1 |
\chapter{The module \pycad} |
\chapter{The Module \pycad} \label{PYCAD CHAP} |
|
\label{PYCAD CHAP} |
|
|
|
|
2 |
|
|
3 |
|
|
4 |
\section{Introduction} |
\section{Introduction} |
5 |
|
|
6 |
|
\pycad provides a simple way to build a mesh for your finite element |
7 |
|
simulation. You begin by building what we call a {\it Design} using |
8 |
|
primitive geometric objects, and then to go on to build a mesh from |
9 |
|
the {\it Design}. The final step of generating the mesh from a {\it |
10 |
|
Design} uses freely available mesh generation software, such as \gmshextern. |
11 |
|
|
12 |
|
A {\it Design} is built by defining points, which are used to specify |
13 |
|
the corners of geometric objects and the vertices of curves. Using |
14 |
|
points you construct more interesting objects such as lines, |
15 |
|
rectangles, and arcs. By adding many of these objects into what we |
16 |
|
call a {\it Design}, you can build meshes for arbitrarily complex 2-D |
17 |
|
and 3-D structures. |
18 |
|
|
19 |
|
The example included below shows how to use {\it pycad} to create a 2-D mesh |
20 |
|
in the shape of a trapezoid with a cutout area. |
21 |
|
|
22 |
|
\begin{python} |
23 |
|
from esys.pycad import * |
24 |
|
from esys.pycad.gmsh import Design |
25 |
|
from esys.finley import MakeDomain |
26 |
|
|
27 |
|
# A trapezoid |
28 |
|
p0=Point(0.0, 0.0, 0.0) |
29 |
|
p1=Point(1.0, 0.0, 0.0) |
30 |
|
p2=Point(1.0, 0.5, 0.0) |
31 |
|
p3=Point(0.0, 1.0, 0.0) |
32 |
|
l01=Line(p0, p1) |
33 |
|
l12=Line(p1, p2) |
34 |
|
l23=Line(p2, p3) |
35 |
|
l30=Line(p3, p0) |
36 |
|
c=CurveLoop(l01, l12, l23, l30) |
37 |
|
|
38 |
|
# A small triangular cutout |
39 |
|
x0=Point(0.1, 0.1, 0.0) |
40 |
|
x1=Point(0.5, 0.1, 0.0) |
41 |
|
x2=Point(0.5, 0.2, 0.0) |
42 |
|
x01=Line(x0, x1) |
43 |
|
x12=Line(x1, x2) |
44 |
|
x20=Line(x2, x0) |
45 |
|
cutout=CurveLoop(x01, x12, x20) |
46 |
|
|
47 |
|
# Create the surface with cutout |
48 |
|
s=PlaneSurface(c, holes=[cutout]) |
49 |
|
|
50 |
|
# Create a Design which can make the mesh |
51 |
|
d=Design(dim=2, element_size=0.05) |
52 |
|
|
53 |
|
# Add the trapezoid with cutout |
54 |
|
d.addItems(s) |
55 |
|
|
56 |
|
# Create the geometry, mesh and Escript domain |
57 |
|
d.setScriptFileName("trapezoid.geo") |
58 |
|
d.setMeshFileName("trapezoid.msh") |
59 |
|
domain=MakeDomain(d, integrationOrder=-1, reducedIntegrationOrder=-1, optimizeLabeling=True) |
60 |
|
|
61 |
|
# Create a file that can be read back in to python with mesh=ReadMesh(fileName) |
62 |
|
domain.write("trapezoid.fly") |
63 |
|
\end{python} |
64 |
|
|
65 |
|
This example is included with the software in |
66 |
|
\code{pycad/examples/trapezoid.py}. If you have gmsh installed you can |
67 |
|
run the example and view the geometry and mesh with: |
68 |
|
|
69 |
|
\begin{python} |
70 |
|
python trapezoid.py |
71 |
|
gmsh trapezoid.geo |
72 |
|
gmsh trapezoid.msh |
73 |
|
\end{python} |
74 |
|
|
75 |
|
A \code{CurveLoop} is used to connect several lines into a single curve. |
76 |
|
It is used in the example above to create the trapezoidal outline for the grid |
77 |
|
and also for the triangular cutout area. |
78 |
|
You can use any number of lines when creating a \code{CurveLoop}, but |
79 |
|
the end of one line must be identical to the start of the next. |
80 |
|
|
81 |
|
Sometimes you might see us write \code{-c} where \code{c} is a |
82 |
|
\code{CurveLoop}. This is the reverse curve of the curve \code{c}. |
83 |
|
It is identical to the original except that its points are traversed |
84 |
|
in the opposite order. This may make it easier to connect two curves |
85 |
|
in a \code{CurveLoop}. |
86 |
|
|
87 |
|
The example python script above calls both |
88 |
|
\code{d.setScriptFileName()} and \code{d.setMeshFileName()}. You need |
89 |
|
only call these if you wish to save the gmsh geometry and mesh files. |
90 |
|
|
91 |
|
Note that the underlying mesh generation software will not accept all |
92 |
|
the geometries you can create with {\it pycad}. For example, {\it |
93 |
|
pycad} will happily allow you to create a 2-D {\it Design} that is a |
94 |
|
closed loop with some additional points or lines lying outside of the |
95 |
|
enclosed area, but gmsh will fail to create a mesh for it. |
96 |
|
|
97 |
|
|
98 |
|
|
99 |
|
|
100 |
|
|
101 |
|
|
102 |
\section{\pycad Classes} |
\section{\pycad Classes} |
103 |
\declaremodule{extension}{esys.pycad} |
\declaremodule{extension}{esys.pycad} |
105 |
|
|
106 |
\subsection{Primitives} |
\subsection{Primitives} |
107 |
|
|
108 |
\begin{classdesc}{Point}{} |
Some of the most commonly-used objects in {\it pycad} are listed here. For a more complete |
109 |
|
list see the full API documentation. |
110 |
|
|
111 |
|
\begin{classdesc}{Point}{x1, x2, x3} |
112 |
|
Create a point with from coordinates. |
113 |
\end{classdesc} |
\end{classdesc} |
114 |
|
|
115 |
\begin{classdesc}{Manifold1D}{} |
\begin{classdesc}{Line}{point1, point2} |
116 |
|
Create a line with between starting and ending points. |
117 |
|
\end{classdesc} |
118 |
|
|
119 |
|
\begin{classdesc}{Curve}{point1, point2, ...} |
120 |
|
Create a \code{Curve}, which is simply a list of points. |
121 |
\end{classdesc} |
\end{classdesc} |
122 |
|
|
123 |
\begin{classdesc}{Manifold2D}{} |
\begin{classdesc}{Spline}{curve} |
124 |
|
Interpret a \code{Curve} using a spline. |
125 |
|
\end{classdesc} |
126 |
|
|
127 |
|
\begin{classdesc}{BSpline}{curve} |
128 |
|
Interpret a \code{Curve} using a b-spline. |
129 |
\end{classdesc} |
\end{classdesc} |
130 |
|
|
131 |
\begin{classdesc}{Manifold3D}{} |
\begin{classdesc}{BezierCurve}{curve} |
132 |
|
Interpret a \code{Curve} using a Bezier curve. |
133 |
|
\end{classdesc} |
134 |
|
|
135 |
|
\begin{classdesc}{CurveLoop}{list} |
136 |
|
Create a closed \code{Curve} connecting the lines and/or points given in the \code{list}. |
137 |
\end{classdesc} |
\end{classdesc} |
138 |
|
|
139 |
%============================================================================================================ |
\begin{classdesc}{Arc}{center_point, start_point, end_point} |
140 |
\subsection{Transformations} |
Create an arc by specifying a center for a circle and start and end points. An arc may subtend an angle of at most $\pi$ radians. |
141 |
|
\end{classdesc} |
142 |
|
|
143 |
Transformations are used to move geometrical objects in the 3-dimensional space: |
\begin{classdesc}{PlaneSurface}{loop, \optional{holes=[list]}} |
144 |
|
Create a surface for a 2-D mesh, which may have one or more holes. |
145 |
|
\end{classdesc} |
146 |
|
|
147 |
\begin{datadesc}{DEG} |
\begin{classdesc}{RuledSurface}{list} |
148 |
The unit of degree. For instance use \code{90*DEG} for $90$ degrees. |
Create a surface that can be interpolated using transfinite interpolation. |
149 |
\end{datadesc} |
\end{classdesc} |
150 |
|
|
151 |
\begin{datadesc}{RAD} |
\begin{classdesc}{SurfaceLoop}{list} |
152 |
The unit of radiant. For instance use \code{math.pi*RAD} for $180$ degrees. |
Create a loop of 2D primitives, which defines the shell of a volume. |
153 |
\end{datadesc} |
\end{classdesc} |
154 |
|
|
155 |
|
\begin{classdesc}{Volume}{loop, \optional{holes=[list]}} |
156 |
|
Create a volume for a 3-D mesh given a SurfaceLoop, which may have one or more holes. |
157 |
|
\end{classdesc} |
158 |
|
|
159 |
|
\begin{classdesc}{PropertySet}{list} |
160 |
|
Create a PropertySet given a list of 1-D, 2-D or 3-D items. See the section on Properties below for more information. |
161 |
|
\end{classdesc} |
162 |
|
|
163 |
|
%============================================================================================================ |
164 |
|
\subsection{Transformations} |
165 |
|
|
166 |
|
Sometimes it's convenient to create an object and then make copies at |
167 |
|
different orientations and in different sizes. Transformations are |
168 |
|
used to move geometrical objects in the 3-dimensional space and to |
169 |
|
resize them. |
170 |
|
|
171 |
\begin{classdesc}{Translation}{\optional{b=[0,0,0]}} |
\begin{classdesc}{Translation}{\optional{b=[0,0,0]}} |
172 |
defines a translation $x \to x+b$. \var{b} can be any object that can be converted |
defines a translation $x \to x+b$. \var{b} can be any object that can be converted |
197 |
\var{normal} does not have to be normalized but must have positive length. |
\var{normal} does not have to be normalized but must have positive length. |
198 |
\end{classdesc} |
\end{classdesc} |
199 |
|
|
200 |
|
\begin{datadesc}{DEG} |
201 |
|
A constant to convert from degrees to an internal angle representation in radians. For instance use \code{90*DEG} for $90$ degrees. |
202 |
|
\end{datadesc} |
203 |
|
|
204 |
\subsection{Properties} |
\subsection{Properties} |
205 |
|
|
206 |
Property sets are used to bundle a set of geometrical objects in a group. The group |
If you are building a larger geometry you may find it convenient to |
207 |
is identified by a name. Typically a property set is used to mark |
create it in smaller pieces and then assemble them into the whole. |
208 |
subregions with share the same material properties or to mark portions of the boundary. |
Property sets make this easy, and they allow you to name the smaller |
209 |
For efficiency, the \Design class object assigns a integer to each of its property sets, |
pieces for convenience. |
210 |
a so-called tag \index{tag}. The appropriate tag is attached to the elements at generation time. |
|
211 |
The \TagMap generated by the \Design allows mapping the a name onto the corresponding tag. |
Property sets are used to bundle a set of geometrical objects in a |
212 |
In order to avoid ambiguity it is recommended to have unique names of property sets within a \Design. |
group. The group is identified by a name. Typically a property set |
213 |
|
is used to mark subregions with share the same material properties or |
214 |
|
to mark portions of the boundary. For efficiency, the \Design class |
215 |
|
object assigns a integer to each of its property sets, a so-called tag |
216 |
|
\index{tag}. The appropriate tag is attached to the elements at |
217 |
|
generation time. |
218 |
|
|
219 |
|
See the file \code{pycad/examples/quad.py} for an example using a {\it PropertySet}. |
220 |
|
|
221 |
|
|
222 |
\begin{classdesc}{PropertySet}{name,*items} |
\begin{classdesc}{PropertySet}{name,*items} |
223 |
defines a group geometrical objects which can be accessed through a \var{name} |
defines a group geometrical objects which can be accessed through a \var{name} |
259 |
returns the tag used for this property set |
returns the tag used for this property set |
260 |
\end{methoddesc} |
\end{methoddesc} |
261 |
|
|
262 |
\subsection{Accessing \PropertySet Names} |
\section{Interface to the mesh generation software} |
|
During mesh generation the \PropertySet objects are not identified by their name but an integer tag (mainly to provide |
|
|
a quicker indexing mechanism). The \TagMap which is generated by a \Design class object at mesh generation time |
|
|
provides an mechanism to map the property set names onto tags and vice versa. |
|
|
The following example illustrates the mechanis: In this case, the \TagMap \var{tm} |
|
|
maps the names \var{x}, \var{a} onto the tags \var{5} and \var{4} and the tag \var{4}, respectively: |
|
|
\begin{python} |
|
|
tm=TagMap({5 : "x" }) |
|
|
tm.setMap(a=1,x=4) |
|
|
print tm.getTags("a"), tm.getTags("x") |
|
|
\end{python} |
|
|
Th output is |
|
|
\begin{python} |
|
|
[ 1 ], [ 5, 4 ] |
|
|
\end{python} |
|
|
|
|
|
\begin{python} |
|
|
d=Design() |
|
|
d.add(PropertySet(name="a")) |
|
|
print d.getTagMap().getTags("a") |
|
|
\end{python} |
|
|
|
|
|
\begin{python} |
|
|
d=Design() |
|
|
d.add(PropertySet(name="a")) |
|
|
domain=esys.finley. |
|
|
print d.getTagMap().getTags("a") |
|
|
\end{python} |
|
|
|
|
|
\begin{classdesc}{TagMap}{\optional{map = \{\} }} |
|
|
defines a mapping between names (str) and tags (int). |
|
|
The dictionary \var{map} sets an initial mapping from tag to name. |
|
|
\end{classdesc} |
|
|
|
|
|
\begin{methoddesc}[TagMap]{setMap}{**kwargs} |
|
|
adds a map from names to tags using keyword arguments. For instance |
|
|
\var{top=1234} assigns the tag \var{123} to name \var{top}. The tag has to be integer. |
|
|
If a tag has been assigned to a name before the mapping will be overwritten. |
|
|
Notice that a single name can be assigned to different tags. |
|
|
\end{methoddesc} |
|
|
|
|
|
\begin{methoddesc}[TagMap]{getTags}{\optional{name=None}} |
|
|
returns a list of the tags assigned to \var{name}. If \var{name} is not present |
|
|
a list of tags is returned. |
|
|
\end{methoddesc} |
|
|
|
|
|
\begin{methoddesc}[TagMap]{getName}{\optional{tag=None}} |
|
|
returns a the name assigned to \var{name}. If \var{tag} is not present |
|
|
a list of all names is returned. |
|
|
\end{methoddesc} |
|
|
|
|
|
|
|
|
\begin{methoddesc}[TagMap]{getMapping}{} |
|
|
returns a dictionary where the tags define the keys and the values the corresponding names. |
|
|
\end{methoddesc} |
|
|
|
|
|
\begin{methoddesc}[TagMap]{map}{\optional{default=0}, \optional{**kwargs}} |
|
|
returns a dictionary where the keys are the tags and the values are the corresponding values assigned |
|
|
to the tag via the keyword arguments \var{**kwargs}. The value of \var{default} is used for tags |
|
|
which map onto name with unspecified values. |
|
|
|
|
|
The following example demonstrate the usage: |
|
|
\begin{python} |
|
|
tm=TagMap(x=5) |
|
|
tm.setMap(a=1,x=4,z=10) |
|
|
print tm.map(default = "unknown", x="john", a="peter") |
|
|
\end{python} |
|
|
The output is |
|
|
\begin{python} |
|
|
{ 5 : "john", 4: "john", 1 : "peter", 10 : "unknown" } |
|
|
\end{python} |
|
|
\end{methoddesc} |
|
|
|
|
|
\begin{methoddesc}[TagMap]{insert}{data,\optional{default=0, \optional{**kwargs}}} |
|
|
inserts the values assigned to name via the keyword arguments \var{**kwargs} |
|
|
into the \Data object \var{Data}. The value \var{default} is used for names with no given value. |
|
|
\end{methoddesc} |
|
|
|
|
|
\begin{methoddesc}[TagMap]{writeXML}{\optional{iostream=None}} |
|
|
writes an XML serialization into the \var{iostream} or if not present returns the XML representation |
|
|
as a string. |
|
|
\end{methoddesc} |
|
|
|
|
|
\begin{methoddesc}[TagMap]{fillFromXML}{iostream} |
|
|
uses XML data \var{iostream} defining an iostream or string. This method is the |
|
|
inverse method of \var{writeXML}. |
|
|
|
|
|
The following example demonstrates the usage: |
|
|
\begin{python} |
|
|
tm=TagMap(x=5) |
|
|
tm.setMap(a=1,x=4,z=10) |
|
|
tm.writeXML(open("tag_map.xml", "w")) |
|
|
tm2=TagMap() |
|
|
tm2.fillFromXML(open("tag_map.xml", "r")) |
|
|
\end{python} |
|
|
\end{methoddesc} |
|
|
|
|
|
|
|
|
|
|
|
\section{Interface to \gmshextern} |
|
263 |
\declaremodule{extension}{esys.pycad.gmsh} |
\declaremodule{extension}{esys.pycad.gmsh} |
264 |
\modulesynopsis{Python geometry description and meshing interface} |
\modulesynopsis{Python geometry description and meshing interface} |
265 |
|
|
266 |
|
The class and methods described here provide an interface to the mesh |
267 |
|
generation software, which is currently gmsh. This interface could be |
268 |
|
adopted to triangle or another mesh generation package if this is |
269 |
|
deemed to be desireable in the future. |
270 |
|
|
271 |
\begin{classdesc}{Design}{ |
\begin{classdesc}{Design}{ |
272 |
\optional{dim=3, \optional{element_size=1., \optional{order=1, \optional{keep_files=False}}}}} |
\optional{dim=3, \optional{element_size=1., \optional{order=1, \optional{keep_files=False}}}}} |
273 |
The \class{Design} describes the geometry defined by primitives to be meshed. |
The \class{Design} describes the geometry defined by primitives to be meshed. |
306 |
\end{methoddesc} |
\end{methoddesc} |
307 |
|
|
308 |
\begin{memberdesc}[Design]{DELAUNAY} |
\begin{memberdesc}[Design]{DELAUNAY} |
309 |
the \gmshextern Delauny triangulator. |
the gmsh Delauny triangulator. |
310 |
\end{memberdesc} |
\end{memberdesc} |
311 |
|
|
312 |
\begin{memberdesc}[Design]{TETGEN} |
\begin{memberdesc}[Design]{TETGEN} |
330 |
\end{methoddesc} |
\end{methoddesc} |
331 |
|
|
332 |
\begin{methoddesc}[Design]{setScriptFileName}{\optional{name=None}} |
\begin{methoddesc}[Design]{setScriptFileName}{\optional{name=None}} |
333 |
set the filename for the \gmshextern input script. if no name is given a name with extension "geo" is generated. |
set the filename for the gmsh input script. if no name is given a name with extension "geo" is generated. |
334 |
\end{methoddesc} |
\end{methoddesc} |
335 |
|
|
336 |
\begin{methoddesc}[Design]{getScriptFileName}{} |
\begin{methoddesc}[Design]{getScriptFileName}{} |
337 |
returns the name of the file for the \gmshextern script. |
returns the name of the file for the gmsh script. |
338 |
\end{methoddesc} |
\end{methoddesc} |
339 |
|
|
340 |
|
|
341 |
\begin{methoddesc}[Design]{setMeshFileName}{\optional{name=None}} |
\begin{methoddesc}[Design]{setMeshFileName}{\optional{name=None}} |
342 |
sets the name for the \gmshextern mesh file. if no name is given a name with extension "msh" is generated. |
sets the name for the gmsh mesh file. if no name is given a name with extension "msh" is generated. |
343 |
\end{methoddesc} |
\end{methoddesc} |
344 |
|
|
345 |
\begin{methoddesc}[Design]{getMeshFileName}{} |
\begin{methoddesc}[Design]{getMeshFileName}{} |
366 |
\begin{methoddesc}[Design]{getMeshHandler}{} |
\begin{methoddesc}[Design]{getMeshHandler}{} |
367 |
returns a handle to the mesh. The call of this method generates the mesh from the geometry and |
returns a handle to the mesh. The call of this method generates the mesh from the geometry and |
368 |
returns a mechnism to access the mesh data. In the current implementation this |
returns a mechnism to access the mesh data. In the current implementation this |
369 |
is this method returns a file name for a \gmshextern file containing the mesh data but this may change in |
method returns a file name for a gmsh file containing the mesh data. |
|
later versions. |
|
370 |
\end{methoddesc} |
\end{methoddesc} |
371 |
|
|
372 |
\begin{methoddesc}[Design]{getScriptString}{} |
\begin{methoddesc}[Design]{getScriptString}{} |
373 |
returns the \gmshextern script to generate the mesh as string. |
returns the gmsh script to generate the mesh as a string. |
374 |
\end{methoddesc} |
\end{methoddesc} |
375 |
|
|
376 |
\begin{methoddesc}[Design]{getCommandString}{} |
\begin{methoddesc}[Design]{getCommandString}{} |
377 |
returns the \gmshextern command used to generate the mesh as string.. |
returns the gmsh command used to generate the mesh as string. |
378 |
\end{methoddesc} |
\end{methoddesc} |
379 |
|
|
380 |
\begin{methoddesc}[Design]{setOptions}{\optional{algorithm=None, \optional{ optimize_quality=True,\optional{ smoothing=1}}}} |
\begin{methoddesc}[Design]{setOptions}{\optional{algorithm=None, \optional{ optimize_quality=True,\optional{ smoothing=1}}}} |
385 |
\end{methoddesc} |
\end{methoddesc} |
386 |
|
|
387 |
\begin{methoddesc}[Design]{getTagMap}{} |
\begin{methoddesc}[Design]{getTagMap}{} |
388 |
returns a \class{TagMap} to map the name \class{PropertySet} in the class to tag numbers generated by \gmshextern. |
returns a \class{TagMap} to map the name \class{PropertySet} in the class to tag numbers generated by gmsh. |
389 |
\end{methoddesc} |
\end{methoddesc} |