/[escript]/trunk/doc/user/pyvisi.tex
ViewVC logotype

Diff of /trunk/doc/user/pyvisi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 886 by jongui, Thu Nov 2 01:34:58 2006 UTC revision 1035 by jongui, Fri Mar 16 04:54:17 2007 UTC
# Line 1  Line 1 
1  \chapter{The module \pyvisi}  \chapter{The module \pyvisi}
2  \label{PYVISI CHAP}  \label{PYVISI CHAP}
3    \declaremodule{extension}{esys.pyvisi}
4    \modulesynopsis{Python Visualization Interface}
5    
6  \declaremodule{extension}{pyvisi}  \section{Introduction}
7  \modulesynopsis{Python visualization interface}  \pyvisi is a Python module that is used to generate 2D and 3D visualization
8    for escript and its PDE solvers: finley and bruce. This module provides
9  \pyvisi provides an easy to use interface to the \VTK visualization  an easy to use interface to the \VTK library (\VTKUrl). There are three forms
10  tool. \pyvisi provides the following modules:  of rendering an object: (1) online: a single rendered object is displayed and  
11    interaction (i.e. zoom and rotate) can occur, (2) offline: multiple rendered
12  \begin{itemize}  objects are not displayed but are instead saved as a series of images. No
13  \item \Scene: Shows a scene in which components are to be displayed.  interaction can occur and (3) animate: similar to offline except that multiple
14  \item \Image: Shows an image.  rendered objects are displayed one after another (animated on-the-fly) and
15  \item \Text: Shows some 2D text.  no images are saved.  No interaction can occur.
16  \item \DataCollector: Deals with data for visualization.  
17  \item \Camera: Controls the camera manipulation.  The general rule of thumb when using \pyvisi is to perform the following
18  \item \Light: Controls the light manipulation.  in sequence:
19  \item \Map: Shows a scalar field by color on the domain surface.  
20  \item \MapOnPlane: Shows a scalar field by color on a given plane.  \begin{enumerate}
21  \item \MapOnClip: Shows a scalar field by color on a given clip.  \item Create a scene instance (i.e. \Scene), which is a window in which objects are to be
22  \item \MapOnScalarClip: Shows a scalar field by color on a give scalar clip.  rendered on.
23  \item \Arrows: Shows a vector field by arrows.  \item Create an input instance (i.e. \DataCollector), which reads and loads
24  \item \ArrowsOnPlane: Shows a vector field by arrows on a given plane.  the source data for visualization.
25  \item \ArrowsOnClip: Shows a vector field by arrows on a given clip.  \item Create a data visualization instance (i.e. \Map, \Velocity, \Ellipsoid,
26  \item \IsoSurface: Shows a scalar field for a given value by  \Contour and \Carpet), which proccesses and manipulates the source data.
27  an isosurface.  \item Create a camera (i.e. \Camera) instance, which controls the viewing angle.
28  \item \IsoSurfaceOnPlane: Shows a scalar field for a given value by  \item Lastly, render the object online, offline or animate.
29  an isosurfaceon a given plane.  \end{enumerate}
30  \item \IsoSurfaceOnClip: Shows a scalar field for a given vlaue by  \begin{center}
31  an isosurface on a given clip.  \begin{math}
32  \item \Contour: Shows a scalar field by contour surfaces.  scene \rightarrow input \rightarrow visualization \rightarrow
33  \item \ContourOnPlane: Shows a scalar field by contour surfaces on  camera \rightarrow render
34  a given plane.  \end{math}
35  \item \ContourOnClip: Shows a scalar field by contour surfaces on  \end{center}
36  a given clip.  
37  \item \TensorC: Shows a tensor field by ellipsoids.  The sequence in which instances are created is very important due to
38  \item \TensorOnPlane: Shows a tensor field by ellipsoids on  to the dependencies among them. For example, an input instance must
39  a given plane.  always be created BEFORE a data visualisation instance is created.
40  \item \TensorOnClip: Shows a tensor field by ellipsoids on a given clip.  If the sequence is switched, the program will throw an error because a
41  \item \StreamLines: Shows the path of particles in a vector field.  source data needs to be specified before the data can be
42  \item \Carpet: Shows a scalar field as plane deformated along  manipulated. Similarly, a camera instance must always be created
43  the plane normal.  AFTER an input instance has been created. Otherwise, the program will throw
44  \item \Position: Defines the x,y and z coordinates rendered object.  an error because the camera instance needs to calculate its
45  \item \Transform: Defines the orientation of rendered object.  default position (automatically carried out in the background) based on
46  \item \Style: Defines the style of text.  the source data.
47  \item \BlueToRed: Defines a map spectrum from blue to red.  
48  \item \RedToBlue: Defines a map spectrum from red to blue.  \section{\pyvisi Classes}
49  \item \Plane: Defines the cutting/clipping of rendered objects.  The following subsections give a brief overview of the important classes
50  \end{itemize}  and some of their corresponding methods. Please refer to \ReferenceGuide for
51    full details.
52  \section{\Scene class}  
53  \begin{classdesc}{Scene}{renderer, x_size = 500, y_size = 500}  
54  A \Scene object creates a window onto which objects are to be displayed.  %#############################################################################
55  \end{classdesc}  
56    
57  The following are the methods available:  \subsection{Scene Classes}
58  \begin{methoddesc}[Scene]{saveImage}{image_name}  This subsection details the instances used to setup the viewing environment.
59  Save the rendered object as an image off-screen.  
60  \end{methoddesc}  \subsubsection{\Scene class}
61    
62  \begin{methoddesc}[Scene]{render}{}  \begin{classdesc}{Scene}{renderer = Renderer.ONLINE, num_viewport = 1,
63  Render the object on-screen.  x_size = 1152, y_size = 864}
64  \end{methoddesc}  A scene is a window in which objects are to be rendered on. Only
65    one scene needs to be created and can display data from one source. However,
66  The following is a sample code using the \Scene class:  a scene may be divided into four smaller windows called viewports (if needed).
67  \verbatiminput{../examples/driverscene.py}  The four viewports in turn can display data from four different sources.
   
 \section{\Image class}  
 \begin{classdesc}{Image}{scene, format}  
 An \Image object shows an image.  
 \end{classdesc}  
   
 The following is the method available:  
 \begin{methoddesc}[Image]{setFileName}{file_name}  
 Set the file name.  
 \end{methoddesc}  
   
 The following is a sample code using the \Image class.  
 \fig{fig:image.1} shows the corresponding output.  
 \verbatiminput{../examples/driverimage.py}  
   
 \begin{figure}[ht]  
 \begin{center}  
 \includegraphics[width=40mm]{figures/Image}  
 \end{center}  
 \caption{Image}  
 \label{fig:image.1}  
 \end{figure}  
   
 \section{\Text class}  
 \begin{classdesc}{Text}{scene}  
 A \Text object shows 2D text.  
68  \end{classdesc}  \end{classdesc}
69    
70  The following are the methods available:  The following are some of the methods available:
71  \begin{methoddesc}[Text]{setText}{text}  \begin{methoddesc}[Scene]{setBackground}{color}
72  Set the text.  Set the background color of the scene.
73  \end{methoddesc}  \end{methoddesc}
74    
75  \begin{methoddesc}[Text]{setPosition}{x_coor, y_coor}  \begin{methoddesc}[Scene]{saveImage}{image_name}
76  Set the display position of the text.  Save the rendered object as an image offline. No interaction can occur.
77  \end{methoddesc}  \end{methoddesc}
78    
79  \begin{methoddesc}[Text]{setStyle}{style}  \begin{methoddesc}[Scene]{animate}{}
80  Set the style of the text.  Animate the rendered object on-the-fly. No interaction can occur.
81  \end{methoddesc}  \end{methoddesc}
82    
83  The following is a sample code using the \Text class.  \begin{methoddesc}[Scene]{render}{}
84  \fig{fig:text.1} shows the corresponding output.  Render the object online. Interaction can occur.
 \verbatiminput{../examples/drivertext.py}  
   
 \begin{figure}[ht]  
 \begin{center}  
 \includegraphics[width=40mm]{figures/Text}  
 \end{center}  
 \caption{2D text}  
 \label{fig:text.1}  
 \end{figure}  
   
 \section{\DataCollector class}  
 \begin{classdesc}{DataCollector}{scene, outline = True, cube_axes = False}  
 A \DataCollector object deals with the data for visualization.  
 \end{classdesc}  
   
 The following are the methods available:  
 \begin{methoddesc}[DataCollector]{setFileName}{file_name}  
 Set the file name from which data is to be read.  
85  \end{methoddesc}  \end{methoddesc}
86    
87  The following is a sample code using the \DataCollector class.  \subsubsection{\Camera class}
 \fig{fig:datacollector.1} shows the corresponding output.  
 \verbatiminput{../examples/driverdatacollector.py}  
88    
89  \begin{figure}[ht]  \begin{classdesc}{Camera}{scene, data_collector, viewport = Viewport.SOUTH_WEST}
90  \begin{center}  A camera controls the display angle of the rendered object and one is
91  \includegraphics[width=40mm]{figures/DataCollector}  usually created for a \Scene. However, if a \Scene has four viewports, then a
92  \end{center}  separate camera may be created for each viewport.
 \caption{Datacollector generating an outline with cube axes.}  
 \label{fig:datacollector.1}  
 \end{figure}  
   
 \section{\Camera class}  
 \begin{classdesc}{Camera}{scene, data_collector}  
 A \Camera object controls the camera's settings.  
93  \end{classdesc}  \end{classdesc}
94    
95  The following are some of the methods available:  The following are some of the methods available:
# Line 152  Set the focal point of the camera. Line 101  Set the focal point of the camera.
101  Set the position of the camera.  Set the position of the camera.
102  \end{methoddesc}  \end{methoddesc}
103    
104    \begin{methoddesc}[Camera]{setClippingRange}{near_clipping, far_clipping}
105    Set the near and far clipping plane of the camera.
106    \end{methoddesc}
107    
108    \begin{methoddesc}[Camera]{setViewUp}{position}
109    Set the view up direction of the camera.
110    \end{methoddesc}
111    
112  \begin{methoddesc}[Camera]{azimuth}{angle}  \begin{methoddesc}[Camera]{azimuth}{angle}
113  Rotate the camera to the left and right.  Rotate the camera to the left and right.
114  \end{methoddesc}  \end{methoddesc}
115    
116  \begin{methoddesc}[Camera]{elevation}{angle}  \begin{methoddesc}[Camera]{elevation}{angle}
117  Rotate the camera to the top and bottom.  Rotate the camera to the top and bottom (only between -90 and 90).
 \end{methoddesc}  
   
 \begin{methoddesc}[Camera]{roll}{angle}  
 Roll the camera to the left and right.  
118  \end{methoddesc}  \end{methoddesc}
119    
120  \begin{methoddesc}[Camera]{backView}{}  \begin{methoddesc}[Camera]{backView}{}
121  View the back of the rendered object.  Rotate the camera to view the back of the rendered object.
122  \end{methoddesc}  \end{methoddesc}
123    
124  \begin{methoddesc}[Camera]{topView}{}  \begin{methoddesc}[Camera]{topView}{}
125  View the top of the rendered object.  Rotate the camera to view the top of the rendered object.
126  \end{methoddesc}  \end{methoddesc}
127    
128  \begin{methoddesc}[Camera]{bottomView}{}  \begin{methoddesc}[Camera]{bottomView}{}
129  View the bottom of the rendered object.  Rotate the camera to view the bottom of the rendered object.
130  \end{methoddesc}  \end{methoddesc}
131    
132  \begin{methoddesc}[Camera]{leftView}{}  \begin{methoddesc}[Camera]{leftView}{}
133  View the left side of the rendered object.  Rotate the camera to view the left side of the rendered object.
134  \end{methoddesc}  \end{methoddesc}
135    
136  \begin{methoddesc}[Camera]{rightView}{}  \begin{methoddesc}[Camera]{rightView}{position}
137  View the right side of the rendered object.  Rotate the camera to view the right side of the rendered object.
138  \end{methoddesc}  \end{methoddesc}
139    
140  \begin{methoddesc}[Camera]{isometricView}{}  \begin{methoddesc}[Camera]{isometricView}{position}
141  View the isometric side of the rendered object.  Rotate the camera to view the isometric angle of the rendered object.
142  \end{methoddesc}  \end{methoddesc}
143    
144  The following is a sample code using the \Camera class.  \begin{methoddesc}[Camera]{dolly}{distance}
145  \fig{fig:camera.1} shows the corresponding output.  Move the camera towards (greater than 1) and away (less than 1) from
146  \verbatiminput{../examples/drivercamera.py}  the rendered object.
147    \end{methoddesc}
148    
149  \begin{figure}[ht]  \subsubsection{\Light class}
 \begin{center}  
 \includegraphics[width=30mm]{figures/Camera}  
 \end{center}  
 \caption{Camera manipulation}  
 \label{fig:camera.1}  
 \end{figure}  
150    
151  \section{\Light class}  \begin{classdesc}{Light}{scene, data_collector, viewport = Viewport.SOUTH_WEST}
152  \begin{classdesc}{Light}{scene, data_collector}  A light controls the source of light for the rendered object and works in
153  A \Light object controls the light's settings.  a similar way to \Camera.
154  \end{classdesc}  \end{classdesc}
155    
156  The following are the methods available:  The following are some of the methods available:
157  \begin{methoddesc}[Light]{setColor}{color}  \begin{methoddesc}[Light]{setColor}{color}
158  Set the color of the light.  Set the light color.
159  \end{methoddesc}  \end{methoddesc}
160    
161  \begin{methoddesc}[Light]{setFocalPoint}{position}  \begin{methoddesc}[Light]{setFocalPoint}{position}
# Line 215  Set the focal point of the light. Line 163  Set the focal point of the light.
163  \end{methoddesc}  \end{methoddesc}
164    
165  \begin{methoddesc}[Light]{setPosition}{position}  \begin{methoddesc}[Light]{setPosition}{position}
166  Set the position of the light.  Set the position of the camera.
167  \end{methoddesc}  \end{methoddesc}
168    
169  \begin{methoddesc}[Light]{setIntensity}{intesity}  \begin{methoddesc}[Light]{setAngle}{elevation = 0, azimuth = 0}
170  Set the intensity (brightness) of the light.  An alternative to set the position and focal point of the light using the
171    elevation and azimuth degrees.
172  \end{methoddesc}  \end{methoddesc}
173    
 The following is a sample code using the \Light class.  
 \fig{fig:light.1} shows the corresponding output.  
 \verbatiminput{../examples/driverlight.py}  
174    
175  \begin{figure}[ht]  %##############################################################################
 \begin{center}  
 \includegraphics[width=40mm]{figures/Light}  
 \end{center}  
 \caption{Light}  
 \label{fig:light.1}  
 \end{figure}  
176    
 \section{\Map class}  
 \begin{classdesc}{Map}{scene, data_collector, lut = None}  
 A \Map object shows a scalar field by color on the domain surface.  
 \end{classdesc}  
177    
178  The following is a sample code using the \Map class.  \subsection{Input Classes}
179  \fig{fig:map.1} shows the corresponding output.  This subsection details the instances used to read and load the source data
180  \verbatiminput{../examples/drivermap.py}  for visualization.
181    
182  \begin{figure}[ht]  \subsubsection{\DataCollector class}
 \begin{center}  
 \includegraphics[width=40mm]{figures/Map}  
 \end{center}  
 \caption{Surface map}  
 \label{fig:map.1}  
 \end{figure}  
183    
184  \section{\MapOnPlane class}  \begin{classdesc}{DataCollector}{source = Source.XML}
185  \begin{classdesc}{MapOnPlane}{scene, data_collector, transform, lut = None}  % need to say something about the escript object not just d xml file.
186  A \MapOnPlane object show a scalar field by color on a given plane.  A data collector is used to read data from an XML file or from
187    an escript object directly. Please note that a separate data collector needs
188    to be created when two or more attributes of the same type from
189    the same file needs to be specified (i.e.two scalar attributes from a file).
190  \end{classdesc}  \end{classdesc}
191    
192  The following is a sample code using the \MapOnPlane class.  The following are some of the methods available:
193  \fig{fig:maponplane.1} shows the corresponding output.  \begin{methoddesc}[DataCollector]{setFileName}{file_name}
194  \verbatiminput{../examples/drivermaponplane.py}  Set the XML source file name to be read.
195    \end{methoddesc}
196    
197  \begin{figure}[ht]  \begin{methoddesc}[DataCollector]{setData}{**args}
198  \begin{center}  Create data using the \textless name\textgreater=\textless data\textgreater
199  \includegraphics[width=40mm]{figures/MapOnPlane}  pairing. Assumption is made that the data will be given in the
200  \end{center}  appropriate format.
201  \caption{Surface map on a plane}  \end{methoddesc}
 \label{fig:maponplane.1}  
 \end{figure}  
202    
203  \section{\MapOnClip class}  \begin{methoddesc}[DataCollector]{setActiveScalar}{scalar}
204  \begin{classdesc}{MapOnClip}{scene, data_collector, transform, lut = None}  Specify the scalar field to load.
205  A \MapOnClip object show a scalar field by color on a given clip.  \end{methoddesc}
 \end{classdesc}  
206    
207  The following is a sample code using the \MapOnClip class.  \begin{methoddesc}[DataCollector]{setActiveVector}{vector}
208  \fig{fig:maponclip.1} shows the corresponding output.  Specify the vector field to load.
209  \verbatiminput{../examples/drivermaponclip.py}  \end{methoddesc}
210    
211  \begin{figure}[ht]  \begin{methoddesc}[DataCollector]{setActiveTensor}{tensor}
212  \begin{center}  Specify the tensor field to load.
213  \includegraphics[width=40mm]{figures/MapOnClip}  \end{methoddesc}
214  \end{center}  
215  \caption{Surface map on a clip}  \subsubsection{\ImageReader class}
 \label{fig:maponclip.1}  
 \end{figure}  
216    
217  \section{\MapOnScalarClip class}  \begin{classdesc}{ImageReader}{format}
218  \begin{classdesc}{MapOnScalarClip}{scene, data_collector, lut = None}  An image reader is used to read data from an image in a variety of formats.
 A \MapOnScalarClip object show a scalar field by color on a given scalar clip.  
219  \end{classdesc}  \end{classdesc}
220    
221  The following is a sample code using the \MapOnScalarClip class.  The following are some of the methods available:
222  \fig{fig:maponscalarclip.1} shows the corresponding output.  \begin{methoddesc}[ImageReader]{setImageName}{image_name}
223  \verbatiminput{../examples/drivermaponscalarclip.py}  Set the image name to be read.
224    \end{methoddesc}
225    
226  \begin{figure}[ht]  \subsubsection{\TextTwoD class}
 \begin{center}  
 \includegraphics[width=40mm]{figures/MapOnScalarClip}  
 \end{center}  
 \caption{Surface map on a scalar clip}  
 \label{fig:maponscalarclip.1}  
 \end{figure}  
227    
228  \section{\Arrows class}  \begin{classdesc}{Text2D}{scene, text, viewport = Viewport.SOUTH_WEST}
229  \begin{classdesc}{Arrows}{scene, data_collector, lut = None}  2D text is used to annotate the rendered object (i.e. adding titles, authors
230  A \Arrows object shows a vector field by arrows.  and labels).
231  \end{classdesc}  \end{classdesc}
232    
233  The following are the methods available:  The following are some of the methods available:
234  \begin{methoddesc}[Arrows]{setVectorMode}{vector_mode}  \begin{methoddesc}[Text2D]{setFontSize}{size}
235  Set the arrows vector mode.  Set the 2D text size.
236  \end{methoddesc}  \end{methoddesc}
237    
238  \begin{methoddesc}[Arrows]{setScaleMode}{scale_mode}  \begin{methoddesc}[Text2D]{boldOn}{}
239  Set the arrows scale mode.  Bold the 2D text.
240  \end{methoddesc}  \end{methoddesc}
241    
242  \begin{methoddesc}[Arrows]{setScaleFactor}{scale_factor}  \begin{methoddesc}[Text2D]{setColor}{color}
243  Set the arrows scale factor.  Set the color of the 2D text.
244  \end{methoddesc}  \end{methoddesc}
245    
246  \begin{methoddesc}[Arrows]{setColorMode}{color_mode}  Including methods from \ActorTwoD.
 Set the arrows color mode.  
 \end{methoddesc}  
247    
 The following is a sample code using the \Arrows class.  
 \fig{fig:arrows.1} shows the corresponding output.  
 \verbatiminput{../examples/driverarrows.py}  
248    
249  \begin{figure}[ht]  %##############################################################################
250  \begin{center}  
 \includegraphics[width=40mm]{figures/Arrows}  
 \end{center}  
 \caption{Arrows}  
 \label{fig:arrows.1}  
 \end{figure}  
251    
252  \section{\ArrowsOnPlane class}  \subsection{Data Visualization Classes}
253  \begin{classdesc}{ArrowsOnPlane}{scene, data_collector, transform, lut = None}  This subsection details the instances used to process and manipulate the source
254  A \ArrowsOnPlane object shows a vector field by arrows on a given plane.  data.
255    \subsubsection{\Map class}
256    
257    \begin{classdesc}{Map}{scene, data_collector,
258    viewport = Viewport.Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
259    Class that shows a scalar field on a domain surface. The domain surface
260    can either be colored or grey-scaled, depending on the lookup table used.
261  \end{classdesc}  \end{classdesc}
262    
263  The following is a sample code using the \ArrowsOnPlane class.  The following are some of the methods available:\\
264  \fig{fig:arrowsonplane.1} shows the corresponding output.  Methods from \ActorThreeD.
 \verbatiminput{../examples/driverarrowsonplane.py}  
265    
266  \begin{figure}[ht]  \subsubsection{\MapOnPlaneCut class}
 \begin{center}  
 \includegraphics[width=40mm]{figures/ArrowsOnPlane}  
 \end{center}  
 \caption{Arrows on a plane}  
 \label{fig:arrowsonplane.1}  
 \end{figure}  
267    
268  \section{\ArrowsOnClip class}  \begin{classdesc}{MapOnPlaneCut}{scene, data_collector,
269  \begin{classdesc}{ArrowsOnClip}{scene, data_collector, transform, lut = None}  viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
270  A \ArrowsOnClip object shows a vector field by arrows on a given clip.  This class works in a similar way to \Map, except that it shows a scalar
271    field on a plane. The plane can be translated and rotated along the X, Y and
272    Z axes.
273  \end{classdesc}  \end{classdesc}
274    
275  The following is a sample code using the \ArrowsOnClip class.  The following are some of the methods available:\\
276  \fig{fig:arrowsonclip.1} shows the corresponding output.  Methods from \ActorThreeD and \Transform.
 \verbatiminput{../examples/driverarrowsonclip.py}  
277    
278  \begin{figure}[ht]  \subsubsection{\MapOnPlaneClip class}
279  \begin{center}  
280  \includegraphics[width=40mm]{figures/ArrowsOnClip}  \begin{classdesc}{MapOnPlaneClip}{scene, data_collector,
281  \end{center}  viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
282  \caption{Arrows on a clip}  This class works in a similar way to \MapOnPlaneCut, except that it shows a
283  \label{fig:arrowsonclip.1}  scalar field clipped using a plane.
284  \end{figure}  \end{classdesc}
285    
286    The following are some of the methods available:\\
287    Methods from \ActorThreeD, \Transform and \Clipper.
288    
289    \subsubsection{\MapOnScalarClip class}
290    
291  \section{\IsoSurface class}  \begin{classdesc}{MapOnScalarClip}{scene, data_collector,
292  \begin{classdesc}{IsoSurface}{scene, data_collector, lut = None}  viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
293  An \IsoSurface object shows a scalar field for a given value by an isosurface.  This class works in a similar way to \Map, except that it shows a scalar
294    field clipped using a scalar value.
295  \end{classdesc}  \end{classdesc}
296    
297  The following is the method available:  The following are some of the methods available:\\
298    Methods from \ActorThreeD and \Clipper.
299    
300  \begin{methoddesc}[IsoSurface]{setValue}{contour_number, value}  \subsubsection{\Velocity class}
 Set the contour number and value.  
 \end{methoddesc}  
301    
302  The following is a sample code using the \IsoSurface class.  \begin{classdesc}{Velocity}{scene, data_collector,
303  \fig{fig:isosurface.1} shows the corresponding output.  viewport = Viewport.SOUTH_WEST, color_mode = ColorMode.VECTOR,
304  \verbatiminput{../examples/driverisosurface.py}  arrow = Arrow.TWO_D, lut = Lut.COLOR, outline = True}
305    Class that shows a vector field using arrows. The arrows can either be
306    colored or grey-scaled, depending on the lookup table used. If the arrows
307    are colored, there are two possible coloring modes, either using vector data or
308    scalar data. Similarly, there are two possible types of arrows, either
309    using two-dimensional or three-dimensional.
310    \end{classdesc}
311    
312  \begin{figure}[ht]  The following are some of the methods available:\\
313  \begin{center}  Methods from \ActorThreeD, \GlyphThreeD and \StructuredPoints.
 \includegraphics[width=40mm]{figures/IsoSurface}  
 \end{center}  
 \caption{IsoSurface}  
 \label{fig:isosurface.1}  
 \end{figure}  
   
 \section{\IsoSurfaceOnPlane class}  
 \begin{classdesc}{IsoSurfaceOnPlane}{scene, data_collector, transform,  
 lut = None}  
 An \IsoSurfaceOnPlane object shows a scalar field for a given value  
 by an isosurface on a given plane.  
 \end{classdesc}  
   
 The following is a sample code using the \IsoSurfaceOnPlane class.  
 \fig{fig:isosurfaceonplane.1} shows the corresponding output.  
 \verbatiminput{../examples/driverisosurfaceonplane.py}  
314    
315  \begin{figure}[ht]  \subsubsection{\VelocityOnPlaneCut class}
 \begin{center}  
 \includegraphics[width=40mm]{figures/IsoSurfaceOnPlane}  
 \end{center}  
 \caption{IsoSurface on a plane}  
 \label{fig:isosurfaceonplane.1}  
 \end{figure}  
   
 \section{\IsoSurfaceOnClip class}  
 \begin{classdesc}{IsoSurfaceOnClip}{scene, data_collector, transform,  
 lut = None}  
 An \IsoSurfaceOnClip object shows a scalar field for a given value  
 by an isosurface on a given clip.  
 \end{classdesc}  
   
 The following is a sample code using the \IsoSurfaceOnClip class.  
 \fig{fig:isosurfaceonclip.1} shows the corresponding output.  
 \verbatiminput{../examples/driverisosurfaceonclip.py}  
316    
317  \begin{figure}[ht]  \begin{classdesc}{VelocityOnPlaneCut}{scene, data_collector,
318  \begin{center}  arrow = Arrow.TWO_D, color_mode = ColorMode.VECTOR,
319  \includegraphics[width=40mm]{figures/IsoSurfaceOnClip}  viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
320  \end{center}  This class works in a similar way to \MapOnPlaneCut, except that
321  \caption{IsoSurface on a clip}  it shows a vector field using arrows on a plane.
 \label{fig:isosurfaceonclip.1}  
 \end{figure}  
   
 \section{\Contour class}  
 \begin{classdesc}{Contour}{scene, data_collector, lut = None}  
 A \Contour object shows a scalar field contour surfaces.  
322  \end{classdesc}  \end{classdesc}
323    
324  The following is the method available:  The following are some of the methods available:\\
325  \begin{methoddesc}[Contour]{generateValues}{number_contours, min_range,  Methods from \ActorThreeD, \GlyphThreeD, \Transform and \StructuredPoints.
 max_range}  
 Generate the specified number of contours within the specified range.  
 \end{methoddesc}  
326    
327  The following is a sample code using the \Contour class.  \subsubsection{\VelocityOnPlaneClip class}
 \fig{fig:contour.1} shows the corresponding output.  
 \verbatiminput{../examples/drivercontour.py}  
328    
329  \begin{figure}[ht]  \begin{classdesc}{VelocityOnPlaneClip}{scene, data_collector,
330  \begin{center}  arrow = Arrow.TWO_D, color_mode = ColorMode.VECTOR,
331  \includegraphics[width=40mm]{figures/Contour}  viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, online = True}
332  \end{center}  This class works in a similar way to \MapOnPlaneClip, except that it shows a
333  \caption{Contour}  vector field using arrows clipped using a plane.
334  \label{fig:contour.1}  \end{classdesc}
 \end{figure}  
335    
336  \section{\ContourOnPlane class}  The following are some of the methods available:\\
337  \begin{classdesc}{ContourOnPlane}{scene, data_collector, transform, lut = None}  Methods from \ActorThreeD, \GlyphThreeD, \Transform, \Clipper and
338  A \ContourOnPlane object shows a scalar field contour surfaces on a given plane.  \StructuredPoints.
339    
340    \subsubsection{\Ellipsoid class}
341    
342    \begin{classdesc}{Ellipsoid}{scene, data_collector,
343    viewport = Viewport = SOUTH_WEST, lut = Lut.COLOR, outline = True}
344    Class that shows a tensor field using ellipsoids. The ellipsoids can either be
345    colored or grey-scaled, depending on the lookup table used.
346  \end{classdesc}  \end{classdesc}
347    
348  The following is a sample code using the \ContourOnPlane class.  The following are some of the methods available:\\
349  \fig{fig:contouronplane.1} shows the corresponding output.  Methods from \ActorThreeD, \Sphere, \TensorGlyph and \StructuredPoints.
 \verbatiminput{../examples/drivercontouronplane.py}  
350    
351  \begin{figure}[ht]  \subsubsection{\EllipsoidOnPlaneCut class}
 \begin{center}  
 \includegraphics[width=40mm]{figures/ContourOnPlane}  
 \end{center}  
 \caption{Contour on a plane}  
 \label{fig:contouronplane.1}  
 \end{figure}  
352    
353  \section{\ContourOnClip class}  \begin{classdesc}{EllipsoidOnPlaneCut}{scene, data_collector,
354  \begin{classdesc}{ContourOnClip}{scene, data_collector, transform, lut = None}  viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
355  A \ContourOnClip object shows a scalar field contour surfaces on a given clip.  This class works in a similar way to \MapOnPlaneCut, except that it shows
356    a tensor field using ellipsoids cut using a plane.
357  \end{classdesc}  \end{classdesc}
358    
359  The following is a sample code using the \ContourOnClip class.  The following are some of the methods available:\\
360  \fig{fig:contouronclip.1} shows the corresponding output.  Methods from \ActorThreeD, \Sphere, \TensorGlyph, \Transform and
361  \verbatiminput{../examples/drivercontouronclip.py}  \StructuredPoints.
362    
363  \begin{figure}[ht]  \subsubsection{\EllipsoidOnPlaneClip class}
 \begin{center}  
 \includegraphics[width=40mm]{figures/ContourOnClip}  
 \end{center}  
 \caption{Contour on a clip}  
 \label{fig:contouronclip.1}  
 \end{figure}  
364    
365  \section{\TensorC class}  \begin{classdesc}{EllipsoidOnPlaneClip}{scene, data_collector,
366  \begin{classdesc}{Tensor}{scene, data_collector, lut = None}  viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
367  A \TensorC object shows a tensor field by ellipsoids.  This class works in a similar way to \MapOnPlaneClip, except that it shows a
368    tensor field using ellipsoids clipped using a plane.
369  \end{classdesc}  \end{classdesc}
370            
371    The following are some of the methods available:\\
372    Methods from \ActorThreeD, \Sphere, \TensorGlyph, \Transform, \Clipper
373    and \StructuredPoints.
374    
375  The following are the methods available:  \subsubsection{\Contour class}
 \begin{methoddesc}[Tensor]{setThetaResolution}{resolution}  
 Set the number of points in the longitude direction.  
 \end{methoddesc}  
376    
377  \begin{methoddesc}[Tensor]{setPhiResolution}{resolution}  \begin{classdesc}{Contour}{scene, data_collector,
378  Set the number of points in the latitude direction.  viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
379  \end{methoddesc}  Class that shows a scalar field by contour surfaces. The contour surfaces can
380    either be colored or grey-scaled, depending on the lookup table used. This
381    class can also be used to generate iso surfaces.
382    \end{classdesc}
383    
384  \begin{methoddesc}[Tensor]{setScaleFactor}{scale_factor}  The following are some of the methods available:\\
385  Set the tensor scale factor.  Methods from \ActorThreeD and \ContourModule.
 \end{methoddesc}  
386    
387  \begin{methoddesc}[Tensor]{setMaxScaleFactor}{max_scale_factor}  \subsubsection{\ContourOnPlaneCut class}
 Set the maximum allowable scale factor.  
 \end{methoddesc}  
388    
389  The following is a sample code using the \TensorC class.  \begin{classdesc}{ContourOnPlaneCut}{scene, data_collector,
390  \fig{fig:tensor.1} shows the corresponding output.  viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
391  \verbatiminput{../examples/drivertensor.py}  This class works in a similar way to \MapOnPlaneCut, except that it shows a
392    scalar field by contour surfaces on a plane.
393    \end{classdesc}
394    
395  \begin{figure}[ht]  The following are some of the methods available:\\
396  \begin{center}  Methods from \ActorThreeD, \ContourModule and \Transform.
 \includegraphics[width=40mm]{figures/Tensor}  
 \end{center}  
 \caption{Tensor}  
 \label{fig:tensor.1}  
 \end{figure}  
397    
398  \section{\TensorOnPlane class}  \subsubsection{\ContourOnPlaneClip class}
399  \begin{classdesc}{TensorOnPlane}{scene, data_collector, transform, lut = None}  
400  A \TensorOnPlane object shows a tensor field by ellipsoids on a given plane.  \begin{classdesc}{ContourOnPlaneClip}{scene, data_collector,
401    viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True}
402    This class works in a similar way to \MapOnPlaneClip, except that it shows a
403    scalar field by contour surfaces clipped using a plane.
404  \end{classdesc}  \end{classdesc}
405    
406  The following is a sample code using the \TensorOnPlane class.  The following are some of the methods available:\\
407  \fig{fig:tensoronplane.1} shows the corresponding output.  Methods from \ActorThreeD, \ContourModule, \Transform and \Clipper.
 \verbatiminput{../examples/drivertensoronplane.py}  
408    
409  \begin{figure}[ht]  \subsubsection{\StreamLine class}
 \begin{center}  
 \includegraphics[width=40mm]{figures/TensorOnPlane}  
 \end{center}  
 \caption{Tensor on a plane}  
 \label{fig:tensoronplane.1}  
 \end{figure}  
410    
411  \section{\TensorOnClip class}  \begin{classdesc}{StreamLine}{scene, data_collector,
412  \begin{classdesc}{TensorOnClip}{scene, data_collector, transform, lut = None}  viewport = Viewport.SOUTH_WEST, color_mode = ColorMode.VECTOR, lut = Lut.COLOR,
413  A \TensorOnClip object shows a tensor field by ellipsoids on a given clip.  outline = True}
414    Class that shows the direction of particles of a vector field using streamlines.
415    The streamlines can either be colored or grey-scaled, depending on the lookup
416    table used. If the streamlines are colored, there are two possible coloring
417    modes, either using vector data or scalar data.
418  \end{classdesc}  \end{classdesc}
419    
420  The following is a sample code using the \TensorOnClip class.  The following are some of the methods available:\\
421  \fig{fig:tensoronclip.1} shows the corresponding output.  Methods from \ActorThreeD, \PointSource, \StreamLineModule and \Tube.
 \verbatiminput{../examples/drivertensoronclip.py}  
422    
423  \begin{figure}[ht]  \subsubsection{\Carpet class}
424  \begin{center}  
425  \includegraphics[width=40mm]{figures/TensorOnClip}  \begin{classdesc}{Carpet}{scene, data_collector,
426  \end{center}  viewport = Viewport.Viewport.SOUTH_WEST, warp_mode = WarpMode.SCALAR,
427  \caption{Tensor on a clip}  lut = Lut.COLOR, outline = True}
428  \label{fig:tensoronclip.1}  This class works in a similar way to \MapOnPlaneCut, except that it shows a
429  \end{figure}  scalar field on a plane deformated (warp) along the normal. The plane can
430    either be colored or grey-scaled, depending on the lookup table used.
431    Similarly, the plane can be deformated either using scalar data or vector data.
432    \end{classdesc}
433    
434    The following are some of the methods available:\\
435    Methods from \ActorThreeD, \Warp and \Transform.
436    
437    \subsubsection{\Image class}
438    
439  \section{\StreamLines class}  \begin{classdesc}{Image}{scene, image_reader, viewport = Viewport.SOUTH_WEST}
440  \begin{classdesc}{StreamLines}{scene, data_collector, lut = None}  Class that displays an image which can be scaled (upwards and downwards). The
441  A \StreamLines object show the path of particles (within a specified cloud  image can also be translated and rotated along the X, Y and Z axes.
 of points) in a vector field.  
442  \end{classdesc}  \end{classdesc}
443    
444  The following are the methods available:  The following are some of the methods available:\\
445  \begin{methoddesc}[StreamLines]{setCloudRadius}{radius}  Methods from \ActorThreeD, \PlaneSource and \Transform.
446  Set the radius for the cloud of points.  
447    
448    %##############################################################################
449    
450    
451    \subsection{Coordiante Classes}
452    This subsection details the instances used to position the rendered object.
453    
454    \begin{classdesc}{LocalPosition}{x_coor, y_coor}
455    Class that defines the local positioning coordinate system (2D).
456    \end{classdesc}
457    
458    \begin{classdesc}{GlobalPosition}{x_coor, y_coor, z_coor}
459    Class that defines the global positioning coordinate system (3D).
460    \end{classdesc}
461    
462    
463    %##############################################################################
464    
465    
466    \subsection{Supporting Classes}
467    This subsection details the supporting classes inherited by the data
468    visualization classes. These supporting
469    
470    \subsubsection{\ActorThreeD class}
471    
472    The following are some of the methods available:
473    
474    \begin{methoddesc}[Actor3D]{setOpacity}{opacity}
475    Set the opacity (transparency) of the 3D actor.
476  \end{methoddesc}  \end{methoddesc}
477    
478  \begin{methoddesc}[StreamLines]{setCenter}{position}  \begin{methoddesc}[Actor3D]{setColor}{color}
479  Set the center for the cloud of points.  Set the color of the 3D actor.
480  \end{methoddesc}  \end{methoddesc}
481    
482  \begin{methoddesc}[StreamLines]{setNumberOfPoints}{points}  \begin{methoddesc}[Actor3D]{setRepresentationToWireframe}{}
483  Set the number of points to generate for the cloud of points.  Set the representation of the 3D actor to wireframe.
484  \end{methoddesc}  \end{methoddesc}
485    
486  \begin{methoddesc}[StreamLines]{setMaximumPropagationTime}{time}  \subsubsection{\ActorTwoD class}
487  Set the maximum length for the streamlines in unit of time.  
488    The following are some of the methods available:
489    
490    \begin{methoddesc}[Actor2D]{setPosition}{position}
491    Set the position (XY) of the 2D actor. Default position is the lower left hand
492    corner of the window / viewport.
493  \end{methoddesc}  \end{methoddesc}
494    
495  \begin{methoddesc}[StreamLines]{setStreamLinesSize}{stream_lines_size}  \subsubsection{\Clipper class}
496  Set the size of the steamlines.  
497    The following are some of the methods available:
498    
499    \begin{methoddesc}[Clipper]{setInsideOutOn}{}
500    Clips one side of the rendered object.
501  \end{methoddesc}  \end{methoddesc}
502    
503  \begin{methoddesc}[StreamLines]{setAccuracy}{accuracy}  \begin{methoddesc}[Clipper]{setInsideOutOff}{}
504  Set the accuracy for the streamlines.  Clips the other side of the rendered object.
505  \end{methoddesc}  \end{methoddesc}
506    
507  \begin{methoddesc}[StreamLines]{setIntegrationToBothDirections}{}  \begin{methoddesc}[Clipper]{setClipValue}{value}
508  Set the integration to occur in both directions.  Set the scalar clip value.
509  \end{methoddesc}  \end{methoddesc}
510    
511  \begin{methoddesc}[StreamLines]{setTubeRadius}{radius}  \subsubsection{\ContourModule class}
512  Set the minimum radius of the tube.  
513    The following are some of the methods available:
514    
515    \begin{methoddesc}[ContourModule]{generateContours}{contours,
516    lower_range = None, upper_range = None}
517    Generate the specified number of contours within the specified range.
518  \end{methoddesc}  \end{methoddesc}
519    
520  \begin{methoddesc}[StreamLines]{setNumberOfSides}{sides}  \subsubsection{\GlyphThreeD class}
521  Set the number of sides for the tube.  
522    The following are some of the methods available:
523    
524    \begin{methoddesc}[Glyph3D]{setScaleModeByVector}{}
525    Set the 3D glyph to scale according to the vector data.
526  \end{methoddesc}  \end{methoddesc}
527    
528  \begin{methoddesc}[StreamLines]{setVaryRadiusByVector}{}  \begin{methoddesc}[Glyph3D]{setScaleModeByScalar}{}
529  Set the variation of the tube radius with vector data.  Set the 3D glyph to scale according to the scalar data.
530  \end{methoddesc}  \end{methoddesc}
531    
532  The following is a sample code using the \StreamLines class.  \begin{methoddesc}[Glyph3D]{setScaleFactor}{scale_factor}
533  \fig{fig:streamlines.1} shows the corresponding output.  Set the 3D glyph scale factor.
534  \verbatiminput{../examples/driverstreamlines.py}  \end{methoddesc}
535    
536  \begin{figure}[ht]  \subsubsection{\TensorGlyph class}
 \begin{center}  
 \includegraphics[width=40mm]{figures/StreamLines}  
 \end{center}  
 \caption{StreamLines}  
 \label{fig:streamlines.1}  
 \end{figure}  
537    
538  \section{\Carpet class}  The following are some of the methods available:
 \begin{classdesc}{Carpet}{scene, data_collector, transform, lut = None,  
 deform = None}  
 A \Carpet object shows a scalar/vector field as a plane deformated along  
 the plane normal.  
 \end{classdesc}  
539    
540  The following is the method available:  \begin{methoddesc}[TensorGlyph]{setScaleFactor}{scale_factor}
541  \begin{methoddesc}[Carpet]{setScaleFactor}{scale_factor}  Set the scale factor for the tensor glyph.
 Set the displancement scale factor.  
542  \end{methoddesc}  \end{methoddesc}
543    
544  The following is a sample code using the \Carpet class.  \subsubsection{\PlaneSource class}
 \fig{fig:carpet.1} shows the corresponding output.  
 \verbatiminput{../examples/drivercarpet.py}  
545    
546  \begin{figure}[ht]  The following are some of the methods available:
 \begin{center}  
 \includegraphics[width=40mm]{figures/Carpet}  
 \end{center}  
 \caption{Carpet}  
 \label{fig:carpet.1}  
 \end{figure}  
547    
548    \begin{methoddesc}[PlaneSource]{setPoint1}{position}
549    Set the first point from the origin of the plane source.
550    \end{methoddesc}
551    
552  \section{\Position class}  \begin{methoddesc}[PlaneSource]{setPoint2}{position}
553  \begin{classdesc}{Position}{x_coor, y_coor, z_coor}  Set the second point from the origin of the plane source.
554  A \Position object defines the x, y and z coordinates of rendered object.  \end{methoddesc}
 \end{classdesc}  
555    
556  \section{\Transform class}  \subsubsection{\PointSource class}
 \begin{classdesc}{Transform}{}  
 A \Transform object defines the orientation of rendered object.  
 \end{classdesc}  
557    
558  The following are some of the methods available:  The following are some of the methods available:
559  \begin{methoddesc}[Transform]{translate}{x_offset, y_offset, z_offset}  
560  Translate the rendered object along the x, y and z-axes.  \begin{methoddesc}[PointSource]{setPointSourceRadius}{radius}
561    Set the radius of the sphere.
562  \end{methoddesc}  \end{methoddesc}
563    
564  \begin{methoddesc}[Transform]{rotateX}{angle}  \begin{methoddesc}[PointSource]{setPointSourceNumberOfPoints}{points}
565  Rotate the rendered object along the x-axis.  Set the number of points to generate within the sphere (the larger the
566    number of points, the more streamlines are generated).
567  \end{methoddesc}  \end{methoddesc}
568    
569  \begin{methoddesc}[Transform]{rotateY}{angle}  \subsubsection{\StructuredPoints class}
570  Rotate the rendered object along the y-axis.  
571    The following are some of the methods available:
572    
573    \begin{methoddesc}[StructuredPoints]{setDimension}{x, y, z}
574    Set the dimension on the x, y and z axes. The smaller the dimension,
575    the more points are populated.
576  \end{methoddesc}  \end{methoddesc}
577    
578  \begin{methoddesc}[Transform]{rotateZ}{angle}  \subsubsection{\Sphere class}
579  Rotate the rendered object along the z-axis.  
580    The following are some of the methods available:
581    
582    \begin{methoddesc}[Sphere]{setThetaResolution}{resolution}
583    Set the theta resolution of the sphere.
584  \end{methoddesc}  \end{methoddesc}
585    
586  \begin{methoddesc}[Transform]{xyPlane}{offset = 0}  \begin{methoddesc}[Sphere]{setPhiResolution}{resolution}
587  Set the plane orthogonal to the z-axis.  Set the phi resoluton of the sphere.
588  \end{methoddesc}  \end{methoddesc}
589    
590  \begin{methoddesc}[Transform]{yzPlane}{offset = 0}  \subsubsection{\StreamLineModule class}
591  Set the plane orthogonal to the x-axis.  
592    The following are some of the methods available:
593    
594    \begin{methoddesc}[StreamLineModule]{setMaximumPropagationTime}{time}
595    Set the maximum length of the streamline expressed in elapsed time.
596  \end{methoddesc}  \end{methoddesc}
597    
598  \begin{methoddesc}[Transform]{xzPlane}{offset = 0}  \begin{methoddesc}[StreamLineModule]{setIntegrationToBothDirections}{}
599  Set the plane orthogonal to the y-axis.  Set the integration to occur both sides: forward (where the streamline
600    goes) and backward (where the streamline came from).
601  \end{methoddesc}  \end{methoddesc}
602    
603  \section{\Style class}  \subsubsection{\Transform class}
 \begin{classdesc}{Style}{}  
 A \Style object defines the style of text.  
 \end{classdesc}  
604    
605  The following are the methods available:  \begin{methoddesc}[Transform]{translate}{x_offset, y_offset, z_offset}
606  \begin{methoddesc}[Style]{setFontFamily}{family}  Translate the rendered object along the x, y and z-axes.
 Set the font family (i.e. Times)  
607  \end{methoddesc}  \end{methoddesc}
608    
609  \begin{methoddesc}[Style]{boldOn}{}  \begin{methoddesc}[Transform]{rotateX}{angle}
610  Bold the text.  Rotate the plane along the x-axis.
611  \end{methoddesc}  \end{methoddesc}
612    
613  \begin{methoddesc}[Style]{italicOn}{}  \begin{methoddesc}[Transform]{rotateY}{angle}
614  Italize the text.  Rotate the plane along the y-axis.
615  \end{methoddesc}  \end{methoddesc}
616    
617  \begin{methoddesc}[Style]{shadowOn}{}  \begin{methoddesc}[Transform]{rotateZ}{angle}
618  Apply shadows on the text.  Rotate the plane along the z-axis.
619  \end{methoddesc}  \end{methoddesc}
620    
621  \begin{methoddesc}[Style]{setColor}{}  \begin{methoddesc}[Transform]{setPlaneToXY}{offset = 0}
622  Set the text color.  Set the plane orthogonal to the z-axis.
623  \end{methoddesc}  \end{methoddesc}
624    
625  \section{\BlueToRed class}  \begin{methoddesc}[Transform]{setPlaneToYZ}{offset = 0}
626  \begin{classdesc}{BlueToRed}{}  Set the plane orthogonal to the x-axis.
627  A \BlueToRed object defines a map spectrum from blue to red.  \end{methoddesc}
 \end{classdesc}  
   
 \section{\RedToBlue class}  
 \begin{classdesc}{RedToBlue}{}  
 A \RedToBlue object defines a map spectrum from red to blue.  
 \end{classdesc}  
628    
629  \section{\Plane class}  \begin{methoddesc}[Transform]{setPlaneToXZ}{offset = 0}
630  The following are the methods available:  Set the plane orthogonal to the y-axis.
 \begin{methoddesc}[Plane]{setPlaneOrigin}{position}  
 Set the plane origin  
631  \end{methoddesc}  \end{methoddesc}
632    
633  \begin{methoddesc}[Plane]{setPlaneNormal}{position}  \subsubsection{\Tube class}
634  Set the plane normal  
635    \begin{methoddesc}[Tube]{setTubeRadius}{radius}
636    Set the radius of the tube.
637  \end{methoddesc}  \end{methoddesc}
638    
639  \begin{methoddesc}[Plane]{setValue}{clipping_value}  \begin{methoddesc}[Tube]{setTubeRadiusToVaryByVector}{}
640  Set the clipping value  Set the radius of the tube to vary by vector data.
641  \end{methoddesc}  \end{methoddesc}
642    
643  \begin{methoddesc}[Plane]{setInsideOutOn}{}  \begin{methoddesc}[Tube]{setTubeRadiusToVaryByScalar}{}
644  Set the clipping to inside out  Set the radius of the tube to vary by scalar data.
645  \end{methoddesc}  \end{methoddesc}
646    
647  \begin{methoddesc}[Plane]{setInsideOutOff}{}  \subsubsection{\Warp class}
648  Disable the inside out clipping  
649    \begin{methoddesc}[Warp]{setScaleFactor}{scale_factor}
650    Set the displacement scale factor.
651  \end{methoddesc}  \end{methoddesc}
652    
 \section{Additional Notes}  
 The following is a sample code rendering multiple planes.  
 \fig{fig:multipleplanes.1} shows the corresponding output.  
 \verbatiminput{../examples/drivermultipleplanes.py}  
653    
654  \begin{figure}[ht]  \section{Online Rendering Mechnism}
 \begin{center}  
 \includegraphics[width=60mm]{figures/MultiplePlanes}  
 \end{center}  
 \caption{Multiple planes}  
 \label{fig:multipleplanes.1}  
 \end{figure}  
655    
 The following is a sample code rendering multiple cuts.  
 \verbatiminput{../examples/drivermultiplecuts.py}  
656    
657    
658  The following is a sample code rendering multiple reads from multiple files.  same word on rendering, off-line, on-line, how to rotate, zoom, close the window, ...
 \verbatiminput{../examples/drivermultiplereads.py}  
659    
660    %==============================================
661    \section{How to Make a Movie}

Legend:
Removed from v.886  
changed lines
  Added in v.1035

  ViewVC Help
Powered by ViewVC 1.1.26