 implements https://mantis.esscc.uq.edu.au/view.php?id=426

 1 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3 % 4 % Copyright (c) 2003-2009 by University of Queensland 5 % Earth Systems Science Computational Center (ESSCC) 6 7 % 8 % Primary Business: Queensland, Australia 9 % Licensed under the Open Software License version 3.0 10 11 % 12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 13 14 15 16 \chapter{The Module \pycad} \label{PYCAD CHAP} 17 18 19 \section{Introduction} 20 21 \pycad provides a simple way to build a mesh for your finite element 22 simulation. You begin by building what we call a \class{Design} using 23 primitive geometric objects, and then to go on to build a mesh from 24 this. The final step of generating the mesh from a \class{Design} 25 uses freely available mesh generation software, such as \gmshextern. 26 27 A \class{Design} is built by defining points, which are used to specify 28 the corners of geometric objects and the vertices of curves. Using 29 points you construct more interesting objects such as lines, 30 rectangles, and arcs. By adding many of these objects into what we 31 call a \class{Design}, you can build meshes for arbitrarily complex 2-D 32 and 3-D structures. 33 34 \section{The Unit Square} 35 So the simplest geometry is the unit square. First we generate the 36 corner points 37 \begin{python} 38 from esys.pycad import * 39 p0=Point(0.,0.,0.) 40 p1=Point(1.,0.,0.) 41 p2=Point(1.,1.,0.) 42 p3=Point(0.,1.,0.) 43 \end{python} 44 which are then linked to define the edges of the square 45 \begin{python} 46 l01=Line(p0,p1) 47 l12=Line(p1,p2) 48 l23=Line(p2,p3) 49 l30=Line(p3,p0) 50 \end{python} 51 The lines are put together to form a loop 52 \begin{python} 53 c=CurveLoop(l01,l12,l23,l30) 54 \end{python} 55 The orientation of the line defining the \class{CurveLoop} is important. It is assumed that the surrounded 56 area is to the left when moving along the lines from their starting points towards the end points. Moreover, 57 the line need to form a closed loop. 58 59 We use the \class{CurveLoop} to define a surface 60 \begin{python} 61 s=PlaneSurface(c) 62 \end{python} 63 Notice there is difference between the \class{CurveLoop} defining the boundary 64 of the surface and the actually surface \class{PlaneSurface}. This difference becomes clearer in the next example with a hole. The direction of the lines is important. 65 New we are ready to define the geometry which described by an instance of \class{Design} class: 66 \begin{python} 67 d=Design(dim=2,element_size=0.05) 68 \end{python} 69 Here we use the two dimensional domain with a local element size in the finite element mesh of $0.05$. 70 We then add the surface \code{s} to the geometry 71 \begin{python} 72 d.addItems(s) 73 \end{python} 74 This will automatically import all items used to construct \code{s} into the \class{Design} \code{d}. 75 Now we are ready to construct a \finley FEM mesh and then write it to the file \file{quad.fly}: 76 \begin{python} 77 from esys.finley import MakeDomain 78 dom=MakeDomain(d) 79 dom.write("quad.fly") 80 \end{python} 81 In some cases it is useful to access the script used to generate the geometry. You can specify a specific name 82 for the script file. In our case we use 83 \begin{python} 84 d.setScriptFileName("quad.geo") 85 \end{python} 86 It is also useful to check error messages generated during the mesh generation process. \gmshextern writes 87 messages to the \file{.gmsh-errors} in your home directory. 88 89 If we put everything together we get the script 90 \begin{python} 91 from esys.pycad import * 92 from esys.pycad.gmsh import Design 93 from esys.finley import MakeDomain 94 p0=Point(0.,0.,0.) 95 p1=Point(1.,0.,0.) 96 p2=Point(1.,1.,0.) 97 p3=Point(0.,1.,0.) 98 l01=Line(p0,p1) 99 l12=Line(p1,p2) 100 l23=Line(p2,p3) 101 l30=Line(p3,p0) 102 c=CurveLoop(l01,l12,l23,l30) 103 s=PlaneSurface(c) 104 d=Design(dim=2,element_size=0.05) 105 d.setScriptFileName("quad.geo") 106 d.addItems(s) 107 pl1=PropertySet("sides",l01,l23) 108 pl2=PropertySet("top_and_bottom",l12,l30) 109 d.addItems(pl1, pl2) 110 dom=MakeDomain(d) 111 dom.write("quad.fly") 112 \end{python} 113 This example is included with the software in 114 \file{quad.py} in the \ExampleDirectory. 115 116 There are three extra statements which we have not discussed yet: By default the mesh used to subdivide 117 the boundary are not written into the mesh file mainly to reduce the size of the data file. One need to explicitly add the lines to the \Design which should be present in the mesh data. Here we additionally labeled the 118 lines on the top and the bottom with the name top_and_bottom and the lines on the left and right hand side 119 with the name sides using \class{PropertySet} objects. The labeling is convenient 120 when using tagging \index{tagging}, see Chapter~\ref{ESCRIPT CHAP}. 121 122 \begin{figure} 123 \centerline{\includegraphics[width=\figwidth]{figures/quad}} 124 \caption{Trapozid with triangle Hole.} 125 \label{fig:PYCAD 0} 126 \end{figure} 127 128 If you have \gmshextern installed you can run the example and view the geometry and mesh with: 129 \begin{python} 130 escript quad.py 131 gmsh quad.geo 132 gmsh quad.msh 133 \end{python} 134 You can access error messages from \gmshextern in the \file{.gmsh-errors} in your home directory. 135 See Figure~\ref{fig:PYCAD 0} for a result. 136 137 In most cases it is best practice to generate the mesh and to solve the mathematical 138 model in to different scripts. In our example you can read the \finley mesh into your simulation 139 code\footnote{\gmshextern files can be directly read using the \function{ReadGmsh}, see Chapter~\ref{CHAPTER ON FINLEY}} using 140 \begin{python} 141 from finley import ReadMesh 142 mesh=ReadMesh("quad.fly") 143 \end{python} 144 Note that the underlying mesh generation software will not accept all 145 the geometries you can create with \pycad. For example, \pycad 146 will happily allow you to create a 2-D \class{Design} that is a 147 closed loop with some additional points or lines lying outside of the 148 enclosed area, but \gmshextern will fail to create a mesh for it. 149 150 \begin{figure} 151 \centerline{\includegraphics[width=\figwidth]{figures/trap}} 152 \caption{Trapozid with triangle Hole.} 153 \label{fig:PYCAD 1} 154 \end{figure} 155 156 157 \section{Holes} 158 The example included below shows how to use \pycad to create a 2-D mesh 159 in the shape of a trapezoid with a cut-out area, see Figure~\ref{fig:PYCAD 1}: 160 \begin{python} 161 from esys.pycad import * 162 from esys.pycad.gmsh import Design 163 from esys.finley import MakeDomain 164 165 # A trapezoid 166 p0=Point(0.0, 0.0, 0.0) 167 p1=Point(1.0, 0.0, 0.0) 168 p2=Point(1.0, 0.5, 0.0) 169 p3=Point(0.0, 1.0, 0.0) 170 l01=Line(p0, p1) 171 l12=Line(p1, p2) 172 l23=Line(p2, p3) 173 l30=Line(p3, p0) 174 c=CurveLoop(l01, l12, l23, l30) 175 176 # A small triangular cutout 177 x0=Point(0.1, 0.1, 0.0) 178 x1=Point(0.5, 0.1, 0.0) 179 x2=Point(0.5, 0.2, 0.0) 180 x01=Line(x0, x1) 181 x12=Line(x1, x2) 182 x20=Line(x2, x0) 183 cutout=CurveLoop(x01, x12, x20) 184 185 # Create the surface with cutout 186 s=PlaneSurface(c, holes=[cutout]) 187 188 # Create a Design which can make the mesh 189 d=Design(dim=2, element_size=0.05) 190 191 # Add the trapezoid with cutout 192 d.addItems(s) 193 194 # Create the geometry, mesh and Escript domain 195 d.setScriptFileName("trapezoid.geo") 196 d.setMeshFileName("trapezoid.msh") 197 domain=MakeDomain(d) 198 # write mesh to a finley file: 199 domain.write("trapezoid.fly") 200 \end{python} 201 This example is included with the software in 202 \file{trapezoid.py} in the \ExampleDirectory. 203 204 A \code{CurveLoop} is used to connect several lines into a single curve. 205 It is used in the example above to create the trapezoidal outline for the grid 206 and also for the triangular cutout area. 207 You can use any number of lines when creating a \class{CurveLoop}, but 208 the end of one line must be identical to the start of the next. 209 210 211 \begin{figure} 212 \centerline{\includegraphics[width=\figwidth]{figures/brick}} 213 \caption{Three dimensional Block.} 214 \label{fig:PYCAD 2} 215 \end{figure} 216 217 \section{A 3D example} 218 In this section we discuss the definition of 3D geometries. The example is the unit cube, see Figure~\ref{fig:PYCAD 2}. First we generate the vertices of the cube: 219 \begin{python} 220 from esys.pycad import * 221 p0=Point(0.,0.,0.) 222 p1=Point(1.,0.,0.) 223 p2=Point(0.,1.,0.) 224 p3=Point(1.,1.,0.) 225 p4=Point(0.,0.,1.) 226 p5=Point(1.,0.,1.) 227 p6=Point(0.,1.,1.) 228 p7=Point(1.,1.,1.) 229 \end{python} 230 We connect the points to form the bottom and top surfaces of the cube: 231 \begin{python} 232 l01=Line(p0,p1) 233 l13=Line(p1,p3) 234 l32=Line(p3,p2) 235 l20=Line(p2,p0) 236 bottom=PlaneSurface(CurveLoop(l01,l13,l32,l20)) 237 \end{python} 238 and 239 \begin{python} 240 l45=Line(p4,p5) 241 l57=Line(p5,p7) 242 l76=Line(p7,p6) 243 l64=Line(p6,p4) 244 top=PlaneSurface(CurveLoop(l45,l57,l76,l64)) 245 \end{python} 246 To form the front face we introduce the two additional lines connecting the left and right front 247 points of the the \code{top} and \code{bottom} face: 248 \begin{python} 249 l15=Line(p1,p5) 250 l40=Line(p4,p0) 251 \end{python} 252 To form the front face we encounter the problem as the line \code{l45} used to define the 253 \code{top} face is pointing the wrong direction. In \pycad you can reversing direction of an 254 object by changing its sign. So we write \code{-l45} to indicate that the direction is to be reversed. With this notation we can write 255 \begin{python} 256 front=PlaneSurface(CurveLoop(l01,l15,-l45,l40)) 257 \end{python} 258 Keep in mind that if you use \code{Line(p4,p5)} instead \code{-l45} both objects are treated as different although the connecting the same points with a straight line in the same direction. The resulting geometry would include an opening along the \code{p4}--\code{p5} connection. This will lead to an inconsistent mesh and may result in a failure of the volumetric mesh generator. Similarly we can define the other sides of the cube: 259 \begin{python} 260 l37=Line(p3,p7) 261 l62=Line(p6,p2) 262 back=PlaneSurface(CurveLoop(l32,-l62,-l76,-l37)) 263 left=PlaneSurface(CurveLoop(-l40,-l64,l62,l20)) 264 right=PlaneSurface(CurveLoop(-l15,l13,l37,-l57)) 265 \end{python} 266 We can now put the six surfaces together to form a \class{SurfaceLoop} defining the 267 boundary of the volume of the cube: 268 \begin{python} 269 sl=SurfaceLoop(top,-bottom,front,back,left,right) 270 v=Volume(sl) 271 \end{python} 272 Similar to the definition of a \code{CurvedLoop} the orientation of the surfaces \code{SurfaceLoop} is relevant. In fact the surface normal direction defined by the the right hand rule needs to point outwards as indicated by the surface normals in 273 Figure~\ref{fig:PYCAD 2}. As the \code{bottom} face is directed upwards it is inserted with the minus sign 274 into the \code{SurfaceLoop} in order to adjust the orientation of the surface. 275 276 As in the 2D case, the \class{Design} class is used to define the geometry: 277 \begin{python} 278 from esys.pycad.gmsh import Design 279 from esys.finley import MakeDomain 280 281 des=Design(dim=3, element_size = 0.1, keep_files=True) 282 des.setScriptFileName("brick.geo") 283 des.addItems(v, top, bottom, back, front, left , right) 284 285 dom=MakeDomain(des) 286 dom.write("brick.fly") 287 \end{python} 288 Note that the \finley mesh file \file{brick.fly} will contain the 289 triangles used to define the surfaces as they are added to the \class{Design}. 290 The example script of the cube is included with the software in 291 \file{brick.py} in the \ExampleDirectory. 292 293 \section{Alternative File Formats} 294 \code{pycad} supports other file formats in including 295 I-DEAS universal file, VRML, Nastran and STL. The following example shows how 296 to generate the STL file \file{brick.stl}: 297 \begin{python} 298 from esys.pycad.gmsh import Design 299 300 des=Design(dim=3, element_size = 0.1, keep_files=True) 301 des.addItems(v, top, bottom, back, front, left , right) 302 303 des.setFileFormat(des.STL) 304 des.setMeshFileName("brick.stl") 305 des.generate() 306 \end{python} 307 The example script of the cube is included with the software in 308 \file{brick_stl.py} in the \ExampleDirectory. 309 310 311 \begin{figure} 312 \centerline{\includegraphics[width=\figwidth]{figures/refine1}} 313 \caption{Local refinement at the origin by 314 \var{local_scale=0.01} 315 with \var{element_size=0.3} and number of elements on the top set to 10.} 316 \label{fig:PYCAD 5} 317 \end{figure} 318 319 \section{Element Sizes} 320 The element size used globally is defined by the 321 \code{element_size} argument of the \class{Design}. The mesh generator 322 will try to use this mesh size everywhere in the geometry. In some cases it can be 323 desirable to use locally a finer mesh. A local refinement can be defined at each 324 \class{Point}: 325 \begin{python} 326 p0=Point(0.,0.,0.,local_scale=0.01) 327 \end{python} 328 Here the mesh generator will create a mesh with an element size which is by the factor \code{0.01} 329 times smaller than the global mesh size \code{element_size=0.3}, see Figure~\ref{fig:PYCAD 5}. The point where a refinement is defined must be a point of curve used to define the geometry. 330 331 Alternatively, one can define a mesh size along a curve by defining the number of elements to be used to subdivide the curve. For instance, to use $20$ element on line \code{l23} on uses: 332 \begin{python} 333 l23=Line(p2, p3) 334 l23.setElementDistribution(20) 335 \end{python} 336 Setting the number of elements on a curve overwrites the global mesh size \code{element_size}. The result is shown in Figure~\ref{fig:PYCAD 5}. 337 338 339 340 \section{\pycad Classes} 341 \declaremodule{extension}{esys.pycad} 342 \modulesynopsis{Python geometry description and meshing interface} 343 344 \subsection{Primitives} 345 346 Some of the most commonly-used objects in \pycad are listed here. For a more complete 347 list see the full API documentation. 348 349 \begin{classdesc}{Point}{x=0.,y=0.,z=0.\optional{,local_scale=1.}} 350 Create a point with from coordinates with local characteristic length \var{local_scale} 351 \end{classdesc} 352 353 \begin{classdesc}{Line}{point1, point2} 354 Create a line with between starting and ending points. 355 \end{classdesc} 356 \begin{methoddesc}[Line]{setElementDistribution}{n\optional{,progression=1\optional{,createBump=\False}}} 357 Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. The progression factor \var{progression} defines the change of element size between neighboured elements. If \var{createBump} is set 358 progression is applied towards the centre of the line. 359 \end{methoddesc} 360 \begin{methoddesc}[Line]{resetElementDistribution}{} 361 removes a previously set element distribution from the line. 362 \end{methoddesc} 363 \begin{methoddesc}[Line]{getElemenofDistribution}{} 364 Returns the element distribution as tuple of 365 number of elements, progression factor and bump flag. If 366 no element distribution is set None is returned. 367 \end{methoddesc} 368 369 370 \begin{classdesc}{Spline}{point0, point1, ...} 371 A spline curve defined by a list of points \var{point0}, \var{point1},.... 372 \end{classdesc} 373 \begin{methoddesc}[Spline]{setElementDistribution}{n\optional{,progression=1\optional{,createBump=\False}}} 374 Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. The progression factor \var{progression} defines the change of element size between neighboured elements. If \var{createBump} is set 375 progression is applied towards the centre of the line. 376 \end{methoddesc} 377 \begin{methoddesc}[Spline]{resetElementDistribution}{} 378 removes a previously set element distribution from the line. 379 \end{methoddesc} 380 \begin{methoddesc}[Spline]{getElemenofDistribution}{} 381 Returns the element distribution as tuple of 382 number of elements, progression factor and bump flag. If 383 no element distribution is set None is returned. 384 \end{methoddesc} 385 386 \begin{classdesc}{BSpline}{point0, point1, ...} 387 A B-spline curve defined by a list of points \var{point0}, \var{point1},.... 388 \end{classdesc} 389 \begin{methoddesc}[BSpline]{setElementDistribution}{n\optional{,progression=1\optional{,createBump=\False}}} 390 Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. The progression factor \var{progression} defines the change of element size between neighboured elements. If \var{createBump} is set 391 progression is applied towards the centre of the line. 392 \end{methoddesc} 393 \begin{methoddesc}[BSpline]{resetElementDistribution}{} 394 removes a previously set element distribution from the line. 395 \end{methoddesc} 396 \begin{methoddesc}[BSpline]{getElemenofDistribution}{} 397 Returns the element distribution as tuple of 398 number of elements, progression factor and bump flag. If 399 no element distribution is set None is returned. 400 \end{methoddesc} 401 402 \begin{classdesc}{BezierCurve}{point0, point1, ...} 403 A Brezier spline curve defined by a list of points \var{point0}, \var{point1},.... 404 \end{classdesc} 405 \begin{methoddesc}[BezierCurve]{setElementDistribution}{n\optional{,progression=1\optional{,createBump=\False}}} 406 Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. The progression factor \var{progression} defines the change of element size between neighboured elements. If \var{createBump} is set 407 progression is applied towards the centre of the line. 408 \end{methoddesc} 409 \begin{methoddesc}[BezierCurve]{resetElementDistribution}{} 410 removes a previously set element distribution from the line. 411 \end{methoddesc} 412 \begin{methoddesc}[BezierCurve]{getElemenofDistribution}{} 413 Returns the element distribution as tuple of 414 number of elements, progression factor and bump flag. If 415 no element distribution is set None is returned. 416 \end{methoddesc} 417 418 \begin{classdesc}{Arc}{centre_point, start_point, end_point} 419 Create an arc by specifying a centre for a circle and start and end points. An arc may subtend an angle of at most $\pi$ radians. 420 \end{classdesc} 421 \begin{methoddesc}[Arc]{setElementDistribution}{n\optional{,progression=1\optional{,createBump=\False}}} 422 Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. The progression factor \var{progression} defines the change of element size between neighboured elements. If \var{createBump} is set 423 progression is applied towards the centre of the line. 424 \end{methoddesc} 425 \begin{methoddesc}[Arc]{resetElementDistribution}{} 426 removes a previously set element distribution from the line. 427 \end{methoddesc} 428 \begin{methoddesc}[Arc]{getElemenofDistribution}{} 429 Returns the element distribution as tuple of 430 number of elements, progression factor and bump flag. If 431 no element distribution is set None is returned. 432 \end{methoddesc} 433 434 \begin{classdesc}{CurveLoop}{list} 435 Create a closed curve from the \code{list}. of 436 \class{Line}, \class{Arc}, \class{Spline}, \class{BSpline}, 437 \class{BrezierSpline}. 438 \end{classdesc} 439 440 \begin{classdesc}{PlaneSurface}{loop, \optional{holes=[list]}} 441 Create a plane surface from a \class{CurveLoop}, which may have one or more holes 442 described by \var{list} of \class{CurveLoop}. 443 \end{classdesc} 444 \begin{methoddesc}[PlaneSurface]{setRecombination}{max_deviation} 445 the mesh generator will try to recombine triangular elements 446 into quadrilateral elements. \var{max_deviation} (in radians) defines the 447 maximum deviation of any angle in the quadrilaterals from the right angle. 448 Set \var{max_deviation}=\var{None} to remove recombination. 449 \end{methoddesc} 450 \begin{methoddesc}[PlaneSurface]{setTransfiniteMeshing}{\optional{orientation="Left"}} 451 applies 2D transfinite meshing to the surface. 452 \var{orientation} defines the orientation of triangles. Allowed values 453 are \var{Left''}, \var{Right''} or \var{Alternate''}. The 454 boundary of the surface must be defined by three or four lines where an 455 element distribution must be defined on all faces where opposite 456 faces uses the same element distribution. No holes must be present. 457 \end{methoddesc} 458 459 460 461 \begin{classdesc}{RuledSurface}{list} 462 Create a surface that can be interpolated using transfinite interpolation. 463 \var{list} gives a list of three or four lines defining the boundary of the 464 surface. 465 \end{classdesc} 466 \begin{methoddesc}[RuledSurface]{setRecombination}{max_deviation} 467 the mesh generator will try to recombine triangular elements 468 into quadrilateral elements. \var{max_deviation} (in radians) defines the 469 maximum deviation of any angle in the quadrilaterals from the right angle. 470 Set \var{max_deviation}=\var{None} to remove recombination. 471 \end{methoddesc} 472 \begin{methoddesc}[RuledSurface]{setTransfiniteMeshing}{\optional{orientation="Left"}} 473 applies 2D transfinite meshing to the surface. 474 \var{orientation} defines the orientation of triangles. Allowed values 475 are \var{Left''}, \var{Right''} or \var{Alternate''}. The 476 boundary of the surface must be defined by three or four lines where an 477 element distribution must be defined on all faces where opposite 478 faces uses the same element distribution. No holes must be present. 479 \end{methoddesc} 480 481 482 \begin{classdesc}{SurfaceLoop}{list} 483 Create a loop of \class{PlaneSurface} or \class{RuledSurface}, which defines the shell of a volume. 484 \end{classdesc} 485 486 \begin{classdesc}{Volume}{loop, \optional{holes=[list]}} 487 Create a volume given a \class{SurfaceLoop}, which may have one or more holes 488 define by the list of \class{SurfaceLoop}. 489 \end{classdesc} 490 491 \begin{classdesc}{PropertySet}{list} 492 Create a PropertySet given a list of 1-D, 2-D or 3-D items. See the section on Properties below for more information. 493 \end{classdesc} 494 495 %============================================================================================================ 496 \subsection{Transformations} 497 498 Sometimes it's convenient to create an object and then make copies at 499 different orientations and in different sizes. Transformations are 500 used to move geometrical objects in the 3-dimensional space and to 501 resize them. 502 503 \begin{classdesc}{Translation}{\optional{b=[0,0,0]}} 504 defines a translation $x \to x+b$. \var{b} can be any object that can be converted 505 into a \numpy object of shape $(3,)$. 506 \end{classdesc} 507 508 \begin{classdesc}{Rotatation}{\optional{axis=[1,1,1], \optional{ point = [0,0,0], \optional{angle=0*RAD} } } } 509 defines a rotation by \var{angle} around axis through point \var{point} and direction \var{axis}. 510 \var{axis} and \var{point} can be any object that can be converted 511 into a \numpy object of shape $(3,)$. 512 \var{axis} does not have to be normalised but must have positive length. The right hand rule~\cite{RIGHTHANDRULE} 513 applies. 514 \end{classdesc} 515 516 517 \begin{classdesc}{Dilation}{\optional{factor=1., \optional{centre=[0,0,0]}}} 518 defines a dilation by the expansion/contraction \var{factor} with 519 \var{centre} as the dilation centre. 520 \var{centre} can be any object that can be converted 521 into a \numpy object of shape $(3,)$. 522 \end{classdesc} 523 524 \begin{classdesc}{Reflection}{\optional{normal=[1,1,1], \optional{offset=0}}} 525 defines a reflection on a plane defined in normal form $n^t x = d$ 526 where $n$ is the surface normal \var{normal} and $d$ is the plane \var{offset}. 527 \var{normal} can be any object that can be converted 528 into a \numpy object of shape $(3,)$. 529 \var{normal} does not have to be normalised but must have positive length. 530 \end{classdesc} 531 532 \begin{datadesc}{DEG} 533 A constant to convert from degrees to an internal angle representation in radians. For instance use \code{90*DEG} for $90$ degrees. 534 \end{datadesc} 535 536 \subsection{Properties} 537 538 If you are building a larger geometry you may find it convenient to 539 create it in smaller pieces and then assemble them into the whole. 540 Property sets make this easy, and they allow you to name the smaller 541 pieces for convenience. 542 543 Property sets are used to bundle a set of geometrical objects in a 544 group. The group is identified by a name. Typically a property set 545 is used to mark subregions with share the same material properties or 546 to mark portions of the boundary. For efficiency, the \Design class 547 object assigns a integer to each of its property sets, a so-called tag 548 \index{tag}. The appropriate tag is attached to the elements at 549 generation time. 550 551 See the file \code{pycad/examples/quad.py} for an example using a {\it PropertySet}. 552 553 554 \begin{classdesc}{PropertySet}{name,*items} 555 defines a group geometrical objects which can be accessed through a \var{name} 556 The objects in the tuple \var{items} mast all be \ManifoldOneD, \ManifoldTwoD or \ManifoldThreeD objects. 557 \end{classdesc} 558 559 560 \begin{methoddesc}[PropertySet]{getManifoldClass}{} 561 returns the manifold class \ManifoldOneD, \ManifoldTwoD or \ManifoldThreeD expected from the items 562 in the property set. 563 \end{methoddesc} 564 565 \begin{methoddesc}[PropertySet]{getDim}{} 566 returns the spatial dimension of the items 567 in the property set. 568 \end{methoddesc} 569 570 \begin{methoddesc}[PropertySet]{getName}{} 571 returns the name of the set 572 \end{methoddesc} 573 574 \begin{methoddesc}[PropertySet]{setName}{name} 575 sets the name. This name should be unique within a \Design. 576 \end{methoddesc} 577 578 \begin{methoddesc}[PropertySet]{addItem}{*items} 579 adds a tuple of items. They need to be objects of class \ManifoldOneD, \ManifoldTwoD or \ManifoldThreeD. 580 \end{methoddesc} 581 582 \begin{methoddesc}[PropertySet]{getItems}{} 583 returns the list of items 584 \end{methoddesc} 585 586 \begin{methoddesc}[PropertySet]{clearItems}{} 587 clears the list of items 588 \end{methoddesc} 589 590 \begin{methoddesc}[PropertySet]{getTag}{} 591 returns the tag used for this property set 592 \end{methoddesc} 593 594 \section{Interface to the mesh generation software} 595 \declaremodule{extension}{esys.pycad.gmsh} 596 \modulesynopsis{Python geometry description and meshing interface} 597 598 The class and methods described here provide an interface to the mesh 599 generation software, which is currently \gmshextern. This interface could be 600 adopted to triangle or another mesh generation package if this is 601 deemed to be desirable in the future. 602 603 \begin{classdesc}{Design}{ 604 \optional{dim=3, \optional{element_size=1., \optional{order=1, \optional{keep_files=False}}}}} 605 The \class{Design} describes the geometry defined by primitives to be meshed. 606 The \var{dim} specifies the spatial dimension. The argument \var{element_size} defines the global 607 element size which is multiplied by the local scale to set the element size at each \Point. 608 The argument \var{order} defines the element order to be used. If \var{keep_files} is set to 609 \True temporary files a kept otherwise they are removed when the instance of the class is deleted. 610 \end{classdesc} 611 612 613 \begin{memberdesc}[Design]{GMSH} 614 gmsh file format~\cite{GMSH}. 615 \end{memberdesc} 616 617 \begin{memberdesc}[Design]{IDEAS} 618 I-DEAS universal file format~\cite{IDEAS}. 619 \end{memberdesc} 620 621 \begin{memberdesc}[Design]{VRML} 622 VRML file format, \cite{VRML}. 623 \end{memberdesc} 624 625 \begin{memberdesc}[Design]{STL} 626 STL file format~\cite{STL}. 627 \end{memberdesc} 628 \begin{memberdesc}[Design]{NASTRAN} 629 NASTRAN bulk data format~\cite{NASTRAN}. 630 \end{memberdesc} 631 632 \begin{memberdesc}[Design]{MEDIT} 633 Medit file format~\cite{MEDIT}. 634 \end{memberdesc} 635 636 \begin{memberdesc}[Design]{CGNS} 637 CGNS file format~\cite{CGNS}. 638 \end{memberdesc} 639 640 \begin{memberdesc}[Design]{PLOT3D} 641 Plot3D file format~\cite{PLOT3D}. 642 \end{memberdesc} 643 644 645 \begin{memberdesc}[Design]{DIFFPACK} 646 Diffpack 3D file format~\cite{DIFFPACK}. 647 \end{memberdesc} 648 649 \begin{memberdesc}[Design]{DELAUNAY} 650 the gmsh Delauny triangulator. 651 \end{memberdesc} 652 653 \begin{memberdesc}[Design]{TETGEN} 654 the TetGen~\cite{TETGEN} triangulator. 655 \end{memberdesc} 656 657 \begin{memberdesc}[Design]{NETGEN} 658 the NETGEN~\cite{NETGEN} triangulator. 659 \end{memberdesc} 660 661 \begin{methoddesc}[Design]{generate}{} 662 generates the mesh file. The data are are written to the file \var{Design.getMeshFileName}. 663 \end{methoddesc} 664 665 666 \begin{methoddesc}[Design]{setDim}{\optional{dim=3}} 667 sets the spatial dimension which needs to be $1$, $2$ or $3$. 668 \end{methoddesc} 669 670 \begin{methoddesc}[Design]{getDim}{} 671 returns the spatial dimension. 672 \end{methoddesc} 673 674 \begin{methoddesc}[Design]{setElementOrder}{\optional{order=1}} 675 sets the element order which needs to be $1$ or $2$. 676 \end{methoddesc} 677 678 \begin{methoddesc}[Design]{getElementOrder}{} 679 returns the element order. 680 \end{methoddesc} 681 682 \begin{methoddesc}[Design]{setElementSize}{\optional{element_size=1}} 683 set the global element size. The local element size at a point is defined as 684 the global element size multiplied by the local scale. The element size must be positive. 685 \end{methoddesc} 686 687 688 \begin{methoddesc}[Design]{getElementSize}{} 689 returns the global element size. 690 \end{methoddesc} 691 692 693 694 \begin{methoddesc}[Design]{setKeepFilesOn}{} 695 work files are kept at the end of the generation. 696 \end{methoddesc} 697 698 \begin{methoddesc}[Design]{setKeepFilesOff}{} 699 work files are deleted at the end of the generation. 700 \end{methoddesc} 701 702 \begin{methoddesc}[Design]{keepFiles}{} 703 returns \True if work files are kept. Otherwise \False is returned. 704 \end{methoddesc} 705 706 \begin{methoddesc}[Design]{setScriptFileName}{\optional{name=None}} 707 set the file name for the gmsh input script. if no name is given a name with extension "geo" is generated. 708 \end{methoddesc} 709 710 \begin{methoddesc}[Design]{getScriptFileName}{} 711 returns the name of the file for the gmsh script. 712 \end{methoddesc} 713 714 715 \begin{methoddesc}[Design]{setMeshFileName}{\optional{name=None}} 716 sets the name for the mesh file. if no name is given a name is generated. 717 The format is set by \var{Design.setFileFormat}. 718 \end{methoddesc} 719 720 \begin{methoddesc}[Design]{getMeshFileName}{} 721 returns the name of the mesh file 722 \end{methoddesc} 723 724 725 \begin{methoddesc}[Design]{addItems}{*items} 726 adds the tuple of var{items}. An item can be any primitive or a \class{PropertySet}. 727 \warning{If a \PropertySet is added as an item added object that are not 728 part of a \PropertySet are not considered in the messing. 729 } 730 \end{methoddesc} 731 732 \begin{methoddesc}[Design]{getItems}{} 733 returns a list of the items 734 \end{methoddesc} 735 736 \begin{methoddesc}[Design]{clearItems}{} 737 resets the items in design 738 \end{methoddesc} 739 740 \begin{methoddesc}[Design]{getMeshHandler}{} 741 returns a handle to the mesh. The call of this method generates the mesh from the geometry and 742 returns a mechanism to access the mesh data. In the current implementation this 743 method returns a file name for a file containing the mesh data. 744 \end{methoddesc} 745 746 \begin{methoddesc}[Design]{getScriptString}{} 747 returns the gmsh script to generate the mesh as a string. 748 \end{methoddesc} 749 750 \begin{methoddesc}[Design]{getCommandString}{} 751 returns the gmsh command used to generate the mesh as string. 752 \end{methoddesc} 753 754 \begin{methoddesc}[Design]{setOptions}{\optional{algorithm=None, \optional{ optimize_quality=True,\optional{ smoothing=1}}}} 755 sets options for the mesh generator. \var{algorithm} sets the algorithm to be used. 756 The algorithm needs to be \var{Design.DELAUNAY} 757 \var{Design.TETGEN} 758 or \var{Design.NETGEN}. By default \var{Design.DELAUNAY} is used. \var{optimize_quality}=\True invokes an optimization of the mesh quality. \var{smoothing} sets the number of smoothing steps to be applied to the mesh. 759 \end{methoddesc} 760 761 \begin{methoddesc}[Design]{getTagMap}{} 762 returns a \class{TagMap} to map the name \class{PropertySet} in the class to tag numbers generated by gmsh. 763 \end{methoddesc} 764 765 \begin{methoddesc}[Design]{setFileFormat}{\optional{format=\var{Design.GMSH}}} 766 set the file format. \var{format} must be one of the values 767 \var{Design.GMSH}, 768 \var{Design.IDEAS}, 769 \var{Design.VRML}, 770 \var{Design.STL}, 771 \var{Design.NASTRAN}, 772 \var{Design.MEDIT}, 773 \var{Design.CGNS}, 774 \var{Design.PLOT3D} or 775 \var{Design.DIFFPACK}. 776 \end{methoddesc} 777 778 \begin{methoddesc}[Design]{sgetFileFormat}{} 779 returns the file format. 780 \end{methoddesc}