1 |
|
2 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
3 |
% |
4 |
% Copyright (c) 2003-2009 by University of Queensland |
5 |
% Earth Systems Science Computational Center (ESSCC) |
6 |
% http://www.uq.edu.au/esscc |
7 |
% |
8 |
% Primary Business: Queensland, Australia |
9 |
% Licensed under the Open Software License version 3.0 |
10 |
% http://www.opensource.org/licenses/osl-3.0.php |
11 |
% |
12 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
13 |
|
14 |
|
15 |
|
16 |
\chapter{The Module \pycad} \label{PYCAD CHAP} |
17 |
|
18 |
|
19 |
\section{Introduction} |
20 |
|
21 |
\pycad provides a simple way to build a mesh for your finite element |
22 |
simulation. You begin by building what we call a \class{Design} using |
23 |
primitive geometric objects, and then to go on to build a mesh from |
24 |
this. The final step of generating the mesh from a \class{Design} |
25 |
uses freely available mesh generation software, such as \gmshextern. |
26 |
|
27 |
A \class{Design} is built by defining points, which are used to specify |
28 |
the corners of geometric objects and the vertices of curves. Using |
29 |
points you construct more interesting objects such as lines, |
30 |
rectangles, and arcs. By adding many of these objects into what we |
31 |
call a \class{Design}, you can build meshes for arbitrarily complex 2-D |
32 |
and 3-D structures. |
33 |
|
34 |
\section{The Unit Square} |
35 |
So the simplest geometry is the unit square. First we generate the |
36 |
corner points |
37 |
\begin{python} |
38 |
from esys.pycad import * |
39 |
p0=Point(0.,0.,0.) |
40 |
p1=Point(1.,0.,0.) |
41 |
p2=Point(1.,1.,0.) |
42 |
p3=Point(0.,1.,0.) |
43 |
\end{python} |
44 |
which are then linked to define the edges of the square |
45 |
\begin{python} |
46 |
l01=Line(p0,p1) |
47 |
l12=Line(p1,p2) |
48 |
l23=Line(p2,p3) |
49 |
l30=Line(p3,p0) |
50 |
\end{python} |
51 |
The lines are put together to form a loop |
52 |
\begin{python} |
53 |
c=CurveLoop(l01,l12,l23,l30) |
54 |
\end{python} |
55 |
The orientation of the line defining the \class{CurveLoop} is important. It is assumed that the surrounded |
56 |
area is to the left when moving along the lines from their starting points towards the end points. Moreover, |
57 |
the line need to form a closed loop. |
58 |
|
59 |
We use the \class{CurveLoop} to define a surface |
60 |
\begin{python} |
61 |
s=PlaneSurface(c) |
62 |
\end{python} |
63 |
Notice there is difference between the \class{CurveLoop} defining the boundary |
64 |
of the surface and the actually surface \class{PlaneSurface}. This difference becomes clearer in the next example with a hole. The direction of the lines is important. |
65 |
New we are ready to define the geometry which described by an instance of \class{Design} class: |
66 |
\begin{python} |
67 |
d=Design(dim=2,element_size=0.05) |
68 |
\end{python} |
69 |
Here we use the two dimensional domain with a local element size in the finite element mesh of $0.05$. |
70 |
We then add the surface \code{s} to the geometry |
71 |
\begin{python} |
72 |
d.addItems(s) |
73 |
\end{python} |
74 |
This will automatically import all items used to construct \code{s} into the \class{Design} \code{d}. |
75 |
Now we are ready to construct a \finley FEM mesh and then write it to the file \file{quad.fly}: |
76 |
\begin{python} |
77 |
from esys.finley import MakeDomain |
78 |
dom=MakeDomain(d) |
79 |
dom.write("quad.fly") |
80 |
\end{python} |
81 |
In some cases it is useful to access the script used to generate the geometry. You can specify a specific name |
82 |
for the script file. In our case we use |
83 |
\begin{python} |
84 |
d.setScriptFileName("quad.geo") |
85 |
\end{python} |
86 |
It is also useful to check error messages generated during the mesh generation process. \gmshextern writes |
87 |
messages to the \file{.gmsh-errors} in your home directory. |
88 |
|
89 |
If we put everything together we get the script |
90 |
\begin{python} |
91 |
from esys.pycad import * |
92 |
from esys.pycad.gmsh import Design |
93 |
from esys.finley import MakeDomain |
94 |
p0=Point(0.,0.,0.) |
95 |
p1=Point(1.,0.,0.) |
96 |
p2=Point(1.,1.,0.) |
97 |
p3=Point(0.,1.,0.) |
98 |
l01=Line(p0,p1) |
99 |
l12=Line(p1,p2) |
100 |
l23=Line(p2,p3) |
101 |
l30=Line(p3,p0) |
102 |
c=CurveLoop(l01,l12,l23,l30) |
103 |
s=PlaneSurface(c) |
104 |
d=Design(dim=2,element_size=0.05) |
105 |
d.setScriptFileName("quad.geo") |
106 |
d.addItems(s) |
107 |
pl1=PropertySet("sides",l01,l23) |
108 |
pl2=PropertySet("top_and_bottom",l12,l30) |
109 |
d.addItems(pl1, pl2) |
110 |
dom=MakeDomain(d) |
111 |
dom.write("quad.fly") |
112 |
\end{python} |
113 |
This example is included with the software in |
114 |
\file{quad.py} in the \ExampleDirectory. |
115 |
|
116 |
There are three extra statements which we have not discussed yet: By default the mesh used to subdivide |
117 |
the boundary are not written into the mesh file mainly to reduce the size of the data file. One need to explicitly add the lines to the \Design which should be present in the mesh data. Here we additionally labeled the |
118 |
lines on the top and the bottom with the name ``top_and_bottom`` and the lines on the left and right hand side |
119 |
with the name ``sides`` using \class{PropertySet} objects. The labeling is convenient |
120 |
when using tagging \index{tagging}, see Chapter~\ref{ESCRIPT CHAP}. |
121 |
|
122 |
\begin{figure} |
123 |
\centerline{\includegraphics[width=\figwidth]{figures/quad}} |
124 |
\caption{Trapozid with triangle Hole.} |
125 |
\label{fig:PYCAD 0} |
126 |
\end{figure} |
127 |
|
128 |
If you have \gmshextern installed you can run the example and view the geometry and mesh with: |
129 |
\begin{python} |
130 |
escript quad.py |
131 |
gmsh quad.geo |
132 |
gmsh quad.msh |
133 |
\end{python} |
134 |
You can access error messages from \gmshextern in the \file{.gmsh-errors} in your home directory. |
135 |
See Figure~\ref{fig:PYCAD 0} for a result. |
136 |
|
137 |
In most cases it is best practice to generate the mesh and to solve the mathematical |
138 |
model in to different scripts. In our example you can read the \finley mesh into your simulation |
139 |
code\footnote{\gmshextern files can be directly read using the \function{ReadGmsh}, see Chapter~\ref{CHAPTER ON FINLEY}} using |
140 |
\begin{python} |
141 |
from finley import ReadMesh |
142 |
mesh=ReadMesh("quad.fly") |
143 |
\end{python} |
144 |
Note that the underlying mesh generation software will not accept all |
145 |
the geometries you can create with \pycad. For example, \pycad |
146 |
will happily allow you to create a 2-D \class{Design} that is a |
147 |
closed loop with some additional points or lines lying outside of the |
148 |
enclosed area, but \gmshextern will fail to create a mesh for it. |
149 |
|
150 |
\begin{figure} |
151 |
\centerline{\includegraphics[width=\figwidth]{figures/trap}} |
152 |
\caption{Trapozid with triangle Hole.} |
153 |
\label{fig:PYCAD 1} |
154 |
\end{figure} |
155 |
|
156 |
|
157 |
\section{Holes} |
158 |
The example included below shows how to use \pycad to create a 2-D mesh |
159 |
in the shape of a trapezoid with a cut-out area, see Figure~\ref{fig:PYCAD 1}: |
160 |
\begin{python} |
161 |
from esys.pycad import * |
162 |
from esys.pycad.gmsh import Design |
163 |
from esys.finley import MakeDomain |
164 |
|
165 |
# A trapezoid |
166 |
p0=Point(0.0, 0.0, 0.0) |
167 |
p1=Point(1.0, 0.0, 0.0) |
168 |
p2=Point(1.0, 0.5, 0.0) |
169 |
p3=Point(0.0, 1.0, 0.0) |
170 |
l01=Line(p0, p1) |
171 |
l12=Line(p1, p2) |
172 |
l23=Line(p2, p3) |
173 |
l30=Line(p3, p0) |
174 |
c=CurveLoop(l01, l12, l23, l30) |
175 |
|
176 |
# A small triangular cutout |
177 |
x0=Point(0.1, 0.1, 0.0) |
178 |
x1=Point(0.5, 0.1, 0.0) |
179 |
x2=Point(0.5, 0.2, 0.0) |
180 |
x01=Line(x0, x1) |
181 |
x12=Line(x1, x2) |
182 |
x20=Line(x2, x0) |
183 |
cutout=CurveLoop(x01, x12, x20) |
184 |
|
185 |
# Create the surface with cutout |
186 |
s=PlaneSurface(c, holes=[cutout]) |
187 |
|
188 |
# Create a Design which can make the mesh |
189 |
d=Design(dim=2, element_size=0.05) |
190 |
|
191 |
# Add the trapezoid with cutout |
192 |
d.addItems(s) |
193 |
|
194 |
# Create the geometry, mesh and Escript domain |
195 |
d.setScriptFileName("trapezoid.geo") |
196 |
d.setMeshFileName("trapezoid.msh") |
197 |
domain=MakeDomain(d) |
198 |
# write mesh to a finley file: |
199 |
domain.write("trapezoid.fly") |
200 |
\end{python} |
201 |
This example is included with the software in |
202 |
\file{trapezoid.py} in the \ExampleDirectory. |
203 |
|
204 |
A \code{CurveLoop} is used to connect several lines into a single curve. |
205 |
It is used in the example above to create the trapezoidal outline for the grid |
206 |
and also for the triangular cutout area. |
207 |
You can use any number of lines when creating a \class{CurveLoop}, but |
208 |
the end of one line must be identical to the start of the next. |
209 |
|
210 |
|
211 |
\begin{figure} |
212 |
\centerline{\includegraphics[width=\figwidth]{figures/brick}} |
213 |
\caption{Three dimensional Block.} |
214 |
\label{fig:PYCAD 2} |
215 |
\end{figure} |
216 |
|
217 |
\section{A 3D example} |
218 |
In this section we discuss the definition of 3D geometries. The example is the unit cube, see Figure~\ref{fig:PYCAD 2}. First we generate the vertices of the cube: |
219 |
\begin{python} |
220 |
from esys.pycad import * |
221 |
p0=Point(0.,0.,0.) |
222 |
p1=Point(1.,0.,0.) |
223 |
p2=Point(0.,1.,0.) |
224 |
p3=Point(1.,1.,0.) |
225 |
p4=Point(0.,0.,1.) |
226 |
p5=Point(1.,0.,1.) |
227 |
p6=Point(0.,1.,1.) |
228 |
p7=Point(1.,1.,1.) |
229 |
\end{python} |
230 |
We connect the points to form the bottom and top surfaces of the cube: |
231 |
\begin{python} |
232 |
l01=Line(p0,p1) |
233 |
l13=Line(p1,p3) |
234 |
l32=Line(p3,p2) |
235 |
l20=Line(p2,p0) |
236 |
bottom=PlaneSurface(CurveLoop(l01,l13,l32,l20)) |
237 |
\end{python} |
238 |
and |
239 |
\begin{python} |
240 |
l45=Line(p4,p5) |
241 |
l57=Line(p5,p7) |
242 |
l76=Line(p7,p6) |
243 |
l64=Line(p6,p4) |
244 |
top=PlaneSurface(CurveLoop(l45,l57,l76,l64)) |
245 |
\end{python} |
246 |
To form the front face we introduce the two additional lines connecting the left and right front |
247 |
points of the the \code{top} and \code{bottom} face: |
248 |
\begin{python} |
249 |
l15=Line(p1,p5) |
250 |
l40=Line(p4,p0) |
251 |
\end{python} |
252 |
To form the front face we encounter the problem as the line \code{l45} used to define the |
253 |
\code{top} face is pointing the wrong direction. In \pycad you can reversing direction of an |
254 |
object by changing its sign. So we write \code{-l45} to indicate that the direction is to be reversed. With this notation we can write |
255 |
\begin{python} |
256 |
front=PlaneSurface(CurveLoop(l01,l15,-l45,l40)) |
257 |
\end{python} |
258 |
Keep in mind that if you use \code{Line(p4,p5)} instead \code{-l45} both objects are treated as different although the connecting the same points with a straight line in the same direction. The resulting geometry would include an opening along the \code{p4}--\code{p5} connection. This will lead to an inconsistent mesh and may result in a failure of the volumetric mesh generator. Similarly we can define the other sides of the cube: |
259 |
\begin{python} |
260 |
l37=Line(p3,p7) |
261 |
l62=Line(p6,p2) |
262 |
back=PlaneSurface(CurveLoop(l32,-l62,-l76,-l37)) |
263 |
left=PlaneSurface(CurveLoop(-l40,-l64,l62,l20)) |
264 |
right=PlaneSurface(CurveLoop(-l15,l13,l37,-l57)) |
265 |
\end{python} |
266 |
We can now put the six surfaces together to form a \class{SurfaceLoop} defining the |
267 |
boundary of the volume of the cube: |
268 |
\begin{python} |
269 |
sl=SurfaceLoop(top,-bottom,front,back,left,right) |
270 |
v=Volume(sl) |
271 |
\end{python} |
272 |
Similar to the definition of a \code{CurvedLoop} the orientation of the surfaces \code{SurfaceLoop} is relevant. In fact the surface normal direction defined by the the right hand rule needs to point outwards as indicated by the surface normals in |
273 |
Figure~\ref{fig:PYCAD 2}. As the \code{bottom} face is directed upwards it is inserted with the minus sign |
274 |
into the \code{SurfaceLoop} in order to adjust the orientation of the surface. |
275 |
|
276 |
As in the 2D case, the \class{Design} class is used to define the geometry: |
277 |
\begin{python} |
278 |
from esys.pycad.gmsh import Design |
279 |
from esys.finley import MakeDomain |
280 |
|
281 |
des=Design(dim=3, element_size = 0.1, keep_files=True) |
282 |
des.setScriptFileName("brick.geo") |
283 |
des.addItems(v, top, bottom, back, front, left , right) |
284 |
|
285 |
dom=MakeDomain(des) |
286 |
dom.write("brick.fly") |
287 |
\end{python} |
288 |
Note that the \finley mesh file \file{brick.fly} will contain the |
289 |
triangles used to define the surfaces as they are added to the \class{Design}. |
290 |
The example script of the cube is included with the software in |
291 |
\file{brick.py} in the \ExampleDirectory. |
292 |
|
293 |
\section{Alternative File Formats} |
294 |
\code{pycad} supports other file formats in including |
295 |
I-DEAS universal file, VRML, Nastran and STL. The following example shows how |
296 |
to generate the STL file \file{brick.stl}: |
297 |
\begin{python} |
298 |
from esys.pycad.gmsh import Design |
299 |
|
300 |
des=Design(dim=3, element_size = 0.1, keep_files=True) |
301 |
des.addItems(v, top, bottom, back, front, left , right) |
302 |
|
303 |
des.setFileFormat(des.STL) |
304 |
des.setMeshFileName("brick.stl") |
305 |
des.generate() |
306 |
\end{python} |
307 |
The example script of the cube is included with the software in |
308 |
\file{brick_stl.py} in the \ExampleDirectory. |
309 |
|
310 |
|
311 |
\begin{figure} |
312 |
\centerline{\includegraphics[width=\figwidth]{figures/refine1}} |
313 |
\caption{Local refinement at the origin by |
314 |
\var{local_scale=0.01} |
315 |
with \var{element_size=0.3} and number of elements on the top set to 10.} |
316 |
\label{fig:PYCAD 5} |
317 |
\end{figure} |
318 |
|
319 |
\section{Element Sizes} |
320 |
The element size used globally is defined by the |
321 |
\code{element_size} argument of the \class{Design}. The mesh generator |
322 |
will try to use this mesh size everywhere in the geometry. In some cases it can be |
323 |
desirable to use locally a finer mesh. A local refinement can be defined at each |
324 |
\class{Point}: |
325 |
\begin{python} |
326 |
p0=Point(0.,0.,0.,local_scale=0.01) |
327 |
\end{python} |
328 |
Here the mesh generator will create a mesh with an element size which is by the factor \code{0.01} |
329 |
times smaller than the global mesh size \code{element_size=0.3}, see Figure~\ref{fig:PYCAD 5}. The point where a refinement is defined must be a point of curve used to define the geometry. |
330 |
|
331 |
Alternatively, one can define a mesh size along a curve by defining the number of elements to be used to subdivide the curve. For instance, to use $20$ element on line \code{l23} on uses: |
332 |
\begin{python} |
333 |
l23=Line(p2, p3) |
334 |
l23.setElementDistribution(20) |
335 |
\end{python} |
336 |
Setting the number of elements on a curve overwrites the global mesh size \code{element_size}. The result is shown in Figure~\ref{fig:PYCAD 5}. |
337 |
|
338 |
|
339 |
|
340 |
\section{\pycad Classes} |
341 |
\declaremodule{extension}{esys.pycad} |
342 |
\modulesynopsis{Python geometry description and meshing interface} |
343 |
|
344 |
\subsection{Primitives} |
345 |
|
346 |
Some of the most commonly-used objects in \pycad are listed here. For a more complete |
347 |
list see the full API documentation. |
348 |
|
349 |
\begin{classdesc}{Point}{x=0.,y=0.,z=0.\optional{,local_scale=1.}} |
350 |
Create a point with from coordinates with local characteristic length \var{local_scale} |
351 |
\end{classdesc} |
352 |
|
353 |
\begin{classdesc}{Line}{point1, point2} |
354 |
Create a line with between starting and ending points. |
355 |
\end{classdesc} |
356 |
\begin{methoddesc}[Line]{setElementDistribution}{n\optional{,progression=1\optional{,createBump=\False}}} |
357 |
Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. The progression factor \var{progression} defines the change of element size between neighboured elements. If \var{createBump} is set |
358 |
progression is applied towards the centre of the line. |
359 |
\end{methoddesc} |
360 |
\begin{methoddesc}[Line]{resetElementDistribution}{} |
361 |
removes a previously set element distribution from the line. |
362 |
\end{methoddesc} |
363 |
\begin{methoddesc}[Line]{getElemenofDistribution}{} |
364 |
Returns the element distribution as tuple of |
365 |
number of elements, progression factor and bump flag. If |
366 |
no element distribution is set None is returned. |
367 |
\end{methoddesc} |
368 |
|
369 |
|
370 |
\begin{classdesc}{Spline}{point0, point1, ...} |
371 |
A spline curve defined by a list of points \var{point0}, \var{point1},.... |
372 |
\end{classdesc} |
373 |
\begin{methoddesc}[Spline]{setElementDistribution}{n\optional{,progression=1\optional{,createBump=\False}}} |
374 |
Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. The progression factor \var{progression} defines the change of element size between neighboured elements. If \var{createBump} is set |
375 |
progression is applied towards the centre of the line. |
376 |
\end{methoddesc} |
377 |
\begin{methoddesc}[Spline]{resetElementDistribution}{} |
378 |
removes a previously set element distribution from the line. |
379 |
\end{methoddesc} |
380 |
\begin{methoddesc}[Spline]{getElemenofDistribution}{} |
381 |
Returns the element distribution as tuple of |
382 |
number of elements, progression factor and bump flag. If |
383 |
no element distribution is set None is returned. |
384 |
\end{methoddesc} |
385 |
|
386 |
\begin{classdesc}{BSpline}{point0, point1, ...} |
387 |
A B-spline curve defined by a list of points \var{point0}, \var{point1},.... |
388 |
\end{classdesc} |
389 |
\begin{methoddesc}[BSpline]{setElementDistribution}{n\optional{,progression=1\optional{,createBump=\False}}} |
390 |
Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. The progression factor \var{progression} defines the change of element size between neighboured elements. If \var{createBump} is set |
391 |
progression is applied towards the centre of the line. |
392 |
\end{methoddesc} |
393 |
\begin{methoddesc}[BSpline]{resetElementDistribution}{} |
394 |
removes a previously set element distribution from the line. |
395 |
\end{methoddesc} |
396 |
\begin{methoddesc}[BSpline]{getElemenofDistribution}{} |
397 |
Returns the element distribution as tuple of |
398 |
number of elements, progression factor and bump flag. If |
399 |
no element distribution is set None is returned. |
400 |
\end{methoddesc} |
401 |
|
402 |
\begin{classdesc}{BezierCurve}{point0, point1, ...} |
403 |
A Brezier spline curve defined by a list of points \var{point0}, \var{point1},.... |
404 |
\end{classdesc} |
405 |
\begin{methoddesc}[BezierCurve]{setElementDistribution}{n\optional{,progression=1\optional{,createBump=\False}}} |
406 |
Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. The progression factor \var{progression} defines the change of element size between neighboured elements. If \var{createBump} is set |
407 |
progression is applied towards the centre of the line. |
408 |
\end{methoddesc} |
409 |
\begin{methoddesc}[BezierCurve]{resetElementDistribution}{} |
410 |
removes a previously set element distribution from the line. |
411 |
\end{methoddesc} |
412 |
\begin{methoddesc}[BezierCurve]{getElemenofDistribution}{} |
413 |
Returns the element distribution as tuple of |
414 |
number of elements, progression factor and bump flag. If |
415 |
no element distribution is set None is returned. |
416 |
\end{methoddesc} |
417 |
|
418 |
\begin{classdesc}{Arc}{centre_point, start_point, end_point} |
419 |
Create an arc by specifying a centre for a circle and start and end points. An arc may subtend an angle of at most $\pi$ radians. |
420 |
\end{classdesc} |
421 |
\begin{methoddesc}[Arc]{setElementDistribution}{n\optional{,progression=1\optional{,createBump=\False}}} |
422 |
Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. The progression factor \var{progression} defines the change of element size between neighboured elements. If \var{createBump} is set |
423 |
progression is applied towards the centre of the line. |
424 |
\end{methoddesc} |
425 |
\begin{methoddesc}[Arc]{resetElementDistribution}{} |
426 |
removes a previously set element distribution from the line. |
427 |
\end{methoddesc} |
428 |
\begin{methoddesc}[Arc]{getElemenofDistribution}{} |
429 |
Returns the element distribution as tuple of |
430 |
number of elements, progression factor and bump flag. If |
431 |
no element distribution is set None is returned. |
432 |
\end{methoddesc} |
433 |
|
434 |
\begin{classdesc}{CurveLoop}{list} |
435 |
Create a closed curve from the \code{list}. of |
436 |
\class{Line}, \class{Arc}, \class{Spline}, \class{BSpline}, |
437 |
\class{BrezierSpline}. |
438 |
\end{classdesc} |
439 |
|
440 |
\begin{classdesc}{PlaneSurface}{loop, \optional{holes=[list]}} |
441 |
Create a plane surface from a \class{CurveLoop}, which may have one or more holes |
442 |
described by \var{list} of \class{CurveLoop}. |
443 |
\end{classdesc} |
444 |
\begin{methoddesc}[PlaneSurface]{setRecombination}{max_deviation} |
445 |
the mesh generator will try to recombine triangular elements |
446 |
into quadrilateral elements. \var{max_deviation} (in radians) defines the |
447 |
maximum deviation of any angle in the quadrilaterals from the right angle. |
448 |
Set \var{max_deviation}=\var{None} to remove recombination. |
449 |
\end{methoddesc} |
450 |
\begin{methoddesc}[PlaneSurface]{setTransfiniteMeshing}{\optional{orientation="Left"}} |
451 |
applies 2D transfinite meshing to the surface. |
452 |
\var{orientation} defines the orientation of triangles. Allowed values |
453 |
are \var{``Left''}, \var{``Right''} or \var{``Alternate''}. The |
454 |
boundary of the surface must be defined by three or four lines where an |
455 |
element distribution must be defined on all faces where opposite |
456 |
faces uses the same element distribution. No holes must be present. |
457 |
\end{methoddesc} |
458 |
|
459 |
|
460 |
|
461 |
\begin{classdesc}{RuledSurface}{list} |
462 |
Create a surface that can be interpolated using transfinite interpolation. |
463 |
\var{list} gives a list of three or four lines defining the boundary of the |
464 |
surface. |
465 |
\end{classdesc} |
466 |
\begin{methoddesc}[RuledSurface]{setRecombination}{max_deviation} |
467 |
the mesh generator will try to recombine triangular elements |
468 |
into quadrilateral elements. \var{max_deviation} (in radians) defines the |
469 |
maximum deviation of any angle in the quadrilaterals from the right angle. |
470 |
Set \var{max_deviation}=\var{None} to remove recombination. |
471 |
\end{methoddesc} |
472 |
\begin{methoddesc}[RuledSurface]{setTransfiniteMeshing}{\optional{orientation="Left"}} |
473 |
applies 2D transfinite meshing to the surface. |
474 |
\var{orientation} defines the orientation of triangles. Allowed values |
475 |
are \var{``Left''}, \var{``Right''} or \var{``Alternate''}. The |
476 |
boundary of the surface must be defined by three or four lines where an |
477 |
element distribution must be defined on all faces where opposite |
478 |
faces uses the same element distribution. No holes must be present. |
479 |
\end{methoddesc} |
480 |
|
481 |
|
482 |
\begin{classdesc}{SurfaceLoop}{list} |
483 |
Create a loop of \class{PlaneSurface} or \class{RuledSurface}, which defines the shell of a volume. |
484 |
\end{classdesc} |
485 |
|
486 |
\begin{classdesc}{Volume}{loop, \optional{holes=[list]}} |
487 |
Create a volume given a \class{SurfaceLoop}, which may have one or more holes |
488 |
define by the list of \class{SurfaceLoop}. |
489 |
\end{classdesc} |
490 |
|
491 |
\begin{classdesc}{PropertySet}{list} |
492 |
Create a PropertySet given a list of 1-D, 2-D or 3-D items. See the section on Properties below for more information. |
493 |
\end{classdesc} |
494 |
|
495 |
%============================================================================================================ |
496 |
\subsection{Transformations} |
497 |
|
498 |
Sometimes it's convenient to create an object and then make copies at |
499 |
different orientations and in different sizes. Transformations are |
500 |
used to move geometrical objects in the 3-dimensional space and to |
501 |
resize them. |
502 |
|
503 |
\begin{classdesc}{Translation}{\optional{b=[0,0,0]}} |
504 |
defines a translation $x \to x+b$. \var{b} can be any object that can be converted |
505 |
into a \numpy object of shape $(3,)$. |
506 |
\end{classdesc} |
507 |
|
508 |
\begin{classdesc}{Rotatation}{\optional{axis=[1,1,1], \optional{ point = [0,0,0], \optional{angle=0*RAD} } } } |
509 |
defines a rotation by \var{angle} around axis through point \var{point} and direction \var{axis}. |
510 |
\var{axis} and \var{point} can be any object that can be converted |
511 |
into a \numpy object of shape $(3,)$. |
512 |
\var{axis} does not have to be normalised but must have positive length. The right hand rule~\cite{RIGHTHANDRULE} |
513 |
applies. |
514 |
\end{classdesc} |
515 |
|
516 |
|
517 |
\begin{classdesc}{Dilation}{\optional{factor=1., \optional{centre=[0,0,0]}}} |
518 |
defines a dilation by the expansion/contraction \var{factor} with |
519 |
\var{centre} as the dilation centre. |
520 |
\var{centre} can be any object that can be converted |
521 |
into a \numpy object of shape $(3,)$. |
522 |
\end{classdesc} |
523 |
|
524 |
\begin{classdesc}{Reflection}{\optional{normal=[1,1,1], \optional{offset=0}}} |
525 |
defines a reflection on a plane defined in normal form $n^t x = d$ |
526 |
where $n$ is the surface normal \var{normal} and $d$ is the plane \var{offset}. |
527 |
\var{normal} can be any object that can be converted |
528 |
into a \numpy object of shape $(3,)$. |
529 |
\var{normal} does not have to be normalised but must have positive length. |
530 |
\end{classdesc} |
531 |
|
532 |
\begin{datadesc}{DEG} |
533 |
A constant to convert from degrees to an internal angle representation in radians. For instance use \code{90*DEG} for $90$ degrees. |
534 |
\end{datadesc} |
535 |
|
536 |
\subsection{Properties} |
537 |
|
538 |
If you are building a larger geometry you may find it convenient to |
539 |
create it in smaller pieces and then assemble them into the whole. |
540 |
Property sets make this easy, and they allow you to name the smaller |
541 |
pieces for convenience. |
542 |
|
543 |
Property sets are used to bundle a set of geometrical objects in a |
544 |
group. The group is identified by a name. Typically a property set |
545 |
is used to mark subregions with share the same material properties or |
546 |
to mark portions of the boundary. For efficiency, the \Design class |
547 |
object assigns a integer to each of its property sets, a so-called tag |
548 |
\index{tag}. The appropriate tag is attached to the elements at |
549 |
generation time. |
550 |
|
551 |
See the file \code{pycad/examples/quad.py} for an example using a {\it PropertySet}. |
552 |
|
553 |
|
554 |
\begin{classdesc}{PropertySet}{name,*items} |
555 |
defines a group geometrical objects which can be accessed through a \var{name} |
556 |
The objects in the tuple \var{items} mast all be \ManifoldOneD, \ManifoldTwoD or \ManifoldThreeD objects. |
557 |
\end{classdesc} |
558 |
|
559 |
|
560 |
\begin{methoddesc}[PropertySet]{getManifoldClass}{} |
561 |
returns the manifold class \ManifoldOneD, \ManifoldTwoD or \ManifoldThreeD expected from the items |
562 |
in the property set. |
563 |
\end{methoddesc} |
564 |
|
565 |
\begin{methoddesc}[PropertySet]{getDim}{} |
566 |
returns the spatial dimension of the items |
567 |
in the property set. |
568 |
\end{methoddesc} |
569 |
|
570 |
\begin{methoddesc}[PropertySet]{getName}{} |
571 |
returns the name of the set |
572 |
\end{methoddesc} |
573 |
|
574 |
\begin{methoddesc}[PropertySet]{setName}{name} |
575 |
sets the name. This name should be unique within a \Design. |
576 |
\end{methoddesc} |
577 |
|
578 |
\begin{methoddesc}[PropertySet]{addItem}{*items} |
579 |
adds a tuple of items. They need to be objects of class \ManifoldOneD, \ManifoldTwoD or \ManifoldThreeD. |
580 |
\end{methoddesc} |
581 |
|
582 |
\begin{methoddesc}[PropertySet]{getItems}{} |
583 |
returns the list of items |
584 |
\end{methoddesc} |
585 |
|
586 |
\begin{methoddesc}[PropertySet]{clearItems}{} |
587 |
clears the list of items |
588 |
\end{methoddesc} |
589 |
|
590 |
\begin{methoddesc}[PropertySet]{getTag}{} |
591 |
returns the tag used for this property set |
592 |
\end{methoddesc} |
593 |
|
594 |
\section{Interface to the mesh generation software} |
595 |
\declaremodule{extension}{esys.pycad.gmsh} |
596 |
\modulesynopsis{Python geometry description and meshing interface} |
597 |
|
598 |
The class and methods described here provide an interface to the mesh |
599 |
generation software, which is currently \gmshextern. This interface could be |
600 |
adopted to triangle or another mesh generation package if this is |
601 |
deemed to be desirable in the future. |
602 |
|
603 |
\begin{classdesc}{Design}{ |
604 |
\optional{dim=3, \optional{element_size=1., \optional{order=1, \optional{keep_files=False}}}}} |
605 |
The \class{Design} describes the geometry defined by primitives to be meshed. |
606 |
The \var{dim} specifies the spatial dimension. The argument \var{element_size} defines the global |
607 |
element size which is multiplied by the local scale to set the element size at each \Point. |
608 |
The argument \var{order} defines the element order to be used. If \var{keep_files} is set to |
609 |
\True temporary files a kept otherwise they are removed when the instance of the class is deleted. |
610 |
\end{classdesc} |
611 |
|
612 |
|
613 |
\begin{memberdesc}[Design]{GMSH} |
614 |
gmsh file format~\cite{GMSH}. |
615 |
\end{memberdesc} |
616 |
|
617 |
\begin{memberdesc}[Design]{IDEAS} |
618 |
I-DEAS universal file format~\cite{IDEAS}. |
619 |
\end{memberdesc} |
620 |
|
621 |
\begin{memberdesc}[Design]{VRML} |
622 |
VRML file format, \cite{VRML}. |
623 |
\end{memberdesc} |
624 |
|
625 |
\begin{memberdesc}[Design]{STL} |
626 |
STL file format~\cite{STL}. |
627 |
\end{memberdesc} |
628 |
\begin{memberdesc}[Design]{NASTRAN} |
629 |
NASTRAN bulk data format~\cite{NASTRAN}. |
630 |
\end{memberdesc} |
631 |
|
632 |
\begin{memberdesc}[Design]{MEDIT} |
633 |
Medit file format~\cite{MEDIT}. |
634 |
\end{memberdesc} |
635 |
|
636 |
\begin{memberdesc}[Design]{CGNS} |
637 |
CGNS file format~\cite{CGNS}. |
638 |
\end{memberdesc} |
639 |
|
640 |
\begin{memberdesc}[Design]{PLOT3D} |
641 |
Plot3D file format~\cite{PLOT3D}. |
642 |
\end{memberdesc} |
643 |
|
644 |
|
645 |
\begin{memberdesc}[Design]{DIFFPACK} |
646 |
Diffpack 3D file format~\cite{DIFFPACK}. |
647 |
\end{memberdesc} |
648 |
|
649 |
\begin{memberdesc}[Design]{DELAUNAY} |
650 |
the gmsh Delauny triangulator. |
651 |
\end{memberdesc} |
652 |
|
653 |
\begin{memberdesc}[Design]{TETGEN} |
654 |
the TetGen~\cite{TETGEN} triangulator. |
655 |
\end{memberdesc} |
656 |
|
657 |
\begin{memberdesc}[Design]{NETGEN} |
658 |
the NETGEN~\cite{NETGEN} triangulator. |
659 |
\end{memberdesc} |
660 |
|
661 |
\begin{methoddesc}[Design]{generate}{} |
662 |
generates the mesh file. The data are are written to the file \var{Design.getMeshFileName}. |
663 |
\end{methoddesc} |
664 |
|
665 |
|
666 |
\begin{methoddesc}[Design]{setDim}{\optional{dim=3}} |
667 |
sets the spatial dimension which needs to be $1$, $2$ or $3$. |
668 |
\end{methoddesc} |
669 |
|
670 |
\begin{methoddesc}[Design]{getDim}{} |
671 |
returns the spatial dimension. |
672 |
\end{methoddesc} |
673 |
|
674 |
\begin{methoddesc}[Design]{setElementOrder}{\optional{order=1}} |
675 |
sets the element order which needs to be $1$ or $2$. |
676 |
\end{methoddesc} |
677 |
|
678 |
\begin{methoddesc}[Design]{getElementOrder}{} |
679 |
returns the element order. |
680 |
\end{methoddesc} |
681 |
|
682 |
\begin{methoddesc}[Design]{setElementSize}{\optional{element_size=1}} |
683 |
set the global element size. The local element size at a point is defined as |
684 |
the global element size multiplied by the local scale. The element size must be positive. |
685 |
\end{methoddesc} |
686 |
|
687 |
|
688 |
\begin{methoddesc}[Design]{getElementSize}{} |
689 |
returns the global element size. |
690 |
\end{methoddesc} |
691 |
|
692 |
|
693 |
|
694 |
\begin{methoddesc}[Design]{setKeepFilesOn}{} |
695 |
work files are kept at the end of the generation. |
696 |
\end{methoddesc} |
697 |
|
698 |
\begin{methoddesc}[Design]{setKeepFilesOff}{} |
699 |
work files are deleted at the end of the generation. |
700 |
\end{methoddesc} |
701 |
|
702 |
\begin{methoddesc}[Design]{keepFiles}{} |
703 |
returns \True if work files are kept. Otherwise \False is returned. |
704 |
\end{methoddesc} |
705 |
|
706 |
\begin{methoddesc}[Design]{setScriptFileName}{\optional{name=None}} |
707 |
set the file name for the gmsh input script. if no name is given a name with extension "geo" is generated. |
708 |
\end{methoddesc} |
709 |
|
710 |
\begin{methoddesc}[Design]{getScriptFileName}{} |
711 |
returns the name of the file for the gmsh script. |
712 |
\end{methoddesc} |
713 |
|
714 |
|
715 |
\begin{methoddesc}[Design]{setMeshFileName}{\optional{name=None}} |
716 |
sets the name for the mesh file. if no name is given a name is generated. |
717 |
The format is set by \var{Design.setFileFormat}. |
718 |
\end{methoddesc} |
719 |
|
720 |
\begin{methoddesc}[Design]{getMeshFileName}{} |
721 |
returns the name of the mesh file |
722 |
\end{methoddesc} |
723 |
|
724 |
|
725 |
\begin{methoddesc}[Design]{addItems}{*items} |
726 |
adds the tuple of var{items}. An item can be any primitive or a \class{PropertySet}. |
727 |
\warning{If a \PropertySet is added as an item added object that are not |
728 |
part of a \PropertySet are not considered in the messing. |
729 |
} |
730 |
\end{methoddesc} |
731 |
|
732 |
\begin{methoddesc}[Design]{getItems}{} |
733 |
returns a list of the items |
734 |
\end{methoddesc} |
735 |
|
736 |
\begin{methoddesc}[Design]{clearItems}{} |
737 |
resets the items in design |
738 |
\end{methoddesc} |
739 |
|
740 |
\begin{methoddesc}[Design]{getMeshHandler}{} |
741 |
returns a handle to the mesh. The call of this method generates the mesh from the geometry and |
742 |
returns a mechanism to access the mesh data. In the current implementation this |
743 |
method returns a file name for a file containing the mesh data. |
744 |
\end{methoddesc} |
745 |
|
746 |
\begin{methoddesc}[Design]{getScriptString}{} |
747 |
returns the gmsh script to generate the mesh as a string. |
748 |
\end{methoddesc} |
749 |
|
750 |
\begin{methoddesc}[Design]{getCommandString}{} |
751 |
returns the gmsh command used to generate the mesh as string. |
752 |
\end{methoddesc} |
753 |
|
754 |
\begin{methoddesc}[Design]{setOptions}{\optional{algorithm=None, \optional{ optimize_quality=True,\optional{ smoothing=1}}}} |
755 |
sets options for the mesh generator. \var{algorithm} sets the algorithm to be used. |
756 |
The algorithm needs to be \var{Design.DELAUNAY} |
757 |
\var{Design.TETGEN} |
758 |
or \var{Design.NETGEN}. By default \var{Design.DELAUNAY} is used. \var{optimize_quality}=\True invokes an optimization of the mesh quality. \var{smoothing} sets the number of smoothing steps to be applied to the mesh. |
759 |
\end{methoddesc} |
760 |
|
761 |
\begin{methoddesc}[Design]{getTagMap}{} |
762 |
returns a \class{TagMap} to map the name \class{PropertySet} in the class to tag numbers generated by gmsh. |
763 |
\end{methoddesc} |
764 |
|
765 |
\begin{methoddesc}[Design]{setFileFormat}{\optional{format=\var{Design.GMSH}}} |
766 |
set the file format. \var{format} must be one of the values |
767 |
\var{Design.GMSH}, |
768 |
\var{Design.IDEAS}, |
769 |
\var{Design.VRML}, |
770 |
\var{Design.STL}, |
771 |
\var{Design.NASTRAN}, |
772 |
\var{Design.MEDIT}, |
773 |
\var{Design.CGNS}, |
774 |
\var{Design.PLOT3D} or |
775 |
\var{Design.DIFFPACK}. |
776 |
\end{methoddesc} |
777 |
|
778 |
\begin{methoddesc}[Design]{sgetFileFormat}{} |
779 |
returns the file format. |
780 |
\end{methoddesc} |