
|
\begin{methoddesc}[Design]{getElementSize}{} |
160 |
|
|
returns the global element size. |
161 |
|
|
\end{methoddesc} |
162 |
|
|
|
163 |
|
|
\begin{memberdesc}[Design]{DELAUNAY} |
164 |
|
|
the \gmshextern Delauny triangulator. |
165 |
|
|
\end{memberdesc} |
166 |
|
|
|
167 |
|
|
\begin{memberdesc}[Design]{TETGEN} |
168 |
|
|
the TetGen~\cite{TETGEN} triangulator. |
169 |
|
|
\end{memberdesc} |
170 |
|
|
|
171 |
|
|
\begin{memberdesc}[Design]{TETGEN} |
172 |
|
|
the NETGEN~\cite{NETGEN} triangulator. |
173 |
|
|
\end{memberdesc} |
174 |
|
|
|
175 |
|
|
\begin{methoddesc}[Design]{setKeepFilesOn}{} |
176 |
|
|
work files are kept at the end of the generation. |
177 |
|
|
\end{methoddesc} |
178 |
|
|
|
179 |
|
|
\begin{methoddesc}[Design]{setKeepFilesOff}{} |
180 |
|
|
work files are deleted at the end of the generation. |
181 |
|
|
\end{methoddesc} |
182 |
|
|
|
183 |
|
|
\begin{methoddesc}[Design]{keepFiles}{} |
184 |
|
|
returns \True if work files are kept. Otherwise \False is returned. |
185 |
|
|
\end{methoddesc} |
186 |
|
|
|
187 |
|
|
\begin{methoddesc}[Design]{setScriptFileName}{\optional{name=None}} |
188 |
|
|
set the filename for the \gmshextern input script. if no name is given a name with extension "geo" is generated. |
189 |
|
|
\end{methoddesc} |
190 |
|
|
|
191 |
|
|
\begin{methoddesc}[Design]{getScriptFileName}{} |
192 |
|
|
returns the name of the file for the \gmshextern script. |
193 |
|
|
\end{methoddesc} |
194 |
|
|
|
195 |
|
|
|
196 |
|
|
\begin{methoddesc}[Design]{setMeshFileName}{\optional{name=None}} |
197 |
|
|
sets the name for the \gmshextern mesh file. if no name is given a name with extension "msh" is generated. |
198 |
|
|
\end{methoddesc} |
199 |
|
|
|
200 |
|
|
\begin{methoddesc}[Design]{getMeshFileName}{} |
201 |
|
|
returns the name of the file for the gmsh msh |
202 |
|
|
\end{methoddesc} |
203 |
|
|
|
204 |
|
|
|
205 |
|
|
\begin{methoddesc}[Design]{addItems}{*items} |
206 |
|
|
adds the tuple of var{items}. An item can be any primitive or a \class{PropertySet}. |
207 |
|
|
\warning{If a \PropertySet is added as an item added object that are not |
208 |
|
|
part of a \PropertySet are not considered in the messing. |
209 |
|
|
} |
210 |
|
|
|
211 |
|
|
\end{methoddesc} |
212 |
|
|
|
213 |
|
|
\begin{methoddesc}[Design]{getItems}{} |
214 |
|
|
returns a list of the items |
215 |
|
|
\end{methoddesc} |
216 |
|
|
|
217 |
|
|
\begin{methoddesc}[Design]{clearItems}{} |
218 |
|
|
resets the items in design |
219 |
|
|
\end{methoddesc} |
220 |
|
|
|
221 |
|
|
\begin{methoddesc}[Design]{getMeshHandler}{} |
222 |
|
|
returns a handle to the mesh. The call of this method generates the mesh from the geometry and |
223 |
|
|
returns a mechnism to access the mesh data. In the current implementation this |
224 |
|
|
is this method returns a file name for a \gmshextern file containing the mesh data but this may change in |
225 |
|
|
later versions. |
226 |
|
|
\end{methoddesc} |
227 |
|
|
|
228 |
|
|
\begin{methoddesc}[Design]{getScriptString}{} |
229 |
|
|
returns the \gmshextern script to generate the mesh as string. |
230 |
|
|
\end{methoddesc} |
231 |
|
|
|
232 |
|
|
\begin{methoddesc}[Design]{getCommandString}{} |
233 |
|
|
returns the \gmshextern command used to generate the mesh as string.. |
234 |
|
|
\end{methoddesc} |
235 |
|
|
|
236 |
|
|
\begin{methoddesc}[Design]{setOptions}{\optional{algorithm=None, \optional{ optimize_quality=True,\optional{ smoothing=1}}}} |
237 |
|
|
sets options for the mesh generator. \var{algorithm} sets the algorithm to be used. |
238 |
|
|
The algorithm needs to be \var{Design.DELAUNAY} |
239 |
|
|
\var{Design.TETGEN} |
240 |
|
|
or \var{Design.NETGEN}. By default \var{Design.DELAUNAY} is used. \var{optimize_quality}=\True invokes an optimization of the mesh quality. \var{smoothing} sets the number of smoothing steps to be applied to the mesh. |
241 |
|
|
\end{methoddesc} |
242 |
|
|
|
243 |
|
|
\begin{methoddesc}[Design]{getTagMap}{} |
244 |
|
|
returns a \class{TagMap} to map the name \class{PropertySet} in the class to tag numbers generated by \gmshextern. |
245 |
|
|
\end{methoddesc} |