/[escript]/trunk/doc/user/pyvisi.tex
ViewVC logotype

Diff of /trunk/doc/user/pyvisi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 961 by jongui, Tue Feb 13 01:58:48 2007 UTC revision 1035 by jongui, Fri Mar 16 04:54:17 2007 UTC
# Line 1  Line 1 
1  \chapter{The module \pyvisi}  \chapter{The module \pyvisi}
2  \label{PYVISI CHAP}  \label{PYVISI CHAP}
3    \declaremodule{extension}{esys.pyvisi}
4    \modulesynopsis{Python Visualization Interface}
5    
6  \declaremodule{extension}{pyvisi}  \section{Introduction}
7  \modulesynopsis{Python visualization interface}  \pyvisi is a Python module that is used to generate 2D and 3D visualization
8    for escript and its PDE solvers: finley and bruce. This module provides
9    an easy to use interface to the \VTK library (\VTKUrl). There are three forms
10    of rendering an object: (1) online: a single rendered object is displayed and  
11    interaction (i.e. zoom and rotate) can occur, (2) offline: multiple rendered
12    objects are not displayed but are instead saved as a series of images. No
13    interaction can occur and (3) animate: similar to offline except that multiple
14    rendered objects are displayed one after another (animated on-the-fly) and
15    no images are saved.  No interaction can occur.
16    
17  \pyvisi provides an easy to use interface to the \VTK visualization  The general rule of thumb when using \pyvisi is to perform the following
18  tool. \pyvisi provides the following modules:  in sequence:
19    
20  \begin{itemize}  \begin{enumerate}
21  \item \Scene: Displays a scene in which objects are to be rendered on.  \item Create a scene instance (i.e. \Scene), which is a window in which objects are to be
22  \item \DataCollector: Deals with the source of data for visualization.  rendered on.
23  \item \Map: Displays a scalar field using a domain surface.  \item Create an input instance (i.e. \DataCollector), which reads and loads
24  \item \MapOnPlaneCut: Displays a scalar field using a domain surface cut on a plane.  the source data for visualization.
25  \item \MapOnPlaneClip: Displays a scalar field using a domain surface clipped  \item Create a data visualization instance (i.e. \Map, \Velocity, \Ellipsoid,
26          on a plane.  \Contour and \Carpet), which proccesses and manipulates the source data.
27  \item \MapOnScalarClip: Displays a scalar field using a domain surface clipped  \item Create a camera (i.e. \Camera) instance, which controls the viewing angle.
28          using a scalar value.  \item Lastly, render the object online, offline or animate.
29  \item \Velocity: Displays a vector field using arrows.  \end{enumerate}
30  \item \VelocityOnPlaneCut: Displays a vector field using arrows cut on a plane.  \begin{center}
31  \item \VelocityOnPlaneClip: Displays a vector field using arrows clipped on a  \begin{math}
32          plane.  scene \rightarrow input \rightarrow visualization \rightarrow
33  \item \Ellipsoid: Displays a tensor field using spheres.  camera \rightarrow render
34  \item \EllipsoidOnPlaneCut: Displays a tensor field using spheres cut on a  \end{math}
35          plane.  \end{center}
36  \item \EllipsoidOnPlaneClip: Displays a tensor field using spheres clipped  
37          on a plane.  The sequence in which instances are created is very important due to
38    to the dependencies among them. For example, an input instance must
39    always be created BEFORE a data visualisation instance is created.
40    If the sequence is switched, the program will throw an error because a
41    source data needs to be specified before the data can be
42    manipulated. Similarly, a camera instance must always be created
43    AFTER an input instance has been created. Otherwise, the program will throw
44    an error because the camera instance needs to calculate its
45    default position (automatically carried out in the background) based on
46    the source data.
47    
48    \section{\pyvisi Classes}
49    The following subsections give a brief overview of the important classes
50    and some of their corresponding methods. Please refer to \ReferenceGuide for
51    full details.
52    
53    
54    %#############################################################################
55    
56    
57    \subsection{Scene Classes}
58    This subsection details the instances used to setup the viewing environment.
59    
60    \subsubsection{\Scene class}
61    
62    \begin{classdesc}{Scene}{renderer = Renderer.ONLINE, num_viewport = 1,
63    x_size = 1152, y_size = 864}
64    A scene is a window in which objects are to be rendered on. Only
65    one scene needs to be created and can display data from one source. However,
66    a scene may be divided into four smaller windows called viewports (if needed).
67    The four viewports in turn can display data from four different sources.
68    \end{classdesc}
69    
70    The following are some of the methods available:
71    \begin{methoddesc}[Scene]{setBackground}{color}
72    Set the background color of the scene.
73    \end{methoddesc}
74    
75    \begin{methoddesc}[Scene]{saveImage}{image_name}
76    Save the rendered object as an image offline. No interaction can occur.
77    \end{methoddesc}
78    
79    \begin{methoddesc}[Scene]{animate}{}
80    Animate the rendered object on-the-fly. No interaction can occur.
81    \end{methoddesc}
82    
83    \begin{methoddesc}[Scene]{render}{}
84    Render the object online. Interaction can occur.
85    \end{methoddesc}
86    
87    \subsubsection{\Camera class}
88    
89    \begin{classdesc}{Camera}{scene, data_collector, viewport = Viewport.SOUTH_WEST}
90    A camera controls the display angle of the rendered object and one is
91    usually created for a \Scene. However, if a \Scene has four viewports, then a
92    separate camera may be created for each viewport.
93    \end{classdesc}
94    
95    The following are some of the methods available:
96    \begin{methoddesc}[Camera]{setFocalPoint}{position}
97    Set the focal point of the camera.
98    \end{methoddesc}
99    
100    \begin{methoddesc}[Camera]{setPosition}{position}
101    Set the position of the camera.
102    \end{methoddesc}
103    
104    \begin{methoddesc}[Camera]{setClippingRange}{near_clipping, far_clipping}
105    Set the near and far clipping plane of the camera.
106    \end{methoddesc}
107    
108    \begin{methoddesc}[Camera]{setViewUp}{position}
109    Set the view up direction of the camera.
110    \end{methoddesc}
111    
112    \begin{methoddesc}[Camera]{azimuth}{angle}
113    Rotate the camera to the left and right.
114    \end{methoddesc}
115    
116    \begin{methoddesc}[Camera]{elevation}{angle}
117    Rotate the camera to the top and bottom (only between -90 and 90).
118    \end{methoddesc}
119    
120    \begin{methoddesc}[Camera]{backView}{}
121    Rotate the camera to view the back of the rendered object.
122    \end{methoddesc}
123    
124    \begin{methoddesc}[Camera]{topView}{}
125    Rotate the camera to view the top of the rendered object.
126    \end{methoddesc}
127    
128    \begin{methoddesc}[Camera]{bottomView}{}
129    Rotate the camera to view the bottom of the rendered object.
130    \end{methoddesc}
131    
132    \begin{methoddesc}[Camera]{leftView}{}
133    Rotate the camera to view the left side of the rendered object.
134    \end{methoddesc}
135    
136    \begin{methoddesc}[Camera]{rightView}{position}
137    Rotate the camera to view the right side of the rendered object.
138    \end{methoddesc}
139    
140    \begin{methoddesc}[Camera]{isometricView}{position}
141    Rotate the camera to view the isometric angle of the rendered object.
142    \end{methoddesc}
143    
144    \begin{methoddesc}[Camera]{dolly}{distance}
145    Move the camera towards (greater than 1) and away (less than 1) from
146    the rendered object.
147    \end{methoddesc}
148    
149    \subsubsection{\Light class}
150    
151    \begin{classdesc}{Light}{scene, data_collector, viewport = Viewport.SOUTH_WEST}
152    A light controls the source of light for the rendered object and works in
153    a similar way to \Camera.
154    \end{classdesc}
155    
156    The following are some of the methods available:
157    \begin{methoddesc}[Light]{setColor}{color}
158    Set the light color.
159    \end{methoddesc}
160    
161    \begin{methoddesc}[Light]{setFocalPoint}{position}
162    Set the focal point of the light.
163    \end{methoddesc}
164    
165    \begin{methoddesc}[Light]{setPosition}{position}
166    Set the position of the camera.
167    \end{methoddesc}
168    
169    \begin{methoddesc}[Light]{setAngle}{elevation = 0, azimuth = 0}
170    An alternative to set the position and focal point of the light using the
171    elevation and azimuth degrees.
172    \end{methoddesc}
173    
174    
175    %##############################################################################
176    
177    
178    \subsection{Input Classes}
179    This subsection details the instances used to read and load the source data
180    for visualization.
181    
182    \subsubsection{\DataCollector class}
183    
184    \begin{classdesc}{DataCollector}{source = Source.XML}
185    % need to say something about the escript object not just d xml file.
186    A data collector is used to read data from an XML file or from
187    an escript object directly. Please note that a separate data collector needs
188    to be created when two or more attributes of the same type from
189    the same file needs to be specified (i.e.two scalar attributes from a file).
190    \end{classdesc}
191    
192    The following are some of the methods available:
193    \begin{methoddesc}[DataCollector]{setFileName}{file_name}
194    Set the XML source file name to be read.
195    \end{methoddesc}
196    
197    \begin{methoddesc}[DataCollector]{setData}{**args}
198    Create data using the \textless name\textgreater=\textless data\textgreater
199    pairing. Assumption is made that the data will be given in the
200    appropriate format.
201    \end{methoddesc}
202    
203    \begin{methoddesc}[DataCollector]{setActiveScalar}{scalar}
204    Specify the scalar field to load.
205    \end{methoddesc}
206    
207    \begin{methoddesc}[DataCollector]{setActiveVector}{vector}
208    Specify the vector field to load.
209    \end{methoddesc}
210    
211    \begin{methoddesc}[DataCollector]{setActiveTensor}{tensor}
212    Specify the tensor field to load.
213    \end{methoddesc}
214    
215    \subsubsection{\ImageReader class}
216    
217    \begin{classdesc}{ImageReader}{format}
218    An image reader is used to read data from an image in a variety of formats.
219    \end{classdesc}
220    
221    The following are some of the methods available:
222    \begin{methoddesc}[ImageReader]{setImageName}{image_name}
223    Set the image name to be read.
224    \end{methoddesc}
225    
226    \subsubsection{\TextTwoD class}
227    
228    \begin{classdesc}{Text2D}{scene, text, viewport = Viewport.SOUTH_WEST}
229    2D text is used to annotate the rendered object (i.e. adding titles, authors
230    and labels).
231    \end{classdesc}
232    
233    The following are some of the methods available:
234    \begin{methoddesc}[Text2D]{setFontSize}{size}
235    Set the 2D text size.
236    \end{methoddesc}
237    
238    \begin{methoddesc}[Text2D]{boldOn}{}
239    Bold the 2D text.
240    \end{methoddesc}
241    
242    \begin{methoddesc}[Text2D]{setColor}{color}
243    Set the color of the 2D text.
244    \end{methoddesc}
245    
246    Including methods from \ActorTwoD.
247    
248    
249    %##############################################################################
250    
251    
252    \subsection{Data Visualization Classes}
253    This subsection details the instances used to process and manipulate the source
254    data.
255    \subsubsection{\Map class}
256    
257    \begin{classdesc}{Map}{scene, data_collector,
258    viewport = Viewport.Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
259    Class that shows a scalar field on a domain surface. The domain surface
260    can either be colored or grey-scaled, depending on the lookup table used.
261    \end{classdesc}
262    
263    The following are some of the methods available:\\
264    Methods from \ActorThreeD.
265    
266    \subsubsection{\MapOnPlaneCut class}
267    
268    \begin{classdesc}{MapOnPlaneCut}{scene, data_collector,
269    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
270    This class works in a similar way to \Map, except that it shows a scalar
271    field on a plane. The plane can be translated and rotated along the X, Y and
272    Z axes.
273    \end{classdesc}
274    
275    The following are some of the methods available:\\
276    Methods from \ActorThreeD and \Transform.
277    
278    \subsubsection{\MapOnPlaneClip class}
279    
280    \begin{classdesc}{MapOnPlaneClip}{scene, data_collector,
281    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
282    This class works in a similar way to \MapOnPlaneCut, except that it shows a
283    scalar field clipped using a plane.
284    \end{classdesc}
285    
286    The following are some of the methods available:\\
287    Methods from \ActorThreeD, \Transform and \Clipper.
288    
289    \subsubsection{\MapOnScalarClip class}
290    
291    \begin{classdesc}{MapOnScalarClip}{scene, data_collector,
292    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
293    This class works in a similar way to \Map, except that it shows a scalar
294    field clipped using a scalar value.
295    \end{classdesc}
296    
297    The following are some of the methods available:\\
298    Methods from \ActorThreeD and \Clipper.
299    
300    \subsubsection{\Velocity class}
301    
302    \begin{classdesc}{Velocity}{scene, data_collector,
303    viewport = Viewport.SOUTH_WEST, color_mode = ColorMode.VECTOR,
304    arrow = Arrow.TWO_D, lut = Lut.COLOR, outline = True}
305    Class that shows a vector field using arrows. The arrows can either be
306    colored or grey-scaled, depending on the lookup table used. If the arrows
307    are colored, there are two possible coloring modes, either using vector data or
308    scalar data. Similarly, there are two possible types of arrows, either
309    using two-dimensional or three-dimensional.
310    \end{classdesc}
311    
312    The following are some of the methods available:\\
313    Methods from \ActorThreeD, \GlyphThreeD and \StructuredPoints.
314    
315    \subsubsection{\VelocityOnPlaneCut class}
316    
317    \begin{classdesc}{VelocityOnPlaneCut}{scene, data_collector,
318    arrow = Arrow.TWO_D, color_mode = ColorMode.VECTOR,
319    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
320    This class works in a similar way to \MapOnPlaneCut, except that
321    it shows a vector field using arrows on a plane.
322    \end{classdesc}
323    
324    The following are some of the methods available:\\
325    Methods from \ActorThreeD, \GlyphThreeD, \Transform and \StructuredPoints.
326    
327    \subsubsection{\VelocityOnPlaneClip class}
328    
329    \begin{classdesc}{VelocityOnPlaneClip}{scene, data_collector,
330    arrow = Arrow.TWO_D, color_mode = ColorMode.VECTOR,
331    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, online = True}
332    This class works in a similar way to \MapOnPlaneClip, except that it shows a
333    vector field using arrows clipped using a plane.
334    \end{classdesc}
335    
336    The following are some of the methods available:\\
337    Methods from \ActorThreeD, \GlyphThreeD, \Transform, \Clipper and
338    \StructuredPoints.
339    
340    \subsubsection{\Ellipsoid class}
341    
342    \begin{classdesc}{Ellipsoid}{scene, data_collector,
343    viewport = Viewport = SOUTH_WEST, lut = Lut.COLOR, outline = True}
344    Class that shows a tensor field using ellipsoids. The ellipsoids can either be
345    colored or grey-scaled, depending on the lookup table used.
346    \end{classdesc}
347    
348    The following are some of the methods available:\\
349    Methods from \ActorThreeD, \Sphere, \TensorGlyph and \StructuredPoints.
350    
351    \subsubsection{\EllipsoidOnPlaneCut class}
352    
353    \begin{classdesc}{EllipsoidOnPlaneCut}{scene, data_collector,
354    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
355    This class works in a similar way to \MapOnPlaneCut, except that it shows
356    a tensor field using ellipsoids cut using a plane.
357    \end{classdesc}
358    
359    The following are some of the methods available:\\
360    Methods from \ActorThreeD, \Sphere, \TensorGlyph, \Transform and
361    \StructuredPoints.
362    
363    \subsubsection{\EllipsoidOnPlaneClip class}
364    
365    \begin{classdesc}{EllipsoidOnPlaneClip}{scene, data_collector,
366    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
367    This class works in a similar way to \MapOnPlaneClip, except that it shows a
368    tensor field using ellipsoids clipped using a plane.
369    \end{classdesc}
370                    
371  \item \Contour: Shows a scalar field by contour surfaces.  The following are some of the methods available:\\
372  \item \ContourOnPlane: Shows a scalar field by contour surfaces on  Methods from \ActorThreeD, \Sphere, \TensorGlyph, \Transform, \Clipper
373  a given plane.  and \StructuredPoints.
374  \item \ContourOnClip: Shows a scalar field by contour surfaces on  
375  a given clip.  \subsubsection{\Contour class}
376    
377  \item \Image: Displays an image.  \begin{classdesc}{Contour}{scene, data_collector,
378  \item \Text: Shows some 2D text.  viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
379  \item \Camera: Controls the camera manipulation.  Class that shows a scalar field by contour surfaces. The contour surfaces can
380  \item \Light: Controls the light manipulation.  either be colored or grey-scaled, depending on the lookup table used. This
381  \item \IsoSurface: Shows a scalar field for a given value by  class can also be used to generate iso surfaces.
382  an isosurface.  \end{classdesc}
383  \item \IsoSurfaceOnPlane: Shows a scalar field for a given value by  
384  an isosurfaceon a given plane.  The following are some of the methods available:\\
385  \item \IsoSurfaceOnClip: Shows a scalar field for a given vlaue by  Methods from \ActorThreeD and \ContourModule.
386  an isosurface on a given clip.  
387  \item \StreamLines: Shows the path of particles in a vector field.  \subsubsection{\ContourOnPlaneCut class}
388  \item \Carpet: Shows a scalar field as plane deformated along  
389  the plane normal.  \begin{classdesc}{ContourOnPlaneCut}{scene, data_collector,
390  \item \Position: Defines the x,y and z coordinates rendered object.  viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
391  \item \Transform: Defines the orientation of rendered object.  This class works in a similar way to \MapOnPlaneCut, except that it shows a
392  \item \Style: Defines the style of text.  scalar field by contour surfaces on a plane.
393  \item \BlueToRed: Defines a map spectrum from blue to red.  \end{classdesc}
394  \item \RedToBlue: Defines a map spectrum from red to blue.  
395  \item \Plane: Defines the cutting/clipping of rendered objects.  The following are some of the methods available:\\
396  \end{itemize}  Methods from \ActorThreeD, \ContourModule and \Transform.
397    
398    \subsubsection{\ContourOnPlaneClip class}
399    
400    \begin{classdesc}{ContourOnPlaneClip}{scene, data_collector,
401    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
402    This class works in a similar way to \MapOnPlaneClip, except that it shows a
403    scalar field by contour surfaces clipped using a plane.
404    \end{classdesc}
405    
406    The following are some of the methods available:\\
407    Methods from \ActorThreeD, \ContourModule, \Transform and \Clipper.
408    
409    \subsubsection{\StreamLine class}
410    
411    \begin{classdesc}{StreamLine}{scene, data_collector,
412    viewport = Viewport.SOUTH_WEST, color_mode = ColorMode.VECTOR, lut = Lut.COLOR,
413    outline = True}
414    Class that shows the direction of particles of a vector field using streamlines.
415    The streamlines can either be colored or grey-scaled, depending on the lookup
416    table used. If the streamlines are colored, there are two possible coloring
417    modes, either using vector data or scalar data.
418    \end{classdesc}
419    
420    The following are some of the methods available:\\
421    Methods from \ActorThreeD, \PointSource, \StreamLineModule and \Tube.
422    
423    \subsubsection{\Carpet class}
424    
425    \begin{classdesc}{Carpet}{scene, data_collector,
426    viewport = Viewport.Viewport.SOUTH_WEST, warp_mode = WarpMode.SCALAR,
427    lut = Lut.COLOR, outline = True}
428    This class works in a similar way to \MapOnPlaneCut, except that it shows a
429    scalar field on a plane deformated (warp) along the normal. The plane can
430    either be colored or grey-scaled, depending on the lookup table used.
431    Similarly, the plane can be deformated either using scalar data or vector data.
432    \end{classdesc}
433    
434    The following are some of the methods available:\\
435    Methods from \ActorThreeD, \Warp and \Transform.
436    
437    \subsubsection{\Image class}
438    
439    \begin{classdesc}{Image}{scene, image_reader, viewport = Viewport.SOUTH_WEST}
440    Class that displays an image which can be scaled (upwards and downwards). The
441    image can also be translated and rotated along the X, Y and Z axes.
442    \end{classdesc}
443    
444    The following are some of the methods available:\\
445    Methods from \ActorThreeD, \PlaneSource and \Transform.
446    
447    
448    %##############################################################################
449    
450    
451    \subsection{Coordiante Classes}
452    This subsection details the instances used to position the rendered object.
453    
454    \begin{classdesc}{LocalPosition}{x_coor, y_coor}
455    Class that defines the local positioning coordinate system (2D).
456    \end{classdesc}
457    
458    \begin{classdesc}{GlobalPosition}{x_coor, y_coor, z_coor}
459    Class that defines the global positioning coordinate system (3D).
460    \end{classdesc}
461    
462    
463    %##############################################################################
464    
465    
466    \subsection{Supporting Classes}
467    This subsection details the supporting classes inherited by the data
468    visualization classes. These supporting
469    
470    \subsubsection{\ActorThreeD class}
471    
472    The following are some of the methods available:
473    
474    \begin{methoddesc}[Actor3D]{setOpacity}{opacity}
475    Set the opacity (transparency) of the 3D actor.
476    \end{methoddesc}
477    
478    \begin{methoddesc}[Actor3D]{setColor}{color}
479    Set the color of the 3D actor.
480    \end{methoddesc}
481    
482    \begin{methoddesc}[Actor3D]{setRepresentationToWireframe}{}
483    Set the representation of the 3D actor to wireframe.
484    \end{methoddesc}
485    
486    \subsubsection{\ActorTwoD class}
487    
488    The following are some of the methods available:
489    
490    \begin{methoddesc}[Actor2D]{setPosition}{position}
491    Set the position (XY) of the 2D actor. Default position is the lower left hand
492    corner of the window / viewport.
493    \end{methoddesc}
494    
495    \subsubsection{\Clipper class}
496    
497    The following are some of the methods available:
498    
499    \begin{methoddesc}[Clipper]{setInsideOutOn}{}
500    Clips one side of the rendered object.
501    \end{methoddesc}
502    
503    \begin{methoddesc}[Clipper]{setInsideOutOff}{}
504    Clips the other side of the rendered object.
505    \end{methoddesc}
506    
507    \begin{methoddesc}[Clipper]{setClipValue}{value}
508    Set the scalar clip value.
509    \end{methoddesc}
510    
511    \subsubsection{\ContourModule class}
512    
513    The following are some of the methods available:
514    
515    \begin{methoddesc}[ContourModule]{generateContours}{contours,
516    lower_range = None, upper_range = None}
517    Generate the specified number of contours within the specified range.
518    \end{methoddesc}
519    
520    \subsubsection{\GlyphThreeD class}
521    
522    The following are some of the methods available:
523    
524    \begin{methoddesc}[Glyph3D]{setScaleModeByVector}{}
525    Set the 3D glyph to scale according to the vector data.
526    \end{methoddesc}
527    
528    \begin{methoddesc}[Glyph3D]{setScaleModeByScalar}{}
529    Set the 3D glyph to scale according to the scalar data.
530    \end{methoddesc}
531    
532    \begin{methoddesc}[Glyph3D]{setScaleFactor}{scale_factor}
533    Set the 3D glyph scale factor.
534    \end{methoddesc}
535    
536    \subsubsection{\TensorGlyph class}
537    
538    The following are some of the methods available:
539    
540    \begin{methoddesc}[TensorGlyph]{setScaleFactor}{scale_factor}
541    Set the scale factor for the tensor glyph.
542    \end{methoddesc}
543    
544    \subsubsection{\PlaneSource class}
545    
546    The following are some of the methods available:
547    
548    \begin{methoddesc}[PlaneSource]{setPoint1}{position}
549    Set the first point from the origin of the plane source.
550    \end{methoddesc}
551    
552    \begin{methoddesc}[PlaneSource]{setPoint2}{position}
553    Set the second point from the origin of the plane source.
554    \end{methoddesc}
555    
556    \subsubsection{\PointSource class}
557    
558    The following are some of the methods available:
559    
560    \begin{methoddesc}[PointSource]{setPointSourceRadius}{radius}
561    Set the radius of the sphere.
562    \end{methoddesc}
563    
564    \begin{methoddesc}[PointSource]{setPointSourceNumberOfPoints}{points}
565    Set the number of points to generate within the sphere (the larger the
566    number of points, the more streamlines are generated).
567    \end{methoddesc}
568    
569    \subsubsection{\StructuredPoints class}
570    
571    The following are some of the methods available:
572    
573    \begin{methoddesc}[StructuredPoints]{setDimension}{x, y, z}
574    Set the dimension on the x, y and z axes. The smaller the dimension,
575    the more points are populated.
576    \end{methoddesc}
577    
578    \subsubsection{\Sphere class}
579    
580    The following are some of the methods available:
581    
582    \begin{methoddesc}[Sphere]{setThetaResolution}{resolution}
583    Set the theta resolution of the sphere.
584    \end{methoddesc}
585    
586    \begin{methoddesc}[Sphere]{setPhiResolution}{resolution}
587    Set the phi resoluton of the sphere.
588    \end{methoddesc}
589    
590    \subsubsection{\StreamLineModule class}
591    
592    The following are some of the methods available:
593    
594    \begin{methoddesc}[StreamLineModule]{setMaximumPropagationTime}{time}
595    Set the maximum length of the streamline expressed in elapsed time.
596    \end{methoddesc}
597    
598    \begin{methoddesc}[StreamLineModule]{setIntegrationToBothDirections}{}
599    Set the integration to occur both sides: forward (where the streamline
600    goes) and backward (where the streamline came from).
601    \end{methoddesc}
602    
603    \subsubsection{\Transform class}
604    
605    \begin{methoddesc}[Transform]{translate}{x_offset, y_offset, z_offset}
606    Translate the rendered object along the x, y and z-axes.
607    \end{methoddesc}
608    
609    \begin{methoddesc}[Transform]{rotateX}{angle}
610    Rotate the plane along the x-axis.
611    \end{methoddesc}
612    
613    \begin{methoddesc}[Transform]{rotateY}{angle}
614    Rotate the plane along the y-axis.
615    \end{methoddesc}
616    
617    \begin{methoddesc}[Transform]{rotateZ}{angle}
618    Rotate the plane along the z-axis.
619    \end{methoddesc}
620    
621    \begin{methoddesc}[Transform]{setPlaneToXY}{offset = 0}
622    Set the plane orthogonal to the z-axis.
623    \end{methoddesc}
624    
625    \begin{methoddesc}[Transform]{setPlaneToYZ}{offset = 0}
626    Set the plane orthogonal to the x-axis.
627    \end{methoddesc}
628    
629    \begin{methoddesc}[Transform]{setPlaneToXZ}{offset = 0}
630    Set the plane orthogonal to the y-axis.
631    \end{methoddesc}
632    
633    \subsubsection{\Tube class}
634    
635    \begin{methoddesc}[Tube]{setTubeRadius}{radius}
636    Set the radius of the tube.
637    \end{methoddesc}
638    
639    \begin{methoddesc}[Tube]{setTubeRadiusToVaryByVector}{}
640    Set the radius of the tube to vary by vector data.
641    \end{methoddesc}
642    
643    \begin{methoddesc}[Tube]{setTubeRadiusToVaryByScalar}{}
644    Set the radius of the tube to vary by scalar data.
645    \end{methoddesc}
646    
647    \subsubsection{\Warp class}
648    
649    \begin{methoddesc}[Warp]{setScaleFactor}{scale_factor}
650    Set the displacement scale factor.
651    \end{methoddesc}
652    
653    
654    \section{Online Rendering Mechnism}
655    
656    
657    
658    same word on rendering, off-line, on-line, how to rotate, zoom, close the window, ...
659    
660    %==============================================
661    \section{How to Make a Movie}

Legend:
Removed from v.961  
changed lines
  Added in v.1035

  ViewVC Help
Powered by ViewVC 1.1.26