1 |
|
2 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
3 |
% |
4 |
% Copyright (c) 2003-2009 by University of Queensland |
5 |
% Earth Systems Science Computational Center (ESSCC) |
6 |
% http://www.uq.edu.au/esscc |
7 |
% |
8 |
% Primary Business: Queensland, Australia |
9 |
% Licensed under the Open Software License version 3.0 |
10 |
% http://www.opensource.org/licenses/osl-3.0.php |
11 |
% |
12 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
13 |
|
14 |
|
15 |
\chapter{The Module \pycad} \label{PYCAD CHAP} |
16 |
|
17 |
|
18 |
\section{Introduction} |
19 |
|
20 |
\pycad provides a simple way to build a mesh for your finite element |
21 |
simulation. You begin by building what we call a {\it Design} using |
22 |
primitive geometric objects, and then to go on to build a mesh from |
23 |
the {\it Design}. The final step of generating the mesh from a {\it |
24 |
Design} uses freely available mesh generation software, such as \gmshextern. |
25 |
|
26 |
A {\it Design} is built by defining points, which are used to specify |
27 |
the corners of geometric objects and the vertices of curves. Using |
28 |
points you construct more interesting objects such as lines, |
29 |
rectangles, and arcs. By adding many of these objects into what we |
30 |
call a {\it Design}, you can build meshes for arbitrarily complex 2-D |
31 |
and 3-D structures. |
32 |
|
33 |
The example included below shows how to use {\it pycad} to create a 2-D mesh |
34 |
in the shape of a trapezoid with a cutout area. |
35 |
|
36 |
\begin{python} |
37 |
from esys.pycad import * |
38 |
from esys.pycad.gmsh import Design |
39 |
from esys.finley import MakeDomain |
40 |
|
41 |
# A trapezoid |
42 |
p0=Point(0.0, 0.0, 0.0) |
43 |
p1=Point(1.0, 0.0, 0.0) |
44 |
p2=Point(1.0, 0.5, 0.0) |
45 |
p3=Point(0.0, 1.0, 0.0) |
46 |
l01=Line(p0, p1) |
47 |
l12=Line(p1, p2) |
48 |
l23=Line(p2, p3) |
49 |
l30=Line(p3, p0) |
50 |
c=CurveLoop(l01, l12, l23, l30) |
51 |
|
52 |
# A small triangular cutout |
53 |
x0=Point(0.1, 0.1, 0.0) |
54 |
x1=Point(0.5, 0.1, 0.0) |
55 |
x2=Point(0.5, 0.2, 0.0) |
56 |
x01=Line(x0, x1) |
57 |
x12=Line(x1, x2) |
58 |
x20=Line(x2, x0) |
59 |
cutout=CurveLoop(x01, x12, x20) |
60 |
|
61 |
# Create the surface with cutout |
62 |
s=PlaneSurface(c, holes=[cutout]) |
63 |
|
64 |
# Create a Design which can make the mesh |
65 |
d=Design(dim=2, element_size=0.05) |
66 |
|
67 |
# Add the trapezoid with cutout |
68 |
d.addItems(s) |
69 |
|
70 |
# Create the geometry, mesh and Escript domain |
71 |
d.setScriptFileName("trapezoid.geo") |
72 |
d.setMeshFileName("trapezoid.msh") |
73 |
domain=MakeDomain(d, integrationOrder=-1, reducedIntegrationOrder=-1, |
74 |
optimizeLabeling=True) |
75 |
|
76 |
# Create a file that can be read back in to python with |
77 |
# mesh=ReadMesh(fileName) |
78 |
domain.write("trapezoid.fly") |
79 |
\end{python} |
80 |
|
81 |
This example is included with the software in |
82 |
\code{pycad/examples/trapezoid.py}. If you have gmsh installed you can |
83 |
run the example and view the geometry and mesh with: |
84 |
|
85 |
\begin{python} |
86 |
python trapezoid.py |
87 |
gmsh trapezoid.geo |
88 |
gmsh trapezoid.msh |
89 |
\end{python} |
90 |
|
91 |
A \code{CurveLoop} is used to connect several lines into a single curve. |
92 |
It is used in the example above to create the trapezoidal outline for the grid |
93 |
and also for the triangular cutout area. |
94 |
You can use any number of lines when creating a \code{CurveLoop}, but |
95 |
the end of one line must be identical to the start of the next. |
96 |
|
97 |
Sometimes you might see us write \code{-c} where \code{c} is a |
98 |
\code{CurveLoop}. This is the reverse curve of the curve \code{c}. |
99 |
It is identical to the original except that its points are traversed |
100 |
in the opposite order. This may make it easier to connect two curves |
101 |
in a \code{CurveLoop}. |
102 |
|
103 |
The example python script above calls both |
104 |
\code{d.setScriptFileName()} and \code{d.setMeshFileName()}. You need |
105 |
only call these if you wish to save the gmsh geometry and mesh files. |
106 |
|
107 |
Note that the underlying mesh generation software will not accept all |
108 |
the geometries you can create with {\it pycad}. For example, {\it |
109 |
pycad} will happily allow you to create a 2-D {\it Design} that is a |
110 |
closed loop with some additional points or lines lying outside of the |
111 |
enclosed area, but gmsh will fail to create a mesh for it. |
112 |
|
113 |
|
114 |
|
115 |
|
116 |
|
117 |
|
118 |
\section{\pycad Classes} |
119 |
\declaremodule{extension}{esys.pycad} |
120 |
\modulesynopsis{Python geometry description and meshing interface} |
121 |
|
122 |
\subsection{Primitives} |
123 |
|
124 |
Some of the most commonly-used objects in {\it pycad} are listed here. For a more complete |
125 |
list see the full API documentation. |
126 |
|
127 |
\begin{classdesc}{Point}{x=0.,y=0.,z=0.\optional{,local_scale=1.}} |
128 |
Create a point with from coordinates with local characteristic length \var{local_scale} |
129 |
\end{classdesc} |
130 |
|
131 |
\begin{classdesc}{Line}{point1, point2} |
132 |
Create a line with between starting and ending points. |
133 |
\end{classdesc} |
134 |
\begin{methoddesc}[Line]{setElementDistribution}{n\optional{,progression=1\optional{,createBump=\False}}} |
135 |
Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. The progression factor \var{progression} defines the change of element size between naighboured elements. If \var{createBump} is set |
136 |
progression is applied towards the center of the line. |
137 |
\end{methoddesc} |
138 |
\begin{methoddesc}[Line]{resetElementDistribution}{} |
139 |
removes a previously set element distribution from the line. |
140 |
\end{methoddesc} |
141 |
\begin{methoddesc}[Line]{getElemenofDistribution}{} |
142 |
Returns the element distribution as tuple of |
143 |
number of elements, progression factor and bump flag. If |
144 |
no element distribution is set None is returned. |
145 |
\end{methoddesc} |
146 |
|
147 |
|
148 |
\begin{classdesc}{Spline}{point0, point1, ...} |
149 |
A spline curve defined by a list of points \var{point0}, \var{point1},.... |
150 |
\end{classdesc} |
151 |
\begin{methoddesc}[Spline]{setElementDistribution}{n\optional{,progression=1\optional{,createBump=\False}}} |
152 |
Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. The progression factor \var{progression} defines the change of element size between naighboured elements. If \var{createBump} is set |
153 |
progression is applied towards the center of the line. |
154 |
\end{methoddesc} |
155 |
\begin{methoddesc}[Spline]{resetElementDistribution}{} |
156 |
removes a previously set element distribution from the line. |
157 |
\end{methoddesc} |
158 |
\begin{methoddesc}[Spline]{getElemenofDistribution}{} |
159 |
Returns the element distribution as tuple of |
160 |
number of elements, progression factor and bump flag. If |
161 |
no element distribution is set None is returned. |
162 |
\end{methoddesc} |
163 |
|
164 |
\begin{classdesc}{BSpline}{point0, point1, ...} |
165 |
A B-spline curve defined by a list of points \var{point0}, \var{point1},.... |
166 |
\end{classdesc} |
167 |
\begin{methoddesc}[BSpline]{setElementDistribution}{n\optional{,progression=1\optional{,createBump=\False}}} |
168 |
Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. The progression factor \var{progression} defines the change of element size between naighboured elements. If \var{createBump} is set |
169 |
progression is applied towards the center of the line. |
170 |
\end{methoddesc} |
171 |
\begin{methoddesc}[BSpline]{resetElementDistribution}{} |
172 |
removes a previously set element distribution from the line. |
173 |
\end{methoddesc} |
174 |
\begin{methoddesc}[BSpline]{getElemenofDistribution}{} |
175 |
Returns the element distribution as tuple of |
176 |
number of elements, progression factor and bump flag. If |
177 |
no element distribution is set None is returned. |
178 |
\end{methoddesc} |
179 |
|
180 |
\begin{classdesc}{BezierCurve}{point0, point1, ...} |
181 |
A Brezier spline curve defined by a list of points \var{point0}, \var{point1},.... |
182 |
\end{classdesc} |
183 |
\begin{methoddesc}[BezierCurve]{setElementDistribution}{n\optional{,progression=1\optional{,createBump=\False}}} |
184 |
Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. The progression factor \var{progression} defines the change of element size between naighboured elements. If \var{createBump} is set |
185 |
progression is applied towards the center of the line. |
186 |
\end{methoddesc} |
187 |
\begin{methoddesc}[BezierCurve]{resetElementDistribution}{} |
188 |
removes a previously set element distribution from the line. |
189 |
\end{methoddesc} |
190 |
\begin{methoddesc}[BezierCurve]{getElemenofDistribution}{} |
191 |
Returns the element distribution as tuple of |
192 |
number of elements, progression factor and bump flag. If |
193 |
no element distribution is set None is returned. |
194 |
\end{methoddesc} |
195 |
|
196 |
\begin{classdesc}{Arc}{center_point, start_point, end_point} |
197 |
Create an arc by specifying a center for a circle and start and end points. An arc may subtend an angle of at most $\pi$ radians. |
198 |
\end{classdesc} |
199 |
\begin{methoddesc}[Arc]{setElementDistribution}{n\optional{,progression=1\optional{,createBump=\False}}} |
200 |
Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. The progression factor \var{progression} defines the change of element size between naighboured elements. If \var{createBump} is set |
201 |
progression is applied towards the center of the line. |
202 |
\end{methoddesc} |
203 |
\begin{methoddesc}[Arc]{resetElementDistribution}{} |
204 |
removes a previously set element distribution from the line. |
205 |
\end{methoddesc} |
206 |
\begin{methoddesc}[Arc]{getElemenofDistribution}{} |
207 |
Returns the element distribution as tuple of |
208 |
number of elements, progression factor and bump flag. If |
209 |
no element distribution is set None is returned. |
210 |
\end{methoddesc} |
211 |
|
212 |
\begin{classdesc}{CurveLoop}{list} |
213 |
Create a closed curve from the \code{list}. of |
214 |
\class{Line}, \class{Arc}, \class{Spline}, \class{BSpline}, |
215 |
\class{BrezierSpline}. |
216 |
\end{classdesc} |
217 |
|
218 |
\begin{classdesc}{PlaneSurface}{loop, \optional{holes=[list]}} |
219 |
Create a plane surface from a \class{CurveLoop}, which may have one or more holes |
220 |
described by \var{list} of \class{CurveLoop}. |
221 |
\end{classdesc} |
222 |
\begin{methoddesc}[PlaneSurface]{setRecombination}{max_deviation} |
223 |
the mesh generator will try to recombine triangular elements |
224 |
into quadrilateral elements. \var{max_deviation} (in radians) defines the |
225 |
maximum deviation of any angle in the quadrilaterals from the right angle. |
226 |
Set \var{max_deviation}=\var{None} to remove recombination. |
227 |
\end{methoddesc} |
228 |
\begin{methoddesc}[PlaneSurface]{setTransfiniteMeshing}{\optional{orientation="Left"}} |
229 |
applies 2D transfinite meshing to the surface. |
230 |
\var{orientation} defines the orientation of triangles. Allowed values |
231 |
are \var{``Left''}, \var{``Right''} or \var{``Alternate''}. The |
232 |
boundary of the surface muist be defined by three or four lines where an |
233 |
element distribution must be defined on all faces where opposite |
234 |
faces uses the same element distribution. No holes must be present. |
235 |
\end{methoddesc} |
236 |
|
237 |
|
238 |
|
239 |
\begin{classdesc}{RuledSurface}{list} |
240 |
Create a surface that can be interpolated using transfinite interpolation. |
241 |
\var{list} gives a list of three or four lines defining the boundary of the |
242 |
surface. |
243 |
\end{classdesc} |
244 |
\begin{methoddesc}[RuledSurface]{setRecombination}{max_deviation} |
245 |
the mesh generator will try to recombine triangular elements |
246 |
into quadrilateral elements. \var{max_deviation} (in radians) defines the |
247 |
maximum deviation of any angle in the quadrilaterals from the right angle. |
248 |
Set \var{max_deviation}=\var{None} to remove recombination. |
249 |
\end{methoddesc} |
250 |
\begin{methoddesc}[RuledSurface]{setTransfiniteMeshing}{\optional{orientation="Left"}} |
251 |
applies 2D transfinite meshing to the surface. |
252 |
\var{orientation} defines the orientation of triangles. Allowed values |
253 |
are \var{``Left''}, \var{``Right''} or \var{``Alternate''}. The |
254 |
boundary of the surface muist be defined by three or four lines where an |
255 |
element distribution must be defined on all faces where opposite |
256 |
faces uses the same element distribution. No holes must be present. |
257 |
\end{methoddesc} |
258 |
|
259 |
|
260 |
\begin{classdesc}{SurfaceLoop}{list} |
261 |
Create a loop of \class{PlaneSurface} or \class{RuledSurface}, which defines the shell of a volume. |
262 |
\end{classdesc} |
263 |
|
264 |
\begin{classdesc}{Volume}{loop, \optional{holes=[list]}} |
265 |
Create a volume given a \class{SurfaceLoop}, which may have one or more holes |
266 |
define by the list of \class{SurfaceLoop}. |
267 |
\end{classdesc} |
268 |
|
269 |
\begin{classdesc}{PropertySet}{list} |
270 |
Create a PropertySet given a list of 1-D, 2-D or 3-D items. See the section on Properties below for more information. |
271 |
\end{classdesc} |
272 |
|
273 |
%============================================================================================================ |
274 |
\subsection{Transformations} |
275 |
|
276 |
Sometimes it's convenient to create an object and then make copies at |
277 |
different orientations and in different sizes. Transformations are |
278 |
used to move geometrical objects in the 3-dimensional space and to |
279 |
resize them. |
280 |
|
281 |
\begin{classdesc}{Translation}{\optional{b=[0,0,0]}} |
282 |
defines a translation $x \to x+b$. \var{b} can be any object that can be converted |
283 |
into a \numpy object of shape $(3,)$. |
284 |
\end{classdesc} |
285 |
|
286 |
\begin{classdesc}{Rotatation}{\optional{axis=[1,1,1], \optional{ point = [0,0,0], \optional{angle=0*RAD} } } } |
287 |
defines a rotation by \var{angle} around axis through point \var{point} and direction \var{axis}. |
288 |
\var{axis} and \var{point} can be any object that can be converted |
289 |
into a \numpy object of shape $(3,)$. |
290 |
\var{axis} does not have to be normalized but must have positive length. The right hand rule~\cite{RIGHTHANDRULE} |
291 |
applies. |
292 |
\end{classdesc} |
293 |
|
294 |
|
295 |
\begin{classdesc}{Dilation}{\optional{factor=1., \optional{center=[0,0,0]}}} |
296 |
defines a dilation by the expansion/contraction \var{factor} with |
297 |
\var{center} as the dilation center. |
298 |
\var{center} can be any object that can be converted |
299 |
into a \numpy object of shape $(3,)$. |
300 |
\end{classdesc} |
301 |
|
302 |
\begin{classdesc}{Reflection}{\optional{normal=[1,1,1], \optional{offset=0}}} |
303 |
defines a reflection on a plane defined in normal form $n^t x = d$ |
304 |
where $n$ is the surface normal \var{normal} and $d$ is the plane \var{offset}. |
305 |
\var{normal} can be any object that can be converted |
306 |
into a \numpy object of shape $(3,)$. |
307 |
\var{normal} does not have to be normalized but must have positive length. |
308 |
\end{classdesc} |
309 |
|
310 |
\begin{datadesc}{DEG} |
311 |
A constant to convert from degrees to an internal angle representation in radians. For instance use \code{90*DEG} for $90$ degrees. |
312 |
\end{datadesc} |
313 |
|
314 |
\subsection{Properties} |
315 |
|
316 |
If you are building a larger geometry you may find it convenient to |
317 |
create it in smaller pieces and then assemble them into the whole. |
318 |
Property sets make this easy, and they allow you to name the smaller |
319 |
pieces for convenience. |
320 |
|
321 |
Property sets are used to bundle a set of geometrical objects in a |
322 |
group. The group is identified by a name. Typically a property set |
323 |
is used to mark subregions with share the same material properties or |
324 |
to mark portions of the boundary. For efficiency, the \Design class |
325 |
object assigns a integer to each of its property sets, a so-called tag |
326 |
\index{tag}. The appropriate tag is attached to the elements at |
327 |
generation time. |
328 |
|
329 |
See the file \code{pycad/examples/quad.py} for an example using a {\it PropertySet}. |
330 |
|
331 |
|
332 |
\begin{classdesc}{PropertySet}{name,*items} |
333 |
defines a group geometrical objects which can be accessed through a \var{name} |
334 |
The objects in the tuple \var{items} mast all be \ManifoldOneD, \ManifoldTwoD or \ManifoldThreeD objects. |
335 |
\end{classdesc} |
336 |
|
337 |
|
338 |
\begin{methoddesc}[PropertySet]{getManifoldClass}{} |
339 |
returns the manifold class \ManifoldOneD, \ManifoldTwoD or \ManifoldThreeD expected from the items |
340 |
in the property set. |
341 |
\end{methoddesc} |
342 |
|
343 |
\begin{methoddesc}[PropertySet]{getDim}{} |
344 |
returns the spatial dimension of the items |
345 |
in the property set. |
346 |
\end{methoddesc} |
347 |
|
348 |
\begin{methoddesc}[PropertySet]{getName}{} |
349 |
returns the name of the set |
350 |
\end{methoddesc} |
351 |
|
352 |
\begin{methoddesc}[PropertySet]{setName}{name} |
353 |
sets the name. This name should be unique within a \Design. |
354 |
\end{methoddesc} |
355 |
|
356 |
\begin{methoddesc}[PropertySet]{addItem}{*items} |
357 |
adds a tuple of items. They need to be objects of class \ManifoldOneD, \ManifoldTwoD or \ManifoldThreeD. |
358 |
\end{methoddesc} |
359 |
|
360 |
\begin{methoddesc}[PropertySet]{getItems}{} |
361 |
returns the list of items |
362 |
\end{methoddesc} |
363 |
|
364 |
\begin{methoddesc}[PropertySet]{clearItems}{} |
365 |
clears the list of items |
366 |
\end{methoddesc} |
367 |
|
368 |
\begin{methoddesc}[PropertySet]{getTag}{} |
369 |
returns the tag used for this property set |
370 |
\end{methoddesc} |
371 |
|
372 |
\section{Interface to the mesh generation software} |
373 |
\declaremodule{extension}{esys.pycad.gmsh} |
374 |
\modulesynopsis{Python geometry description and meshing interface} |
375 |
|
376 |
The class and methods described here provide an interface to the mesh |
377 |
generation software, which is currently gmsh. This interface could be |
378 |
adopted to triangle or another mesh generation package if this is |
379 |
deemed to be desirable in the future. |
380 |
|
381 |
\begin{classdesc}{Design}{ |
382 |
\optional{dim=3, \optional{element_size=1., \optional{order=1, \optional{keep_files=False}}}}} |
383 |
The \class{Design} describes the geometry defined by primitives to be meshed. |
384 |
The \var{dim} specifies the spatial dimension. The argument \var{element_size} defines the global |
385 |
element size which is multiplied by the local scale to set the element size at each \Point. |
386 |
The argument \var{order} defines the element order to be used. If \var{keep_files} is set to |
387 |
\True temporary files a kept otherwise they are removed when the instance of the class is deleted. |
388 |
\end{classdesc} |
389 |
|
390 |
|
391 |
\begin{methoddesc}[Design]{setDim}{\optional{dim=3}} |
392 |
sets the spatial dimension which needs to be $1$, $2$ or $3$. |
393 |
\end{methoddesc} |
394 |
|
395 |
\begin{methoddesc}[Design]{getDim}{} |
396 |
returns the spatial dimension. |
397 |
\end{methoddesc} |
398 |
|
399 |
\begin{methoddesc}[Design]{setElementOrder}{\optional{order=1}} |
400 |
sets the element order which needs to be $1$ or $2$. |
401 |
\end{methoddesc} |
402 |
|
403 |
\begin{methoddesc}[Design]{getElementOrder}{} |
404 |
returns the element order. |
405 |
\end{methoddesc} |
406 |
|
407 |
|
408 |
\begin{methoddesc}[Design]{setElementSize}{\optional{element_size=1}} |
409 |
set the global element size. The local element size at a point is defined as |
410 |
the global element size multiplied by the local scale. The element size must be positive. |
411 |
\end{methoddesc} |
412 |
|
413 |
|
414 |
\begin{methoddesc}[Design]{getElementSize}{} |
415 |
returns the global element size. |
416 |
\end{methoddesc} |
417 |
|
418 |
\begin{memberdesc}[Design]{DELAUNAY} |
419 |
the gmsh Delauny triangulator. |
420 |
\end{memberdesc} |
421 |
|
422 |
\begin{memberdesc}[Design]{TETGEN} |
423 |
the TetGen~\cite{TETGEN} triangulator. |
424 |
\end{memberdesc} |
425 |
|
426 |
\begin{memberdesc}[Design]{NETGEN} |
427 |
the NETGEN~\cite{NETGEN} triangulator. |
428 |
\end{memberdesc} |
429 |
|
430 |
\begin{methoddesc}[Design]{setKeepFilesOn}{} |
431 |
work files are kept at the end of the generation. |
432 |
\end{methoddesc} |
433 |
|
434 |
\begin{methoddesc}[Design]{setKeepFilesOff}{} |
435 |
work files are deleted at the end of the generation. |
436 |
\end{methoddesc} |
437 |
|
438 |
\begin{methoddesc}[Design]{keepFiles}{} |
439 |
returns \True if work files are kept. Otherwise \False is returned. |
440 |
\end{methoddesc} |
441 |
|
442 |
\begin{methoddesc}[Design]{setScriptFileName}{\optional{name=None}} |
443 |
set the filename for the gmsh input script. if no name is given a name with extension "geo" is generated. |
444 |
\end{methoddesc} |
445 |
|
446 |
\begin{methoddesc}[Design]{getScriptFileName}{} |
447 |
returns the name of the file for the gmsh script. |
448 |
\end{methoddesc} |
449 |
|
450 |
|
451 |
\begin{methoddesc}[Design]{setMeshFileName}{\optional{name=None}} |
452 |
sets the name for the gmsh mesh file. if no name is given a name with extension "msh" is generated. |
453 |
\end{methoddesc} |
454 |
|
455 |
\begin{methoddesc}[Design]{getMeshFileName}{} |
456 |
returns the name of the file for the gmsh msh |
457 |
\end{methoddesc} |
458 |
|
459 |
|
460 |
\begin{methoddesc}[Design]{addItems}{*items} |
461 |
adds the tuple of var{items}. An item can be any primitive or a \class{PropertySet}. |
462 |
\warning{If a \PropertySet is added as an item added object that are not |
463 |
part of a \PropertySet are not considered in the messing. |
464 |
} |
465 |
|
466 |
\end{methoddesc} |
467 |
|
468 |
\begin{methoddesc}[Design]{getItems}{} |
469 |
returns a list of the items |
470 |
\end{methoddesc} |
471 |
|
472 |
\begin{methoddesc}[Design]{clearItems}{} |
473 |
resets the items in design |
474 |
\end{methoddesc} |
475 |
|
476 |
\begin{methoddesc}[Design]{getMeshHandler}{} |
477 |
returns a handle to the mesh. The call of this method generates the mesh from the geometry and |
478 |
returns a mechanism to access the mesh data. In the current implementation this |
479 |
method returns a file name for a gmsh file containing the mesh data. |
480 |
\end{methoddesc} |
481 |
|
482 |
\begin{methoddesc}[Design]{getScriptString}{} |
483 |
returns the gmsh script to generate the mesh as a string. |
484 |
\end{methoddesc} |
485 |
|
486 |
\begin{methoddesc}[Design]{getCommandString}{} |
487 |
returns the gmsh command used to generate the mesh as string. |
488 |
\end{methoddesc} |
489 |
|
490 |
\begin{methoddesc}[Design]{setOptions}{\optional{algorithm=None, \optional{ optimize_quality=True,\optional{ smoothing=1}}}} |
491 |
sets options for the mesh generator. \var{algorithm} sets the algorithm to be used. |
492 |
The algorithm needs to be \var{Design.DELAUNAY} |
493 |
\var{Design.TETGEN} |
494 |
or \var{Design.NETGEN}. By default \var{Design.DELAUNAY} is used. \var{optimize_quality}=\True invokes an optimization of the mesh quality. \var{smoothing} sets the number of smoothing steps to be applied to the mesh. |
495 |
\end{methoddesc} |
496 |
|
497 |
\begin{methoddesc}[Design]{getTagMap}{} |
498 |
returns a \class{TagMap} to map the name \class{PropertySet} in the class to tag numbers generated by gmsh. |
499 |
\end{methoddesc} |