/[escript]/trunk/doc/user/pyvisi.tex
ViewVC logotype

Diff of /trunk/doc/user/pyvisi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 625 by gross, Thu Mar 23 00:41:25 2006 UTC revision 1076 by jongui, Wed Apr 4 06:40:33 2007 UTC
# Line 1  Line 1 
 %  
 %           Copyright © 2006 by ACcESS MNRF  
 %               \url{http://www.access.edu.au  
 %         Primary Business: Queensland, Australia.  
 %   Licensed under the Open Software License version 3.0  
 %      http://www.opensource.org/license/osl-3.0.php  
 %  
1  \chapter{The module \pyvisi}  \chapter{The module \pyvisi}
2  \declaremodule{extension}{pyvisi}  \label{PYVISI CHAP}
3  \modulesynopsis{visualization interface}  \declaremodule{extension}{esys.pyvisi}
4    \modulesynopsis{Python Visualization Interface}
5    
6  The idea behind is to provide an easy to use interface and unified to a variety of  \section{Introduction}
7  visualization tools like \VTK, \OpenDX and \GnuPlot.  \pyvisi is a Python module that is used to generate 2D and 3D visualization
8    for escript and its PDE solvers: finley and bruce. This module provides
9    an easy to use interface to the \VTK library (\VTKUrl). There are three forms
10    of rendering an object. (1) Online - object is rendered on-screen with
11    interaction (i.e. zoom and rotate) capability, (2) Offline - object is rendered
12    off-screen with no interation capability and (3) Display - object is rendered
13    on-screen but with no interaction capability (able to procude on-the-fly
14    animation). All three approaches has the option to save the rendered object as
15    an image.
16    
17  The following script illustartes the usage of \pyvisi together with the  The following points outlines the general guidelines when using \pyvisi:
 \VTK library:  
 \begin{python}  
 from esys.pyvisi import *                # base level visualisation stuff  
 from esys.pyvisi.renderers.vtk import *  # vtk renderer module  
 from esys.escript import *  
 from esys.finley import Brick  
 # now make some data of some kind  
 domain = Brick(3,5,7)  # a Finley domain  
 vectorData = domain.getX()  # get vector data from the domain nodes  
 # define the scene object  
 scene = Scene()  
 # create an ArrowPlot object  
 plot = ArrowPlot(scene)  
 # add the plot to the scene  
 scene.add(plot)  
 # assign some data to the plot  
 plot.setData(vectorData)  
 # render the scene  
 scene.render()  
 # saving a scene  
 scene.save(file="example.jpg", format="jpeg")  
 \begin{python}  
 A \Scene is a container for all of the kinds of things you want to put into your plot,  
 for instance, images, domaines, arrow plots, contour plots, spheres etc.  
 The renderer is specified in the scene initialisation. In fact the  
 \code{from esys.pyvisi.renderers.vtk import *} provides the specific implementation for  
 \VTK  
   
   
 \begin{verbose}  
 class ArrowPlot3D(Plot):  
     """  
     Arrow field plot in three dimensions  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the ArrowPlot3D class  
           
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
         @param options: Dictionary of extra options  
         @type options: dict  
   
         @param fname: Filename of the input vtk file  
         @type fname: string  
   
         @param format: Format of the input vtk file ('vtk' or 'vtk-xml')  
         @type format: string  
   
     @param vectors: the name of the vector data in the vtk file to use  
     @type vectors: string  
         """  
 class ArrowPlot(Plot):  
     """  
     Arrow field plot  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the ArrowPlot class  
           
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
         """  
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
     @param options: Dictionary of extra options  
     @type options: dict  
   
     @param fname: the name of the input vtk file  
     @type fname: string  
   
     @param format: the format of the input vtk file ('vtk' or 'vtk-xml')  
     @type format: string  
   
     @param vectors: the name of the vector data in the vtk file to use  
     @type vectors: string  
         """  
 class Axes(Plot):  
     """  
     Axes class  
     """  
     def __init__(self):  
         """  
         Initialisation of Axes object  
         """  
         debugMsg("Called Axes.__init__()")  
         Plot.__init__(self)  
   
 class BallPlot(Plot):  
     """  
     Ball plot  
     """  
     def __init__(self, scene):  
   
     def setData(self, points=None,  
             fname=None, format=None,  
             radii=None, colors=None, tags=None):  
         """  
         Set data to the plot  
         @param points: the array to use for the points of the sphere  
         locations in space  
         @type points: float array  
   
         @param fname: the name of the input vtk file  
         @type fname: string  
   
         @param format: the format of the input vtk file ('vtk' or 'vtk-xml')  
         @type format: string  
   
         @param radii: the name of the scalar array in the vtk unstructured  
         grid to use as the radii of the balls  
         @type radii: float array  
   
         @param colors: the name of the scalar array in the vtk unstructured  
         grid to use as the colour tags of the balls  
         @type colors: string  
   
         @param tags: the name of the scalar array in the vtk unstructured  
         grid to use as the colour of the tags of the balls  
         @type tags: integer array  
         """  
   
 class Box(Item):  
     """  
     Generic class for Box objects  
   
     To define a box one specify one of three groups of things:  
       - The bounds of the box: xmin, xmax, ymin, ymax, zmin, zmax  
       - The dimensions and origin: width, height, depth and origin  
       - The bottom left front and top right back corners: blf, trb  
     """  
   
     def __init__(self):  
         """  
         Initialisation of the Box object  
         """  
         debugMsg("Called Box.__init__()")  
         Item.__init__(self)  
   
         # define a box in many ways, either by its centre and width, height  
         # and depth, or by its bounds, xmin, xmax, ymin, ymax, zmin, zmax,  
         # or by its bottom left front and top right back points.  
   
         # set the default bounds  
         self.xmin = -0.5  
         self.xmax = 0.5  
         self.ymin = -0.5  
         self.ymax = 0.5  
         self.zmin = -0.5  
         self.zmax = 0.5  
   
         # set the default origin (the centre of the box)  
         self.origin = ((self.xmin + self.xmax)/2.0,  
                 (self.ymin + self.ymax)/2.0,  
                 (self.zmin + self.zmax)/2.0)  
   
         # set the default dimensions  
         self.width = self.xmax - self.xmin  
         self.height = self.ymax - self.ymin  
         self.depth = self.zmax - self.zmin  
   
         # set the default blf and trb points  
         self.blf = (self.xmin, self.ymin, self.zmin)  
         self.trb = (self.xmax, self.ymax, self.zmax)  
   
         # tolerance for calculated variables checking purposes  
         self.tolerance = 1e-8  
   
     def setBounds(self, xmin, xmax, ymin, ymax, zmin, zmax):  
         """  
         Set the bounds of the box  
         """  
     def getBounds(self):  
         """  
         Get the current bounds of the box  
         """  
   
     def setOrigin(self, xo, yo, zo):  
         """  
         Set the origin of the box  
         """  
     def getOrigin(self):  
         """  
         Get the current origin of the box  
         """  
         debugMsg("Called Box.getOrigin()")  
         return self.origin  
   
     def setWidth(self, width):  
         """  
         Set the width of the box  
         """  
     def getWidth(self):  
         """  
         Get the current box width  
         """  
         debugMsg("Called Box.getWidth()")  
         return self.width  
   
     def setHeight(self, height):  
         """  
         Set the box height  
         """  
   
     def getHeight(self):  
         """  
         Get the current box height  
         """  
         debugMsg("Called Box.getHeight()")  
         return self.height  
   
     def setDepth(self, depth):  
         """  
         Set the box depth  
         """  
   
     def getDepth(self):  
         """  
         Get the current box depth  
         """  
         debugMsg("Called Box.getDepth()")  
         return self.depth  
   
     def setBLF(self, bottom, left, front):  
         """  
         Set the position of the bottom, left, front corner  
         """  
   
     def getBLF(self):  
         """  
         Get the current position of the bottom, left, front corner  
         """  
         debugMsg("Called Box.getBLF()")  
         return self.blf  
   
     def setTRB(self, top, right, back):  
         """  
         Set the position of the top, right, back corner  
         """  
   
     def getTRB(self):  
         """  
         Get the current position of the top, right, back corner  
         """  
         debugMsg("Called Box.getTRB()")  
         return self.trb  
   
   
 class ClipBox(Box):  
     """  
     Clip box class: used to clip data sets with a box  
   
     A box in this sense means three planes at right angles to one another  
     """  
   
     def __init__(self, plot):  
         """  
         Intialisation of the ClipBox object  
         """  
   
     def setInsideOut(self, insideOut):  
         """  
         Set the inside out flag  
         """  
   
     def getInsideOut(self):  
         """  
         Get the current value of the inside out flag  
         """  
   
 class Camera(Item):  
     """  
     Camera class  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the Camera object  
   
         @param scene: The Scene object to add the Camera object to  
         @type scene: Scene object  
         """  
     def setPosition(self, *pos):  
         """  
         Set position of camera within scene  
   
         @param pos: Position to set camera in terms of x,y,z coordinates  
         @type pos: tuple  
         """  
   
     def getPosition(self):  
         """  
         Get the position of Camera within Scene  
   
         Returns the position in a tuple of form (xPos, yPos, zPos)  
         """  
         debugMsg("Called Camera.getPosition()")  
   
         return (self.xPos, self.yPos, self.zPos)  
   
     def setFocalPoint(self, *pos):  
         """  
         Sets the focal point of the Camera with the Scene  
   
         @param pos: Position to set the focal point  
         @type pos: tuple  
         """  
   
     def getFocalPoint(self):  
         """  
         Get the position of the focal point of the Camera  
   
         Returns the position of the focal point in a tuple of form  
         (xPos, yPos, zPos)  
         """  
   
     def setElevation(self, elevation):  
         """  
         Set the elevation angle (in degrees) of the Camera  
   
         @param elevation: The elevation angle (in degrees) of the Camera  
         @type elevation: float  
         """  
   
         return  
   
     def getElevation(self):  
         """  
         Gets the elevation angle (in degrees) of the Camera  
         """  
   
     def setAzimuth(self, azimuth):  
         """  
         Set the azimuthal angle (in degrees) of the Camera  
   
         @param azimuth: The azimuthal angle (in degrees) of the Camera  
         @type azimuth: float  
         """  
   
     def getAzimuth(self):  
         """  
         Get the azimuthal angle (in degrees) of the Camera  
         """  
 class ContourPlot(Plot):  
     """  
     Contour plot  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the ContourPlot class  
           
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
         """  
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
         @param options: Dictionary of extra options  
         @type options: dict  
   
         @param fname: the name of the input vtk file  
         @type fname: string  
   
         @param format: the format of the input vtk file ('vtk' or 'vtk-xml')  
         @type format: string  
   
         @param scalars: the scalar data in the vtk file to use  
         @type scalars: string  
         """  
   
 class EllipsoidPlot(Plot):  
     """  
     Ellipsoid plot  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the EllipsoidPlot class  
   
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
         """  
         debugMsg("Called EllipsoidPlot.__init__()")  
         Plot.__init__(self, scene)  
   
         self.renderer = scene.renderer  
         self.renderer.addToInitStack("# EllipsoidPlot.__init__()")  
   
         # labels and stuff  
         self.title = None  
         self.xlabel = None  
         self.ylabel = None  
         self.zlabel = None  
           
         # default values for fname, format and tensors  
         self.fname = None  
         self.format = None  
     self.tensors = None  
   
     # default values for shared info  
     self.escriptData = False  
     self.otherData = False  
   
         # add the plot to the scene  
         scene.add(self)  
   
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
         @param options: Dictionary of keyword options to the method  
         @type options: dict  
   
     @param fname: the name of the input vtk file  
     @type fname: string  
   
     @param format: the format of the input vtk file ('vtk' or 'vtk-xml')  
     @type format: string  
   
     @param tensors: the name of the tensor data in the vtk file to use  
     @type tensors: string  
         """  
   
 class Image(Item):  
     """  
     Image class.  Generic class to handle image data.  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the Image class object  
           
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
         debugMsg("Called Image.__init__()")  
         Item.__init__(self)  
18    
19          if scene is not None:  \begin{enumerate}
20              self.renderer = scene.renderer  \item Create a \Scene instance, a window in which objects are to be rendered on.
21            \item Create a data input instance (i.e. \DataCollector or \ImageReader), which
22      def load(self, fname):  reads and loads the source data for visualization.
23          """  \item Create a data visualization instance (i.e. \Map, \Velocity, \Ellipsoid,
24          Loads image data from file.  \Contour, \Carpet, \StreamLine or \Image), which proccesses and manipulates the
25    source data.
26          @param fname: The filename from which to load image data  \item Create a \Camera or \Light instance, which controls the viewing angle and
27          @type fname: string  lighting effects.
28          """  \item Lastly, render the object using either the Online, Offline or Display
29          debugMsg("Called Image.load()")  option.
30    \end{enumerate}
31          fileCheck(fname)  \begin{center}
32    \begin{math}
33          return  scene \rightarrow data input \rightarrow data visualization \rightarrow
34    camera/light \rightarrow render
35  class JpegImage(Image):  \end{math}
36      """  \end{center}
     Subclass of Image class to explicitly handle jpeg images  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the JpegImage class object  
   
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
   
     def load(self, fname):  
         """  
         Loads jpeg image data from file.  
   
         @param fname: The filename from which to load jpeg image data  
         @type fname: string  
         """  
   
 class PngImage(Image):  
     """  
     Subclass of Image class to explicitly handle png images  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the PngImage class object  
   
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
   
     def load(self, fname):  
         """  
         Loads png image data from file.  
   
         @param fname: The filename from which to load png image data  
         @type fname: string  
         """  
 class BmpImage(Image):  
     """  
     Subclass of Image class to explicitly handle bmp images  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the BmpImage class object  
   
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
     def load(self, fname):  
         """  
         Loads bmp image data from file.  
   
         @param fname: The filename from which to load bmp image data  
         @type fname: string  
         """  
   
 class TiffImage(Image):  
     """  
     Subclass of Image class to explicitly handle tiff images  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the TiffImage class object  
   
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
     def load(self, fname):  
         """  
         Loads tiff image data from file.  
   
         @param fname: The filename from which to load tiff image data  
         @type fname: string  
         """  
 class PnmImage(Image):  
     """  
     Subclass of Image class to explicitly handle pnm (ppm, pgm, pbm) images  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the PnmImage class object  
   
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
           
     def load(self, fname):  
         """  
         Loads pnm (ppm, pgm, pbm) image data from file.  
   
         @param fname: The filename from which to load pnm image data  
         @type fname: string  
         """  
   
 class PsImage(Image):  
     """  
     Subclass of Image class to explicitly handle ps images  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the PsImage class object  
   
         This object is B{only} used for generating postscript output  
   
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
   
     def load(self, fname):  
         """  
         Loads ps image data from file.  
   
         B{NOT} supported by this renderer module  
   
         @param fname: The filename from which to load ps image data  
         @type fname: string  
         """  
         debugMsg("Called PsImage.load()")  
37    
38          # need to check if the file exists  The sequence in which instances are created is very important due to
39          fileCheck(fname)  to the dependencies among them. For example, a data input instance must
40    always be created BEFORE a data visualisation instance.
41    If the sequence is switched, the program will throw an error because a
42    source data must to be specified before it can be
43    manipulated. Similarly, a camera and light instance must always be created
44    AFTER an input instance, otherwise the program will throw
45    an error because the camera and light instance needs to calculates its
46    position based on the source data.
47    
48          # this ability not handled by this renderer module  \section{\pyvisi Classes}
49          unsupportedError()  The following subsections give a brief overview of the important classes
50            and some of their corresponding methods. Please refer to \ReferenceGuide for
51          return  full details.
52    
     def render(self):  
         """  
         Does PsImage object specific (pre)rendering stuff  
         """  
         debugMsg("Called PsImage.render()")  
   
         return  
   
 class PdfImage(Image):  
     """  
     Subclass of Image class to explicitly handle pdf images  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the PdfImage class object  
   
         This object is B{only} used for generating pdf output  
   
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
   
     def load(self, fname):  
         """  
         Loads pdf image data from file.  
   
         B{NOT} supported by this renderer module  
   
         @param fname: The filename from which to load pdf image data  
         @type fname: string  
         """  
   
 class IsosurfacePlot(Plot):  
     """  
     Isosurface plot  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the IsosurfacePlot class  
           
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
         """  
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
         @param options: Dictionary of keyword options to the method  
         @type options: dict  
   
     @param fname: the name of the input vtk file  
     @type fname: string  
   
     @param format: the format of the input vtk file ('vtk' or 'vtk-xml')  
     @type format: string  
   
     @param scalars: the name of the scalar data in the vtk file to use  
     @type scalars: string  
         """  
   
 class LinePlot(Plot):  
     """  
     Line plot  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the LinePlot class  
           
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
         """  
   
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
     @param options: Dictionary of extra options  
     @type options: dict  
   
     @param offset: whether or not to offset the lines from one another  
     @type offset: boolean  
   
     @param fname: Filename of the input vtk file  
     @type fname: string  
   
     @param format: format of the input vtk file ('vtk' or 'vtk-xml')  
     @type format: string  
   
     @param scalars: the name of the scalar data in the vtk file to use  
     @type scalars: string  
         """  
   
 class OffsetPlot(Plot):  
     """  
     Offset plot  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the OffsetPlot class  
           
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
         """  
   
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
         @param options: Dictionary of extra options  
         @type options: dict  
   
     @param fname: Filename of the input vtk file  
     @type fname: string  
   
     @param format: Format of the input vtk file ('vtk' or 'vtk-xml')  
     @type format: string  
   
     @param scalars: the name of the scalar data in the vtk file to use  
     @type scalars: string  
         """  
 class Plane(Item):  
     """  
     Generic class for Plane objects  
     """  
   
     def __init__(self, scene):  
         """  
         Initialisation of the Plane object  
         """  
   
     def setOrigin(self, x, y, z):  
         """  
         Set the origin of the plane  
         """  
   
     def getOrigin(self):  
         """  
         Get the current origin of the plane  
         """  
   
     def setNormal(self, vx, vy, vz):  
         """  
         Set the normal vector to the plane  
         """  
   
     def getNormal(self):  
         """  
         Get the current normal vector to the plane  
         """  
   
     def mapImageToPlane(self, image):  
         # this really needs to go somewhere else!!!  
         """  
         Maps an Image object onto a Plane object  
         """  
   
 class CutPlane(Plane):  
     """  
     Cut plane class: used to cut data sets with a plane  
   
     Cut plane objects define a plane to cut a data set or plot by and return  
     the data along the intersection between the data set or plot with the  
     defined plane.  
     """  
   
     def __init__(self):  
         """  
         Intialisation of the CutPlane object  
         """  
   
   
 class ClipPlane(Plane):  
     """  
     Class for planes used to clip datasets  
     """  
   
     def __init__(self):  
         """  
         Intialisation of the ClipPlane object  
         """  
   
     def setInsideOut(self, insideOut):  
         """  
         Set the inside out flag  
         """  
   
     def getInsideOut(self):  
         """  
         Get the current value of the inside out flag  
         """  
   
 class Plot(Item):  
     """  
     Abstract plot class  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the abstract Plot class  
           
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
         """  
   
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
     @param options: Dictionary of extra options  
     @type options: dict  
         """  
   
     def setTitle(self, title):  
         """  
         Set the plot title  
   
         @param title: the string holding the title to the plot  
         @type title: string  
         """  
         debugMsg("Called setTitle() in Plot()")  
   
   
     def setXLabel(self, label):  
         """  
         Set the label of the x-axis  
   
         @param label: the string holding the label of the x-axis  
         @type label: string  
         """  
   
     def setYLabel(self, label):  
         """  
         Set the label of the y-axis  
   
         @param label: the string holding the label of the y-axis  
         @type label: string  
         """  
   
     def setZLabel(self, label):  
         """  
         Set the label of the z-axis  
   
         @param label: the string holding the label of the z-axis  
         @type label: string  
         """  
   
     def setLabel(self, axis, label):  
         """  
         Set the label of a given axis  
   
         @param axis: string (Axis object maybe??) of the axis (e.g. x, y, z)  
         @type axis: string or Axis object  
   
         @param label: string of the label to set for the axis  
         @type label: string  
         """  
   
 class Renderer(BaseRenderer):  
     """  
     A generic object holding a renderer of a Scene().  
     """  
   
     def __init__(self):  
         """  
         Initialisation of Renderer() class  
         """  
         debugMsg("Called Renderer.__init__()")  
         BaseRenderer.__init__(self)  
   
         # initialise some attributes  
         self.renderWindowWidth = 640  
         self.renderWindowHeight = 480  
   
         # what is the name of my renderer?  
         self.name = _rendererName  
   
         # the namespace to run the exec code  
         self.renderDict = {}  
   
         # initialise the evalstack  
         self._evalStack = ""  
   
         # keep the initial setup of the module for later reuse  
         self._initStack = ""  
   
         # initialise the renderer module  
         self.runString("# Renderer._initRendererModule")  
         self.addToInitStack("import vtk")  
         self.addToInitStack("from numarray import *")  
   
 __revision__ = '$Revision: 1.33 $'  
   
 class Scene(BaseScene):  
     """  
     The main object controlling the scene.  
       
     Scene object methods and classes overriding the BaseScene class.  
     """  
   
     def __init__(self):  
         """  
         The init function  
         """  
   
     def add(self, obj):  
         """  
         Add a new item to the scene  
   
         @param obj: The object to add to the scene  
         @type obj: object  
         """  
   
     def place(self, obj):  
         """  
         Place an object within a scene  
   
         @param obj: The object to place within the scene  
         @type obj: object  
         """  
   
     def render(self, pause=False, interactive=False):  
         """  
         Render (or re-render) the scene  
           
         Render the scene, either to screen, or to a buffer waiting for a save  
53    
54          @param pause: Flag to wait at end of script evaluation for user input  %#############################################################################
55          @type pause: boolean  
56    
57    \subsection{Scene Classes}
58    This subsection details the instances used to setup the viewing environment.
59    
60    \subsubsection{\Scene class}
61    
62    \begin{classdesc}{Scene}{renderer = Renderer.ONLINE, num_viewport = 1,
63    x_size = 1152, y_size = 864}
64    A scene is a window in which objects are to be rendered on. Only
65    one scene needs to be created and can display data from one source. However,
66    a scene may be divided into four smaller windows called viewports (if needed).
67    The four viewports in turn can display data from four different sources.
68    \end{classdesc}
69    
70    The following are some of the methods available:
71    \begin{methoddesc}[Scene]{setBackground}{color}
72    Set the background color of the scene.
73    \end{methoddesc}
74    
75    \begin{methoddesc}[Scene]{saveImage}{image_name}
76    Save the rendered object as an image offline. No interaction can occur.
77    \end{methoddesc}
78    
79    \begin{methoddesc}[Scene]{animate}{}
80    Animate the rendered object on-the-fly. No interaction can occur.
81    \end{methoddesc}
82    
83    \begin{methoddesc}[Scene]{render}{}
84    Render the object online. Interaction can occur.
85    \end{methoddesc}
86    
87    \subsubsection{\Camera class}
88    
89    \begin{classdesc}{Camera}{scene, data_collector, viewport = Viewport.SOUTH_WEST}
90    A camera controls the display angle of the rendered object and one is
91    usually created for a \Scene. However, if a \Scene has four viewports, then a
92    separate camera may be created for each viewport.
93    \end{classdesc}
94    
95    The following are some of the methods available:
96    \begin{methoddesc}[Camera]{setFocalPoint}{position}
97    Set the focal point of the camera.
98    \end{methoddesc}
99    
100    \begin{methoddesc}[Camera]{setPosition}{position}
101    Set the position of the camera.
102    \end{methoddesc}
103    
104    \begin{methoddesc}[Camera]{setClippingRange}{near_clipping, far_clipping}
105    Set the near and far clipping plane of the camera.
106    \end{methoddesc}
107    
108    \begin{methoddesc}[Camera]{setViewUp}{position}
109    Set the view up direction of the camera.
110    \end{methoddesc}
111    
112    \begin{methoddesc}[Camera]{azimuth}{angle}
113    Rotate the camera to the left and right.
114    \end{methoddesc}
115    
116    \begin{methoddesc}[Camera]{elevation}{angle}
117    Rotate the camera to the top and bottom (only between -90 and 90).
118    \end{methoddesc}
119    
120    \begin{methoddesc}[Camera]{backView}{}
121    Rotate the camera to view the back of the rendered object.
122    \end{methoddesc}
123    
124    \begin{methoddesc}[Camera]{topView}{}
125    Rotate the camera to view the top of the rendered object.
126    \end{methoddesc}
127    
128    \begin{methoddesc}[Camera]{bottomView}{}
129    Rotate the camera to view the bottom of the rendered object.
130    \end{methoddesc}
131    
132    \begin{methoddesc}[Camera]{leftView}{}
133    Rotate the camera to view the left side of the rendered object.
134    \end{methoddesc}
135    
136    \begin{methoddesc}[Camera]{rightView}{position}
137    Rotate the camera to view the right side of the rendered object.
138    \end{methoddesc}
139    
140    \begin{methoddesc}[Camera]{isometricView}{position}
141    Rotate the camera to view the isometric angle of the rendered object.
142    \end{methoddesc}
143    
144    \begin{methoddesc}[Camera]{dolly}{distance}
145    Move the camera towards (greater than 1) and away (less than 1) from
146    the rendered object.
147    \end{methoddesc}
148    
149    \subsubsection{\Light class}
150    
151    \begin{classdesc}{Light}{scene, data_collector, viewport = Viewport.SOUTH_WEST}
152    A light controls the source of light for the rendered object and works in
153    a similar way to \Camera.
154    \end{classdesc}
155    
156    The following are some of the methods available:
157    \begin{methoddesc}[Light]{setColor}{color}
158    Set the light color.
159    \end{methoddesc}
160    
161    \begin{methoddesc}[Light]{setFocalPoint}{position}
162    Set the focal point of the light.
163    \end{methoddesc}
164    
165    \begin{methoddesc}[Light]{setPosition}{position}
166    Set the position of the camera.
167    \end{methoddesc}
168    
169    \begin{methoddesc}[Light]{setAngle}{elevation = 0, azimuth = 0}
170    An alternative to set the position and focal point of the light using the
171    elevation and azimuth degrees.
172    \end{methoddesc}
173    
174    
175    %##############################################################################
176    
177    
178    \subsection{Input Classes}
179    This subsection details the instances used to read and load the source data
180    for visualization.
181    
182    \subsubsection{\DataCollector class}
183    
184    \begin{classdesc}{DataCollector}{source = Source.XML}
185    % need to say something about the escript object not just d xml file.
186    A data collector is used to read data from an XML file or from
187    an escript object directly. Please note that a separate data collector needs
188    to be created when two or more attributes of the same type from
189    the same file needs to be specified (i.e.two scalar attributes from a file).
190    \end{classdesc}
191    
192    The following are some of the methods available:
193    \begin{methoddesc}[DataCollector]{setFileName}{file_name}
194    Set the XML source file name to be read.
195    \end{methoddesc}
196    
197    \begin{methoddesc}[DataCollector]{setData}{**args}
198    Create data using the \textless name\textgreater=\textless data\textgreater
199    pairing. Assumption is made that the data will be given in the
200    appropriate format.
201    \end{methoddesc}
202    
203    \begin{methoddesc}[DataCollector]{setActiveScalar}{scalar}
204    Specify the scalar field to load.
205    \end{methoddesc}
206    
207    \begin{methoddesc}[DataCollector]{setActiveVector}{vector}
208    Specify the vector field to load.
209    \end{methoddesc}
210    
211    \begin{methoddesc}[DataCollector]{setActiveTensor}{tensor}
212    Specify the tensor field to load.
213    \end{methoddesc}
214    
215    \subsubsection{\ImageReader class}
216    
217    \begin{classdesc}{ImageReader}{format}
218    An image reader is used to read data from an image in a variety of formats.
219    \end{classdesc}
220    
221    The following are some of the methods available:
222    \begin{methoddesc}[ImageReader]{setImageName}{image_name}
223    Set the image name to be read.
224    \end{methoddesc}
225    
226    \subsubsection{\TextTwoD class}
227    
228    \begin{classdesc}{Text2D}{scene, text, viewport = Viewport.SOUTH_WEST}
229    2D text is used to annotate the rendered object (i.e. adding titles, authors
230    and labels).
231    \end{classdesc}
232    
233    The following are some of the methods available:
234    \begin{methoddesc}[Text2D]{setFontSize}{size}
235    Set the 2D text size.
236    \end{methoddesc}
237    
238    \begin{methoddesc}[Text2D]{boldOn}{}
239    Bold the 2D text.
240    \end{methoddesc}
241    
242    \begin{methoddesc}[Text2D]{setColor}{color}
243    Set the color of the 2D text.
244    \end{methoddesc}
245    
246    Including methods from \ActorTwoD.
247    
248    
249    %##############################################################################
250    
251    
252    \subsection{Data Visualization Classes}
253    This subsection details the instances used to process and manipulate the source
254    data.
255    \subsubsection{\Map class}
256    
257    \begin{classdesc}{Map}{scene, data_collector,
258    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False,
259    outline = True}
260    Class that shows a scalar field on a domain surface. The domain surface
261    can either be colored or grey-scaled, depending on the lookup table used.
262    \end{classdesc}
263    
264    The following are some of the methods available:\\
265    Methods from \ActorThreeD.
266    
267    \subsubsection{\MapOnPlaneCut class}
268    
269    \begin{classdesc}{MapOnPlaneCut}{scene, data_collector,
270    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False,
271    outline = True}
272    This class works in a similar way to \Map, except that it shows a scalar
273    field on a plane. The plane can be translated and rotated along the X, Y and
274    Z axes.
275    \end{classdesc}
276    
277    The following are some of the methods available:\\
278    Methods from \ActorThreeD and \Transform.
279    
280    \subsubsection{\MapOnPlaneClip class}
281    
282    \begin{classdesc}{MapOnPlaneClip}{scene, data_collector,
283    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False,
284    outline = True}
285    This class works in a similar way to \MapOnPlaneCut, except that it shows a
286    scalar field clipped using a plane.
287    \end{classdesc}
288    
289    The following are some of the methods available:\\
290    Methods from \ActorThreeD, \Transform and \Clipper.
291    
292    \subsubsection{\MapOnScalarClip class}
293    
294    \begin{classdesc}{MapOnScalarClip}{scene, data_collector,
295    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False,
296    outline = True}
297    This class works in a similar way to \Map, except that it shows a scalar
298    field clipped using a scalar value.
299    \end{classdesc}
300    
301    The following are some of the methods available:\\
302    Methods from \ActorThreeD and \Clipper.
303    
304    \subsubsection{\Velocity class}
305    
306    \begin{classdesc}{Velocity}{scene, data_collector,
307    viewport = Viewport.SOUTH_WEST, color_mode = ColorMode.VECTOR,
308    arrow = Arrow.TWO_D, lut = Lut.COLOR, outline = True}
309    Class that shows a vector field using arrows. The arrows can either be
310    colored or grey-scaled, depending on the lookup table used. If the arrows
311    are colored, there are two possible coloring modes, either using vector data or
312    scalar data. Similarly, there are two possible types of arrows, either
313    using two-dimensional or three-dimensional.
314    \end{classdesc}
315    
316    The following are some of the methods available:\\
317    Methods from \ActorThreeD, \GlyphThreeD and \StructuredPoints.
318    
319    \subsubsection{\VelocityOnPlaneCut class}
320    
321    \begin{classdesc}{VelocityOnPlaneCut}{scene, data_collector,
322    arrow = Arrow.TWO_D, color_mode = ColorMode.VECTOR,
323    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
324    This class works in a similar way to \MapOnPlaneCut, except that
325    it shows a vector field using arrows on a plane.
326    \end{classdesc}
327    
328    The following are some of the methods available:\\
329    Methods from \ActorThreeD, \GlyphThreeD, \Transform and \StructuredPoints.
330    
331    \subsubsection{\VelocityOnPlaneClip class}
332    
333    \begin{classdesc}{VelocityOnPlaneClip}{scene, data_collector,
334    arrow = Arrow.TWO_D, color_mode = ColorMode.VECTOR,
335    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, online = True}
336    This class works in a similar way to \MapOnPlaneClip, except that it shows a
337    vector field using arrows clipped using a plane.
338    \end{classdesc}
339    
340    The following are some of the methods available:\\
341    Methods from \ActorThreeD, \GlyphThreeD, \Transform, \Clipper and
342    \StructuredPoints.
343    
344    \subsubsection{\Ellipsoid class}
345    
346    \begin{classdesc}{Ellipsoid}{scene, data_collector,
347    viewport = Viewport = SOUTH_WEST, lut = Lut.COLOR, outline = True}
348    Class that shows a tensor field using ellipsoids. The ellipsoids can either be
349    colored or grey-scaled, depending on the lookup table used.
350    \end{classdesc}
351    
352    The following are some of the methods available:\\
353    Methods from \ActorThreeD, \Sphere, \TensorGlyph and \StructuredPoints.
354    
355    \subsubsection{\EllipsoidOnPlaneCut class}
356    
357    \begin{classdesc}{EllipsoidOnPlaneCut}{scene, data_collector,
358    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
359    This class works in a similar way to \MapOnPlaneCut, except that it shows
360    a tensor field using ellipsoids cut using a plane.
361    \end{classdesc}
362    
363    The following are some of the methods available:\\
364    Methods from \ActorThreeD, \Sphere, \TensorGlyph, \Transform and
365    \StructuredPoints.
366    
367          @param interactive: Whether or not to have interactive use of the output  \subsubsection{\EllipsoidOnPlaneClip class}
368          @type interactive: boolean  
369          """  \begin{classdesc}{EllipsoidOnPlaneClip}{scene, data_collector,
370    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
371      def save(self, fname, format):  This class works in a similar way to \MapOnPlaneClip, except that it shows a
372          """  tensor field using ellipsoids clipped using a plane.
373          Save the scene to a file  \end{classdesc}
   
         Possible formats are:  
             - Postscript  
             - PNG  
             - JPEG  
             - TIFF  
             - BMP  
             - PNM  
   
         @param fname: Name of output file  
         @type fname: string  
   
         @param format: Graphics format of output file  
         @type format: Image object or string  
         """  
   
     def setBackgroundColor(self, *color):  
         """  
         Sets the background color of the Scene  
   
         @param color: The color to set the background to.  Can be RGB or CMYK  
         @type color: tuple  
         """  
   
     def getBackgroundColor(self):  
         """  
         Gets the current background color setting of the Scene  
         """  
   
     def setSize(self, xSize, ySize):  
         """  
         Sets the size of the scene.  
   
         This size is effectively the renderer window size.  
   
         @param xSize: the size to set the x dimension  
         @type xSize: float  
   
         @param ySize: the size to set the y dimension  
         @type ySize: float  
         """  
   
     def getSize(self):  
         """  
         Gets the current size of the scene  
   
         This size is effectively the renderer window size.  Returns a tuple  
         of the x and y dimensions respectively, in pixel units(??).  
         """  
 class SurfacePlot(Plot):  
     """  
     Surface plot  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the SurfacePlot class  
374                    
375          @param scene: The Scene to render the plot in  The following are some of the methods available:\\
376          @type scene: Scene object  Methods from \ActorThreeD, \Sphere, \TensorGlyph, \Transform, \Clipper
377          """  and \StructuredPoints.
378    
379      def setData(self, *dataList, **options):  \subsubsection{\Contour class}
380          """  
381          Set data to the plot  \begin{classdesc}{Contour}{scene, data_collector,
382    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False,
383          @param dataList: List of data to set to the plot  outline = True}
384          @type dataList: tuple  Class that shows a scalar field by contour surfaces. The contour surfaces can
385    either be colored or grey-scaled, depending on the lookup table used. This
386          @param options: Dictionary of extra options  class can also be used to generate iso surfaces.
387          @type options: dict  \end{classdesc}
388    
389          @param fname: the name of the input vtk file  The following are some of the methods available:\\
390          @type fname: string  Methods from \ActorThreeD and \ContourModule.
391    
392          @param format: the format of the input vtk file ('vtk' or 'vtk-xml')  \subsubsection{\ContourOnPlaneCut class}
393          @type format: string  
394    \begin{classdesc}{ContourOnPlaneCut}{scene, data_collector,
395          @param scalars: the scalar data in the vtk file to use  viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False,
396          @type scalars: string  outline = True}
397          """  This class works in a similar way to \MapOnPlaneCut, except that it shows a
398    scalar field by contour surfaces on a plane.
399  class Text(Item):  \end{classdesc}
400      """  
401      Text  The following are some of the methods available:\\
402      """  Methods from \ActorThreeD, \ContourModule and \Transform.
403      def __init__(self, scene):  
404          """  \subsubsection{\ContourOnPlaneClip class}
405          Initialisation of the Text object  
406    \begin{classdesc}{ContourOnPlaneClip}{scene, data_collector,
407          @param scene: the scene with which to associate the Text object  viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False,
408          @type scene: Scene object  outline = True}
409          """  This class works in a similar way to \MapOnPlaneClip, except that it shows a
410    scalar field by contour surfaces clipped using a plane.
411      def setFont(self, font):  \end{classdesc}
412          """  
413          Set the current font  The following are some of the methods available:\\
414    Methods from \ActorThreeD, \ContourModule, \Transform and \Clipper.
415          @param font: the font to set  
416          @type font: string  \subsubsection{\StreamLine class}
417          """  
418    \begin{classdesc}{StreamLine}{scene, data_collector,
419      def getFont(self):  viewport = Viewport.SOUTH_WEST, color_mode = ColorMode.VECTOR, lut = Lut.COLOR,
420          """  outline = True}
421  \end{verbose}  Class that shows the direction of particles of a vector field using streamlines.
422    The streamlines can either be colored or grey-scaled, depending on the lookup
423    table used. If the streamlines are colored, there are two possible coloring
424    modes, either using vector data or scalar data.
425    \end{classdesc}
426    
427    The following are some of the methods available:\\
428    Methods from \ActorThreeD, \PointSource, \StreamLineModule and \Tube.
429    
430    \subsubsection{\Carpet class}
431    
432    \begin{classdesc}{Carpet}{scene, data_collector,
433    viewport = Viewport.Viewport.SOUTH_WEST, warp_mode = WarpMode.SCALAR,
434    lut = Lut.COLOR, outline = True}
435    This class works in a similar way to \MapOnPlaneCut, except that it shows a
436    scalar field on a plane deformated (warp) along the normal. The plane can
437    either be colored or grey-scaled, depending on the lookup table used.
438    Similarly, the plane can be deformated either using scalar data or vector data.
439    \end{classdesc}
440    
441    The following are some of the methods available:\\
442    Methods from \ActorThreeD, \Warp and \Transform.
443    
444    \subsubsection{\Image class}
445    
446    \begin{classdesc}{Image}{scene, image_reader, viewport = Viewport.SOUTH_WEST}
447    Class that displays an image which can be scaled (upwards and downwards). The
448    image can also be translated and rotated along the X, Y and Z axes.
449    \end{classdesc}
450    
451    The following are some of the methods available:\\
452    Methods from \ActorThreeD, \PlaneSource and \Transform.
453    
454    
455    %##############################################################################
456    
457    
458    \subsection{Coordinate Classes}
459    This subsection details the instances used to position the rendered object.
460    
461    \begin{classdesc}{LocalPosition}{x_coor, y_coor}
462    Class that defines the local positioning coordinate system (2D).
463    \end{classdesc}
464    
465    \begin{classdesc}{GlobalPosition}{x_coor, y_coor, z_coor}
466    Class that defines the global positioning coordinate system (3D).
467    \end{classdesc}
468    
469    
470    %##############################################################################
471    
472    
473    \subsection{Supporting Classes}
474    This subsection details the supporting classes inherited by the data
475    visualization classes. These supporting
476    
477    \subsubsection{\ActorThreeD class}
478    
479    The following are some of the methods available:
480    
481    \begin{methoddesc}[Actor3D]{setOpacity}{opacity}
482    Set the opacity (transparency) of the 3D actor.
483    \end{methoddesc}
484    
485    \begin{methoddesc}[Actor3D]{setColor}{color}
486    Set the color of the 3D actor.
487    \end{methoddesc}
488    
489    \begin{methoddesc}[Actor3D]{setRepresentationToWireframe}{}
490    Set the representation of the 3D actor to wireframe.
491    \end{methoddesc}
492    
493    \subsubsection{\ActorTwoD class}
494    
495    The following are some of the methods available:
496    
497    \begin{methoddesc}[Actor2D]{setPosition}{position}
498    Set the position (XY) of the 2D actor. Default position is the lower left hand
499    corner of the window / viewport.
500    \end{methoddesc}
501    
502    \subsubsection{\Clipper class}
503    
504    The following are some of the methods available:
505    
506    \begin{methoddesc}[Clipper]{setInsideOutOn}{}
507    Clips one side of the rendered object.
508    \end{methoddesc}
509    
510    \begin{methoddesc}[Clipper]{setInsideOutOff}{}
511    Clips the other side of the rendered object.
512    \end{methoddesc}
513    
514    \begin{methoddesc}[Clipper]{setClipValue}{value}
515    Set the scalar clip value.
516    \end{methoddesc}
517    
518    \subsubsection{\ContourModule class}
519    
520    The following are some of the methods available:
521    
522    \begin{methoddesc}[ContourModule]{generateContours}{contours,
523    lower_range = None, upper_range = None}
524    Generate the specified number of contours within the specified range.
525    \end{methoddesc}
526    
527    \subsubsection{\GlyphThreeD class}
528    
529    The following are some of the methods available:
530    
531    \begin{methoddesc}[Glyph3D]{setScaleModeByVector}{}
532    Set the 3D glyph to scale according to the vector data.
533    \end{methoddesc}
534    
535    \begin{methoddesc}[Glyph3D]{setScaleModeByScalar}{}
536    Set the 3D glyph to scale according to the scalar data.
537    \end{methoddesc}
538    
539    \begin{methoddesc}[Glyph3D]{setScaleFactor}{scale_factor}
540    Set the 3D glyph scale factor.
541    \end{methoddesc}
542    
543    \subsubsection{\TensorGlyph class}
544    
545    The following are some of the methods available:
546    
547    \begin{methoddesc}[TensorGlyph]{setScaleFactor}{scale_factor}
548    Set the scale factor for the tensor glyph.
549    \end{methoddesc}
550    
551    \subsubsection{\PlaneSource class}
552    
553    The following are some of the methods available:
554    
555    \begin{methoddesc}[PlaneSource]{setPoint1}{position}
556    Set the first point from the origin of the plane source.
557    \end{methoddesc}
558    
559    \begin{methoddesc}[PlaneSource]{setPoint2}{position}
560    Set the second point from the origin of the plane source.
561    \end{methoddesc}
562    
563    \subsubsection{\PointSource class}
564    
565    The following are some of the methods available:
566    
567    \begin{methoddesc}[PointSource]{setPointSourceRadius}{radius}
568    Set the radius of the sphere.
569    \end{methoddesc}
570    
571    \begin{methoddesc}[PointSource]{setPointSourceNumberOfPoints}{points}
572    Set the number of points to generate within the sphere (the larger the
573    number of points, the more streamlines are generated).
574    \end{methoddesc}
575    
576    \subsubsection{\StructuredPoints class}
577    
578    The following are some of the methods available:
579    
580    \begin{methoddesc}[StructuredPoints]{setDimension}{x, y, z}
581    Set the dimension on the x, y and z axes. The smaller the dimension,
582    the more points are populated.
583    \end{methoddesc}
584    
585    \subsubsection{\Sphere class}
586    
587    The following are some of the methods available:
588    
589    \begin{methoddesc}[Sphere]{setThetaResolution}{resolution}
590    Set the theta resolution of the sphere.
591    \end{methoddesc}
592    
593    \begin{methoddesc}[Sphere]{setPhiResolution}{resolution}
594    Set the phi resoluton of the sphere.
595    \end{methoddesc}
596    
597    \subsubsection{\StreamLineModule class}
598    
599    The following are some of the methods available:
600    
601    \begin{methoddesc}[StreamLineModule]{setMaximumPropagationTime}{time}
602    Set the maximum length of the streamline expressed in elapsed time.
603    \end{methoddesc}
604    
605    \begin{methoddesc}[StreamLineModule]{setIntegrationToBothDirections}{}
606    Set the integration to occur both sides: forward (where the streamline
607    goes) and backward (where the streamline came from).
608    \end{methoddesc}
609    
610    \subsubsection{\Transform class}
611    
612    \begin{methoddesc}[Transform]{translate}{x_offset, y_offset, z_offset}
613    Translate the rendered object along the x, y and z-axes.
614    \end{methoddesc}
615    
616    \begin{methoddesc}[Transform]{rotateX}{angle}
617    Rotate the plane along the x-axis.
618    \end{methoddesc}
619    
620    \begin{methoddesc}[Transform]{rotateY}{angle}
621    Rotate the plane along the y-axis.
622    \end{methoddesc}
623    
624    \begin{methoddesc}[Transform]{rotateZ}{angle}
625    Rotate the plane along the z-axis.
626    \end{methoddesc}
627    
628    \begin{methoddesc}[Transform]{setPlaneToXY}{offset = 0}
629    Set the plane orthogonal to the z-axis.
630    \end{methoddesc}
631    
632    \begin{methoddesc}[Transform]{setPlaneToYZ}{offset = 0}
633    Set the plane orthogonal to the x-axis.
634    \end{methoddesc}
635    
636    \begin{methoddesc}[Transform]{setPlaneToXZ}{offset = 0}
637    Set the plane orthogonal to the y-axis.
638    \end{methoddesc}
639    
640    \subsubsection{\Tube class}
641    
642    \begin{methoddesc}[Tube]{setTubeRadius}{radius}
643    Set the radius of the tube.
644    \end{methoddesc}
645    
646    \begin{methoddesc}[Tube]{setTubeRadiusToVaryByVector}{}
647    Set the radius of the tube to vary by vector data.
648    \end{methoddesc}
649    
650    \begin{methoddesc}[Tube]{setTubeRadiusToVaryByScalar}{}
651    Set the radius of the tube to vary by scalar data.
652    \end{methoddesc}
653    
654    \subsubsection{\Warp class}
655    
656    \begin{methoddesc}[Warp]{setScaleFactor}{scale_factor}
657    Set the displacement scale factor.
658    \end{methoddesc}
659    
660    
661    \section{Online Rendering Mechnism}
662    
663    
664    
665    same word on rendering, off-line, on-line, how to rotate, zoom, close the window, ...
666    
667    %==============================================
668    \section{How to Make a Movie}

Legend:
Removed from v.625  
changed lines
  Added in v.1076

  ViewVC Help
Powered by ViewVC 1.1.26