/[escript]/trunk/doc/user/pyvisi.tex
ViewVC logotype

Diff of /trunk/doc/user/pyvisi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 878 by gross, Thu Mar 23 00:41:25 2006 UTC revision 879 by jongui, Wed Oct 25 03:56:34 2006 UTC
# Line 1  Line 1 
 %  
 %           Copyright © 2006 by ACcESS MNRF  
 %               \url{http://www.access.edu.au  
 %         Primary Business: Queensland, Australia.  
 %   Licensed under the Open Software License version 3.0  
 %      http://www.opensource.org/license/osl-3.0.php  
 %  
1  \chapter{The module \pyvisi}  \chapter{The module \pyvisi}
2    \label{PYVISI CHAP}
3    
4  \declaremodule{extension}{pyvisi}  \declaremodule{extension}{pyvisi}
5  \modulesynopsis{visualization interface}  \modulesynopsis{Python visualization interface}
6    
7    \pyvisi provides an easy to use interface to the \VTK visualization
8    tool. The module provides the following features:
9    
10    \begin{itemize}
11    \item \Scene: Shows a scene in which components are to be displayed.
12    \item \DataCollector: Deals with data for visualization.
13    \item \Camera: Controls the camera manipulation.
14    \item \Map: Shows a scalar field by color on the domain surface.
15    \item \MapOnPlane: Shows a scalar field by color on a given plane.
16    \item \MapOnClip: Shows a scalar field by color on a given clip.
17    \item \Arrows: Shows a vector field by arrows.
18    \item \ArrowsOnPlane: Shows a vector field by arrows on a given plane.
19    \item \ArrowsOnClip: Shows a vector field by arrows on a given clip.
20    \item \IsoSurface: Shows a scalar field for a given value by
21    an isosurface.
22    \item \IsoSurfaceOnPlane: Shows a scalar field for a given value by
23    an isosurfaceon a given plane.
24    \item \IsoSurfaceOnClip: Shows a scalar field for a given vlaue by
25    an isosurface on a given clip.
26    \item \Contour: Shows a scalar field by contour surfaces.
27    \item \ContourOnPlane: Shows a scalar field by contour surfaces on
28    a given plane.
29    \item \ContourOnClip: Shows a scalar field by contour surfaces on
30    a given clip.
31    \item \TensorC: Shows a tensor field by ellipsoids.
32    \item \TensorOnPlane: Shows a tensor field by ellipsoids on
33    a given plane.
34    \item \TensorOnClip: Shows a tensor field by ellipsoids on a given clip.
35    \item \StreamLines: Shows the path of particles in a vector field.
36    \item \Carpet: Shows a scalar field as plane deformated along
37    the plane normal.
38    \item \Image: Shows an image.
39    \item \Text: Shows some 2D text.
40    \item \Position: Defines the x,y and z coordinates rendered object.
41    \item \Transform: Defines the orientation of rendered object.
42    \item \Style: Defines the style of text.
43    \item \BlueToRed: Defines a map spectrum from blue to red.
44    \item \RedToBlue: Defines a map spectrum from red to blue.
45    \end{itemize}
46    
47    \section{\Scene class}
48    \begin{classdesc}{Scene}{renderer, x_size = 500, y_size = 500}
49    A \Scene object creates a window onto which objects are to be displayed.
50    \end{classdesc}
51    
52    The following are the methods available:
53    \begin{methoddesc}[Scene]{saveImage}{image_name}
54    Save the rendered object as an image off-screen.
55    \end{methoddesc}
56    
57    \begin{methoddesc}[Scene]{render}{}
58    Render the object on-screen.
59    \end{methoddesc}
60    
61    The following is a sample code using the \Scene class:
62    \verbatiminput{../examples/driverscene.py}
63    
64    \section{\DataCollector class}
65    \begin{classdesc}{DataCollector}{scene, outline = True, cube_axes = False}
66    A \DataCollector object deals with the data for visualization.
67    \end{classdesc}
68    
69    The following are the methods available:
70    \begin{methoddesc}[DataCollector]{setFileName}{file_name}
71    Set the file name from which data is to be read.
72    \end{methoddesc}
73    
74    The following is a sample code using the \DataCollector class.
75    \fig{fig:datacollector.1} shows the corresponding output.
76    \verbatiminput{../examples/driverdatacollector.py}
77    
78    \begin{figure}[ht]
79    \begin{center}
80    \includegraphics[width=40mm]{figures/DataCollector}
81    \end{center}
82    \caption{Datacollector generating an outline with cube axes.}
83    \label{fig:datacollector.1}
84    \end{figure}
85    
86    \section{\Camera class}
87    \begin{classdesc}{Camera}{scene, data_collector}
88    A \Camera object controls the camera's settings.
89    \end{classdesc}
90    
91    The following are some of the methods available:
92    \begin{methoddesc}[Camera]{setClippingRange}{near_clipping, far_clipping}
93    Set the near and far clipping plane of the camera.
94    \end{methoddesc}
95    
96    \begin{methoddesc}[Camera]{setFocalPoint}{position}
97    Set the focal point of the camera.
98    \end{methoddesc}
99    
100    \begin{methoddesc}[Camera]{setPosition}{position}
101    Set the position of the camera.
102    \end{methoddesc}
103    
104    \begin{methoddesc}[Camera]{azimuth}{angle}
105    Rotate the camera to the left and right.
106    \end{methoddesc}
107    
108    \begin{methoddesc}[Camera]{elevation}{angle}
109    Rotate the camera to the top and bottom.
110    \end{methoddesc}
111    
112    \begin{methoddesc}[Camera]{roll}{angle}
113    Roll the camera to the left and right.
114    \end{methoddesc}
115    
116    \begin{methoddesc}[Camera]{backView}{}
117    View the back of the rendered object.
118    \end{methoddesc}
119    
120    \begin{methoddesc}[Camera]{topView}{}
121    View the top of the rendered object.
122    \end{methoddesc}
123    
124    \begin{methoddesc}[Camera]{bottomView}{}
125    View the bottom of the rendered object.
126    \end{methoddesc}
127    
128    \begin{methoddesc}[Camera]{leftView}{}
129    View the left side of the rendered object.
130    \end{methoddesc}
131    
132    \begin{methoddesc}[Camera]{rightView}{}
133    View the right side of the rendered object.
134    \end{methoddesc}
135    
136    The following is a sample code using the \Camera class.
137    \fig{fig:camera.1} shows the corresponding output.
138    \verbatiminput{../examples/drivercamera.py}
139    
140    \begin{figure}[ht]
141    \begin{center}
142    \includegraphics[width=30mm]{figures/Camera}
143    \end{center}
144    \caption{Camera manipulation}
145    \label{fig:camera.1}
146    \end{figure}
147    
148    \section{\Map class}
149    \begin{classdesc}{Map}{scene, data_collector, lut = None}
150    A \Map object shows a scalar field by color on the domain surface.
151    \end{classdesc}
152    
153    The following is a sample code using the \Map class.
154    \fig{fig:map.1} shows the corresponding output.
155    \verbatiminput{../examples/drivermap.py}
156    
157    \begin{figure}[ht]
158    \begin{center}
159    \includegraphics[width=40mm]{figures/Map}
160    \end{center}
161    \caption{Surface map}
162    \label{fig:map.1}
163    \end{figure}
164    
165    \section{\MapOnPlane class}
166    \begin{classdesc}{MapOnPlane}{scene, data_collector, transform, lut = None}
167    A \MapOnPlane object show a scalar field by color on a given plane.
168    \end{classdesc}
169    
170    The following is a sample code using the \MapOnPlane class.
171    \fig{fig:maponplane.1} shows the corresponding output.
172    \verbatiminput{../examples/drivermaponplane.py}
173    
174    \begin{figure}[ht]
175    \begin{center}
176    \includegraphics[width=40mm]{figures/MapOnPlane}
177    \end{center}
178    \caption{Surface map on a plane}
179    \label{fig:maponplane.1}
180    \end{figure}
181    
182    \section{\MapOnClip class}
183    \begin{classdesc}{MapOnClip}{scene, data_collector, transform, lut = None}
184    A \MapOnClip object show a scalar field by color on a given clip.
185    \end{classdesc}
186    
187    The following is a sample code using the \MapOnClip class.
188    \fig{fig:maponclip.1} shows the corresponding output.
189    \verbatiminput{../examples/drivermaponclip.py}
190    
191    \begin{figure}[ht]
192    \begin{center}
193    \includegraphics[width=40mm]{figures/MapOnClip}
194    \end{center}
195    \caption{Surface map on a clip}
196    \label{fig:maponclip.1}
197    \end{figure}
198    
199    \section{\Arrows class}
200    \begin{classdesc}{Arrows}{scene, data_collector, lut = None}
201    A \Arrows object shows a vector field by arrows.
202    \end{classdesc}
203    
204    The following are the methods available:
205    \begin{methoddesc}[Arrows]{setVectorMode}{vector_mode}
206    Set the arrows vector mode.
207    \end{methoddesc}
208    
209    \begin{methoddesc}[Arrows]{setScaleMode}{scale_mode}
210    Set the arrows scale mode.
211    \end{methoddesc}
212    
213    \begin{methoddesc}[Arrows]{setScaleFactor}{scale_factor}
214    Set the arrows scale factor.
215    \end{methoddesc}
216    
217    \begin{methoddesc}[Arrows]{setColorMode}{color_mode}
218    Set the arrows color mode.
219    \end{methoddesc}
220    
221    The following is a sample code using the \Arrows class.
222    \fig{fig:arrows.1} shows the corresponding output.
223    \verbatiminput{../examples/driverarrows.py}
224    
225    \begin{figure}[ht]
226    \begin{center}
227    \includegraphics[width=40mm]{figures/Arrows}
228    \end{center}
229    \caption{Arrows}
230    \label{fig:arrows.1}
231    \end{figure}
232    
233    \section{\ArrowsOnPlane class}
234    \begin{classdesc}{ArrowsOnPlane}{scene, data_collector, transform, lut = None}
235    A \ArrowsOnPlane object shows a vector field by arrows on a given plane.
236    \end{classdesc}
237    
238    The following is a sample code using the \ArrowsOnPlane class.
239    \fig{fig:arrowsonplane.1} shows the corresponding output.
240    \verbatiminput{../examples/driverarrowsonplane.py}
241    
242    \begin{figure}[ht]
243    \begin{center}
244    \includegraphics[width=40mm]{figures/ArrowsOnPlane}
245    \end{center}
246    \caption{Arrows on a plane}
247    \label{fig:arrowsonplane.1}
248    \end{figure}
249    
250    \section{\ArrowsOnClip class}
251    \begin{classdesc}{ArrowsOnClip}{scene, data_collector, transform, lut = None}
252    A \ArrowsOnClip object shows a vector field by arrows on a given clip.
253    \end{classdesc}
254    
255    The following is a sample code using the \ArrowsOnClip class.
256    \fig{fig:arrowsonclip.1} shows the corresponding output.
257    \verbatiminput{../examples/driverarrowsonclip.py}
258    
259    \begin{figure}[ht]
260    \begin{center}
261    \includegraphics[width=40mm]{figures/ArrowsOnClip}
262    \end{center}
263    \caption{Arrows on a clip}
264    \label{fig:arrowsonclip.1}
265    \end{figure}
266    
267    
268    \section{\IsoSurface class}
269    \begin{classdesc}{IsoSurface}{scene, data_collector, lut = None}
270    An \IsoSurface object shows a scalar field for a given value by an isosurface.
271    \end{classdesc}
272    
273    The following is the method available:
274    
275    \begin{methoddesc}[IsoSurface]{setValue}{contour_number, value}
276    Set the contour number and value.
277    \end{methoddesc}
278    
279    The following is a sample code using the \IsoSurface class.
280    \fig{fig:isosurface.1} shows the corresponding output.
281    \verbatiminput{../examples/driverisosurface.py}
282    
283    \begin{figure}[ht]
284    \begin{center}
285    \includegraphics[width=40mm]{figures/IsoSurface}
286    \end{center}
287    \caption{IsoSurface}
288    \label{fig:isosurface.1}
289    \end{figure}
290    
291    \section{\IsoSurfaceOnPlane class}
292    \begin{classdesc}{IsoSurfaceOnPlane}{scene, data_collector, transform,
293    lut = None}
294    An \IsoSurfaceOnPlane object shows a scalar field for a given value
295    by an isosurface on a given plane.
296    \end{classdesc}
297    
298    The following is a sample code using the \IsoSurfaceOnPlane class.
299    \fig{fig:isosurfaceonplane.1} shows the corresponding output.
300    \verbatiminput{../examples/driverisosurfaceonplane.py}
301    
302    \begin{figure}[ht]
303    \begin{center}
304    \includegraphics[width=40mm]{figures/IsoSurfaceOnPlane}
305    \end{center}
306    \caption{IsoSurface on a plane}
307    \label{fig:isosurfaceonplane.1}
308    \end{figure}
309    
310    \section{\IsoSurfaceOnClip class}
311    \begin{classdesc}{IsoSurfaceOnClip}{scene, data_collector, transform,
312    lut = None}
313    An \IsoSurfaceOnClip object shows a scalar field for a given value
314    by an isosurface on a given clip.
315    \end{classdesc}
316    
317    The following is a sample code using the \IsoSurfaceOnClip class.
318    \fig{fig:isosurfaceonclip.1} shows the corresponding output.
319    \verbatiminput{../examples/driverisosurfaceonclip.py}
320    
321    \begin{figure}[ht]
322    \begin{center}
323    \includegraphics[width=40mm]{figures/IsoSurfaceOnClip}
324    \end{center}
325    \caption{IsoSurface on a clip}
326    \label{fig:isosurfaceonclip.1}
327    \end{figure}
328    
329    \section{\Contour class}
330    \begin{classdesc}{Contour}{scene, data_collector, lut = None}
331    A \Contour object shows a scalar field contour surfaces.
332    \end{classdesc}
333    
334    The following is the method available:
335    \begin{methoddesc}[Contour]{generateValues}{number_contours, min_range,
336    max_range}
337    Generate the specified number of contours within the specified range.
338    \end{methoddesc}
339    
340    The following is a sample code using the \Contour class.
341    \fig{fig:contour.1} shows the corresponding output.
342    \verbatiminput{../examples/drivercontour.py}
343    
344    \begin{figure}[ht]
345    \begin{center}
346    \includegraphics[width=40mm]{figures/Contour}
347    \end{center}
348    \caption{Contour}
349    \label{fig:contour.1}
350    \end{figure}
351    
352    \section{\ContourOnPlane class}
353    \begin{classdesc}{ContourOnPlane}{scene, data_collector, transform, lut = None}
354    A \ContourOnPlane object shows a scalar field contour surfaces on a given plane.
355    \end{classdesc}
356    
357    The following is a sample code using the \ContourOnPlane class.
358    \fig{fig:contouronplane.1} shows the corresponding output.
359    \verbatiminput{../examples/drivercontouronplane.py}
360    
361    \begin{figure}[ht]
362    \begin{center}
363    \includegraphics[width=40mm]{figures/ContourOnPlane}
364    \end{center}
365    \caption{Contour on a plane}
366    \label{fig:contouronplane.1}
367    \end{figure}
368    
369    \section{\ContourOnClip class}
370    \begin{classdesc}{ContourOnClip}{scene, data_collector, transform, lut = None}
371    A \ContourOnClip object shows a scalar field contour surfaces on a given clip.
372    \end{classdesc}
373    
374    The following is a sample code using the \ContourOnClip class.
375    \fig{fig:contouronclip.1} shows the corresponding output.
376    \verbatiminput{../examples/drivercontouronclip.py}
377    
378    \begin{figure}[ht]
379    \begin{center}
380    \includegraphics[width=40mm]{figures/ContourOnClip}
381    \end{center}
382    \caption{Contour on a clip}
383    \label{fig:contouronclip.1}
384    \end{figure}
385    
386    \section{\TensorC class}
387    \begin{classdesc}{Tensor}{scene, data_collector, lut = None}
388    A \TensorC object shows a tensor field by ellipsoids.
389    \end{classdesc}
390    
391    The following are the methods available:
392    \begin{methoddesc}[Tensor]{setThetaResolution}{resolution}
393    Set the number of points in the longitude direction.
394    \end{methoddesc}
395    
396    \begin{methoddesc}[Tensor]{setPhiResolution}{resolution}
397    Set the number of points in the latitude direction.
398    \end{methoddesc}
399    
400    \begin{methoddesc}[Tensor]{setScaleFactor}{scale_factor}
401    Set the tensor scale factor.
402    \end{methoddesc}
403    
404    \begin{methoddesc}[Tensor]{setMaxScaleFactor}{max_scale_factor}
405    Set the maximum allowable scale factor.
406    \end{methoddesc}
407    
408    The following is a sample code using the \TensorC class.
409    \fig{fig:tensor.1} shows the corresponding output.
410    \verbatiminput{../examples/drivertensor.py}
411    
412    \begin{figure}[ht]
413    \begin{center}
414    \includegraphics[width=40mm]{figures/Tensor}
415    \end{center}
416    \caption{Tensor}
417    \label{fig:tensor.1}
418    \end{figure}
419    
420    \section{\TensorOnPlane class}
421    \begin{classdesc}{TensorOnPlane}{scene, data_collector, transform, lut = None}
422    A \TensorOnPlane object shows a tensor field by ellipsoids on a given plane.
423    \end{classdesc}
424    
425    The following is a sample code using the \TensorOnPlane class.
426    \fig{fig:tensoronplane.1} shows the corresponding output.
427    \verbatiminput{../examples/drivertensoronplane.py}
428    
429    \begin{figure}[ht]
430    \begin{center}
431    \includegraphics[width=40mm]{figures/TensorOnPlane}
432    \end{center}
433    \caption{Tensor on a plane}
434    \label{fig:tensoronplane.1}
435    \end{figure}
436    
437    \section{\TensorOnClip class}
438    \begin{classdesc}{TensorOnClip}{scene, data_collector, transform, lut = None}
439    A \TensorOnClip object shows a tensor field by ellipsoids on a given clip.
440    \end{classdesc}
441    
442    The following is a sample code using the \TensorOnClip class.
443    \fig{fig:tensoronclip.1} shows the corresponding output.
444    \verbatiminput{../examples/drivertensoronclip.py}
445    
446    \begin{figure}[ht]
447    \begin{center}
448    \includegraphics[width=40mm]{figures/TensorOnClip}
449    \end{center}
450    \caption{Tensor on a clip}
451    \label{fig:tensoronclip.1}
452    \end{figure}
453    
454    \section{\StreamLines class}
455    \begin{classdesc}{StreamLines}{scene, data_collector, lut = None}
456    A \StreamLines object show the path of particles (within a specified cloud
457    of points) in a vector field.
458    \end{classdesc}
459    
460    The following are the methods available:
461    \begin{methoddesc}[StreamLines]{setCloudRadius}{radius}
462    Set the radius for the cloud of points.
463    \end{methoddesc}
464    
465    \begin{methoddesc}[StreamLines]{setCenter}{position}
466    Set the center for the cloud of points.
467    \end{methoddesc}
468    
469    \begin{methoddesc}[StreamLines]{setNumberOfPoints}{points}
470    Set the number of points to generate for the cloud of points.
471    \end{methoddesc}
472    
473    \begin{methoddesc}[StreamLines]{setMaximumPropagationTime}{time}
474    Set the maximum length for the streamlines in unit of time.
475    \end{methoddesc}
476    
477    \begin{methoddesc}[StreamLines]{setStreamLinesSize}{stream_lines_size}
478    Set the size of the steamlines.
479    \end{methoddesc}
480    
481    \begin{methoddesc}[StreamLines]{setAccuracy}{accuracy}
482    Set the accuracy for the streamlines.
483    \end{methoddesc}
484    
485    \begin{methoddesc}[StreamLines]{setIntegrationToBothDirections}{}
486    Set the integration to occur in both directions.
487    \end{methoddesc}
488    
489    \begin{methoddesc}[StreamLines]{setTubeRadius}{radius}
490    Set the minimum radius of the tube.
491    \end{methoddesc}
492    
493    \begin{methoddesc}[StreamLines]{setNumberOfSides}{sides}
494    Set the number of sides for the tube.
495    \end{methoddesc}
496    
497    \begin{methoddesc}[StreamLines]{setVaryRadiusByVector}{}
498    Set the variation of the tube radius with vector data.
499    \end{methoddesc}
500    
501    The following is a sample code using the \StreamLines class.
502    \fig{fig:streamlines.1} shows the corresponding output.
503    \verbatiminput{../examples/driverstreamlines.py}
504    
505    \begin{figure}[ht]
506    \begin{center}
507    \includegraphics[width=40mm]{figures/StreamLines}
508    \end{center}
509    \caption{StreamLines}
510    \label{fig:streamlines.1}
511    \end{figure}
512    
513    \section{\Carpet class}
514    \begin{classdesc}{Carpet}{scene, data_collector, transform, lut = None,
515    deform = None}
516    A \Carpet object shows a scalar field as a plane deformated along the plane
517    normal.
518    \end{classdesc}
519    
520    The following is the method available:
521    \begin{methoddesc}[Carpet]{setScaleFactor}{scale_factor}
522    Set the displancement scale factor.
523    \end{methoddesc}
524    
525    The following is a sample code using the \Carpet class.
526    \fig{fig:carpet.1} shows the corresponding output.
527    \verbatiminput{../examples/drivercarpet.py}
528    
529    \begin{figure}[ht]
530    \begin{center}
531    \includegraphics[width=40mm]{figures/Carpet}
532    \end{center}
533    \caption{Carpet}
534    \label{fig:carpet.1}
535    \end{figure}
536    
537    \section{\Image class}
538    \begin{classdesc}{Image}{scene, format}
539    An \Image object shows an image.
540    \end{classdesc}
541    
542    The following is the method available:
543    \begin{methoddesc}[Image]{setFileName}{file_name}
544    Set the file name.
545    \end{methoddesc}
546    
547    The following is a sample code using the \Image class.
548    \fig{fig:image.1} shows the corresponding output.
549    \verbatiminput{../examples/driverimage.py}
550    
551    \begin{figure}[ht]
552    \begin{center}
553    \includegraphics[width=40mm]{figures/Image}
554    \end{center}
555    \caption{Image}
556    \label{fig:image.1}
557    \end{figure}
558    
559    \section{\Text class}
560    \begin{classdesc}{Text}{scene}
561    A \Text object shows 2D text.
562    \end{classdesc}
563    
564    The following are the methods available:
565    \begin{methoddesc}[Text]{setText}{text}
566    Set the text.
567    \end{methoddesc}
568    
569    \begin{methoddesc}[Text]{setPosition}{x_coor, y_coor}
570    Set the display position of the text.
571    \end{methoddesc}
572    
573    \begin{methoddesc}[Text]{setStyle}{style}
574    Set the style of the text.
575    \end{methoddesc}
576    
577    The following is a sample code using the \Text class.
578    \fig{fig:text.1} shows the corresponding output.
579    \verbatiminput{../examples/drivertext.py}
580    
581    \begin{figure}[ht]
582    \begin{center}
583    \includegraphics[width=40mm]{figures/Text}
584    \end{center}
585    \caption{2D text}
586    \label{fig:text.1}
587    \end{figure}
588    
589    \section{\Position class}
590    \begin{classdesc}{Position}{x_coor, y_coor, z_coor}
591    A \Position object defines the x, y and z coordinates of rendered object.
592    \end{classdesc}
593    
594    \section{\Transform class}
595    \begin{classdesc}{Transform}{}
596    A \Transform object defines the orientation of rendered object.
597    \end{classdesc}
598    
599    The following are some of the methods available:
600    \begin{methoddesc}[Transform]{translate}{x_offset, y_offset, z_offset}
601    Translate the rendered object along the x, y and z-axes.
602    \end{methoddesc}
603    
604    \begin{methoddesc}[Transform]{rotateX}{angle}
605    Rotate the rendered object along the x-axis.
606    \end{methoddesc}
607    
608    \begin{methoddesc}[Transform]{rotateY}{angle}
609    Rotate the rendered object along the y-axis.
610    \end{methoddesc}
611    
612    \begin{methoddesc}[Transform]{rotateZ}{angle}
613    Rotate the rendered object along the z-axis.
614    \end{methoddesc}
615    
616    \begin{methoddesc}[Transform]{xyPlane}{offset = 0}
617    Set the plane orthogonal to the z-axis.
618    \end{methoddesc}
619    
620    \begin{methoddesc}[Transform]{yzPlane}{offset = 0}
621    Set the plane orthogonal to the x-axis.
622    \end{methoddesc}
623    
624    \begin{methoddesc}[Transform]{xzPlane}{offset = 0}
625    Set the plane orthogonal to the y-axis.
626    \end{methoddesc}
627    
628    \section{\Style class}
629    \begin{classdesc}{Style}{}
630    A \Style object defines the style of text.
631    \end{classdesc}
632    
633    The following are the methods available:
634    \begin{methoddesc}[Style]{setFontFamily}{family}
635    Set the font family (i.e. Times)
636    \end{methoddesc}
637    
638    \begin{methoddesc}[Style]{boldOn}{}
639    Bold the text.
640    \end{methoddesc}
641    
642    \begin{methoddesc}[Style]{italicOn}{}
643    Italize the text.
644    \end{methoddesc}
645    
646    \begin{methoddesc}[Style]{shadowOn}{}
647    Apply shadows on the text.
648    \end{methoddesc}
649    
650    \begin{methoddesc}[Style]{setColor}{}
651    Set the text color.
652    \end{methoddesc}
653    
654    \section{\BlueToRed class}
655    \begin{classdesc}{BlueToRed}{}
656    A \BlueToRed object defines a map spectrum from blue to red.
657    \end{classdesc}
658    
659    \section{\RedToBlue class}
660    \begin{classdesc}{RedToBlue}{}
661    A \RedToBlue object defines a map spectrum from red to blue.
662    \end{classdesc}
663    
 The idea behind is to provide an easy to use interface and unified to a variety of  
 visualization tools like \VTK, \OpenDX and \GnuPlot.  
664    
 The following script illustartes the usage of \pyvisi together with the  
 \VTK library:  
 \begin{python}  
 from esys.pyvisi import *                # base level visualisation stuff  
 from esys.pyvisi.renderers.vtk import *  # vtk renderer module  
 from esys.escript import *  
 from esys.finley import Brick  
 # now make some data of some kind  
 domain = Brick(3,5,7)  # a Finley domain  
 vectorData = domain.getX()  # get vector data from the domain nodes  
 # define the scene object  
 scene = Scene()  
 # create an ArrowPlot object  
 plot = ArrowPlot(scene)  
 # add the plot to the scene  
 scene.add(plot)  
 # assign some data to the plot  
 plot.setData(vectorData)  
 # render the scene  
 scene.render()  
 # saving a scene  
 scene.save(file="example.jpg", format="jpeg")  
 \begin{python}  
 A \Scene is a container for all of the kinds of things you want to put into your plot,  
 for instance, images, domaines, arrow plots, contour plots, spheres etc.  
 The renderer is specified in the scene initialisation. In fact the  
 \code{from esys.pyvisi.renderers.vtk import *} provides the specific implementation for  
 \VTK  
   
   
 \begin{verbose}  
 class ArrowPlot3D(Plot):  
     """  
     Arrow field plot in three dimensions  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the ArrowPlot3D class  
           
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
         @param options: Dictionary of extra options  
         @type options: dict  
   
         @param fname: Filename of the input vtk file  
         @type fname: string  
   
         @param format: Format of the input vtk file ('vtk' or 'vtk-xml')  
         @type format: string  
   
     @param vectors: the name of the vector data in the vtk file to use  
     @type vectors: string  
         """  
 class ArrowPlot(Plot):  
     """  
     Arrow field plot  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the ArrowPlot class  
           
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
         """  
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
     @param options: Dictionary of extra options  
     @type options: dict  
   
     @param fname: the name of the input vtk file  
     @type fname: string  
   
     @param format: the format of the input vtk file ('vtk' or 'vtk-xml')  
     @type format: string  
   
     @param vectors: the name of the vector data in the vtk file to use  
     @type vectors: string  
         """  
 class Axes(Plot):  
     """  
     Axes class  
     """  
     def __init__(self):  
         """  
         Initialisation of Axes object  
         """  
         debugMsg("Called Axes.__init__()")  
         Plot.__init__(self)  
   
 class BallPlot(Plot):  
     """  
     Ball plot  
     """  
     def __init__(self, scene):  
   
     def setData(self, points=None,  
             fname=None, format=None,  
             radii=None, colors=None, tags=None):  
         """  
         Set data to the plot  
         @param points: the array to use for the points of the sphere  
         locations in space  
         @type points: float array  
   
         @param fname: the name of the input vtk file  
         @type fname: string  
   
         @param format: the format of the input vtk file ('vtk' or 'vtk-xml')  
         @type format: string  
   
         @param radii: the name of the scalar array in the vtk unstructured  
         grid to use as the radii of the balls  
         @type radii: float array  
   
         @param colors: the name of the scalar array in the vtk unstructured  
         grid to use as the colour tags of the balls  
         @type colors: string  
   
         @param tags: the name of the scalar array in the vtk unstructured  
         grid to use as the colour of the tags of the balls  
         @type tags: integer array  
         """  
   
 class Box(Item):  
     """  
     Generic class for Box objects  
   
     To define a box one specify one of three groups of things:  
       - The bounds of the box: xmin, xmax, ymin, ymax, zmin, zmax  
       - The dimensions and origin: width, height, depth and origin  
       - The bottom left front and top right back corners: blf, trb  
     """  
   
     def __init__(self):  
         """  
         Initialisation of the Box object  
         """  
         debugMsg("Called Box.__init__()")  
         Item.__init__(self)  
   
         # define a box in many ways, either by its centre and width, height  
         # and depth, or by its bounds, xmin, xmax, ymin, ymax, zmin, zmax,  
         # or by its bottom left front and top right back points.  
   
         # set the default bounds  
         self.xmin = -0.5  
         self.xmax = 0.5  
         self.ymin = -0.5  
         self.ymax = 0.5  
         self.zmin = -0.5  
         self.zmax = 0.5  
   
         # set the default origin (the centre of the box)  
         self.origin = ((self.xmin + self.xmax)/2.0,  
                 (self.ymin + self.ymax)/2.0,  
                 (self.zmin + self.zmax)/2.0)  
   
         # set the default dimensions  
         self.width = self.xmax - self.xmin  
         self.height = self.ymax - self.ymin  
         self.depth = self.zmax - self.zmin  
   
         # set the default blf and trb points  
         self.blf = (self.xmin, self.ymin, self.zmin)  
         self.trb = (self.xmax, self.ymax, self.zmax)  
   
         # tolerance for calculated variables checking purposes  
         self.tolerance = 1e-8  
   
     def setBounds(self, xmin, xmax, ymin, ymax, zmin, zmax):  
         """  
         Set the bounds of the box  
         """  
     def getBounds(self):  
         """  
         Get the current bounds of the box  
         """  
   
     def setOrigin(self, xo, yo, zo):  
         """  
         Set the origin of the box  
         """  
     def getOrigin(self):  
         """  
         Get the current origin of the box  
         """  
         debugMsg("Called Box.getOrigin()")  
         return self.origin  
   
     def setWidth(self, width):  
         """  
         Set the width of the box  
         """  
     def getWidth(self):  
         """  
         Get the current box width  
         """  
         debugMsg("Called Box.getWidth()")  
         return self.width  
   
     def setHeight(self, height):  
         """  
         Set the box height  
         """  
   
     def getHeight(self):  
         """  
         Get the current box height  
         """  
         debugMsg("Called Box.getHeight()")  
         return self.height  
   
     def setDepth(self, depth):  
         """  
         Set the box depth  
         """  
   
     def getDepth(self):  
         """  
         Get the current box depth  
         """  
         debugMsg("Called Box.getDepth()")  
         return self.depth  
   
     def setBLF(self, bottom, left, front):  
         """  
         Set the position of the bottom, left, front corner  
         """  
   
     def getBLF(self):  
         """  
         Get the current position of the bottom, left, front corner  
         """  
         debugMsg("Called Box.getBLF()")  
         return self.blf  
   
     def setTRB(self, top, right, back):  
         """  
         Set the position of the top, right, back corner  
         """  
   
     def getTRB(self):  
         """  
         Get the current position of the top, right, back corner  
         """  
         debugMsg("Called Box.getTRB()")  
         return self.trb  
   
   
 class ClipBox(Box):  
     """  
     Clip box class: used to clip data sets with a box  
   
     A box in this sense means three planes at right angles to one another  
     """  
   
     def __init__(self, plot):  
         """  
         Intialisation of the ClipBox object  
         """  
   
     def setInsideOut(self, insideOut):  
         """  
         Set the inside out flag  
         """  
   
     def getInsideOut(self):  
         """  
         Get the current value of the inside out flag  
         """  
   
 class Camera(Item):  
     """  
     Camera class  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the Camera object  
   
         @param scene: The Scene object to add the Camera object to  
         @type scene: Scene object  
         """  
     def setPosition(self, *pos):  
         """  
         Set position of camera within scene  
   
         @param pos: Position to set camera in terms of x,y,z coordinates  
         @type pos: tuple  
         """  
   
     def getPosition(self):  
         """  
         Get the position of Camera within Scene  
   
         Returns the position in a tuple of form (xPos, yPos, zPos)  
         """  
         debugMsg("Called Camera.getPosition()")  
   
         return (self.xPos, self.yPos, self.zPos)  
   
     def setFocalPoint(self, *pos):  
         """  
         Sets the focal point of the Camera with the Scene  
   
         @param pos: Position to set the focal point  
         @type pos: tuple  
         """  
   
     def getFocalPoint(self):  
         """  
         Get the position of the focal point of the Camera  
   
         Returns the position of the focal point in a tuple of form  
         (xPos, yPos, zPos)  
         """  
   
     def setElevation(self, elevation):  
         """  
         Set the elevation angle (in degrees) of the Camera  
   
         @param elevation: The elevation angle (in degrees) of the Camera  
         @type elevation: float  
         """  
   
         return  
   
     def getElevation(self):  
         """  
         Gets the elevation angle (in degrees) of the Camera  
         """  
   
     def setAzimuth(self, azimuth):  
         """  
         Set the azimuthal angle (in degrees) of the Camera  
   
         @param azimuth: The azimuthal angle (in degrees) of the Camera  
         @type azimuth: float  
         """  
   
     def getAzimuth(self):  
         """  
         Get the azimuthal angle (in degrees) of the Camera  
         """  
 class ContourPlot(Plot):  
     """  
     Contour plot  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the ContourPlot class  
           
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
         """  
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
         @param options: Dictionary of extra options  
         @type options: dict  
   
         @param fname: the name of the input vtk file  
         @type fname: string  
   
         @param format: the format of the input vtk file ('vtk' or 'vtk-xml')  
         @type format: string  
   
         @param scalars: the scalar data in the vtk file to use  
         @type scalars: string  
         """  
   
 class EllipsoidPlot(Plot):  
     """  
     Ellipsoid plot  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the EllipsoidPlot class  
   
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
         """  
         debugMsg("Called EllipsoidPlot.__init__()")  
         Plot.__init__(self, scene)  
   
         self.renderer = scene.renderer  
         self.renderer.addToInitStack("# EllipsoidPlot.__init__()")  
   
         # labels and stuff  
         self.title = None  
         self.xlabel = None  
         self.ylabel = None  
         self.zlabel = None  
           
         # default values for fname, format and tensors  
         self.fname = None  
         self.format = None  
     self.tensors = None  
   
     # default values for shared info  
     self.escriptData = False  
     self.otherData = False  
   
         # add the plot to the scene  
         scene.add(self)  
   
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
         @param options: Dictionary of keyword options to the method  
         @type options: dict  
   
     @param fname: the name of the input vtk file  
     @type fname: string  
   
     @param format: the format of the input vtk file ('vtk' or 'vtk-xml')  
     @type format: string  
   
     @param tensors: the name of the tensor data in the vtk file to use  
     @type tensors: string  
         """  
   
 class Image(Item):  
     """  
     Image class.  Generic class to handle image data.  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the Image class object  
           
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
         debugMsg("Called Image.__init__()")  
         Item.__init__(self)  
   
         if scene is not None:  
             self.renderer = scene.renderer  
           
     def load(self, fname):  
         """  
         Loads image data from file.  
   
         @param fname: The filename from which to load image data  
         @type fname: string  
         """  
         debugMsg("Called Image.load()")  
   
         fileCheck(fname)  
   
         return  
   
 class JpegImage(Image):  
     """  
     Subclass of Image class to explicitly handle jpeg images  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the JpegImage class object  
   
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
   
     def load(self, fname):  
         """  
         Loads jpeg image data from file.  
   
         @param fname: The filename from which to load jpeg image data  
         @type fname: string  
         """  
   
 class PngImage(Image):  
     """  
     Subclass of Image class to explicitly handle png images  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the PngImage class object  
   
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
   
     def load(self, fname):  
         """  
         Loads png image data from file.  
   
         @param fname: The filename from which to load png image data  
         @type fname: string  
         """  
 class BmpImage(Image):  
     """  
     Subclass of Image class to explicitly handle bmp images  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the BmpImage class object  
   
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
     def load(self, fname):  
         """  
         Loads bmp image data from file.  
   
         @param fname: The filename from which to load bmp image data  
         @type fname: string  
         """  
   
 class TiffImage(Image):  
     """  
     Subclass of Image class to explicitly handle tiff images  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the TiffImage class object  
   
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
     def load(self, fname):  
         """  
         Loads tiff image data from file.  
   
         @param fname: The filename from which to load tiff image data  
         @type fname: string  
         """  
 class PnmImage(Image):  
     """  
     Subclass of Image class to explicitly handle pnm (ppm, pgm, pbm) images  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the PnmImage class object  
   
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
           
     def load(self, fname):  
         """  
         Loads pnm (ppm, pgm, pbm) image data from file.  
   
         @param fname: The filename from which to load pnm image data  
         @type fname: string  
         """  
   
 class PsImage(Image):  
     """  
     Subclass of Image class to explicitly handle ps images  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the PsImage class object  
   
         This object is B{only} used for generating postscript output  
   
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
   
     def load(self, fname):  
         """  
         Loads ps image data from file.  
   
         B{NOT} supported by this renderer module  
   
         @param fname: The filename from which to load ps image data  
         @type fname: string  
         """  
         debugMsg("Called PsImage.load()")  
   
         # need to check if the file exists  
         fileCheck(fname)  
   
         # this ability not handled by this renderer module  
         unsupportedError()  
           
         return  
   
     def render(self):  
         """  
         Does PsImage object specific (pre)rendering stuff  
         """  
         debugMsg("Called PsImage.render()")  
   
         return  
   
 class PdfImage(Image):  
     """  
     Subclass of Image class to explicitly handle pdf images  
     """  
     def __init__(self, scene=None):  
         """  
         Initialises the PdfImage class object  
   
         This object is B{only} used for generating pdf output  
   
         @param scene: The Scene object to add to  
         @type scene: Scene object  
         """  
   
     def load(self, fname):  
         """  
         Loads pdf image data from file.  
   
         B{NOT} supported by this renderer module  
   
         @param fname: The filename from which to load pdf image data  
         @type fname: string  
         """  
   
 class IsosurfacePlot(Plot):  
     """  
     Isosurface plot  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the IsosurfacePlot class  
           
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
         """  
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
         @param options: Dictionary of keyword options to the method  
         @type options: dict  
   
     @param fname: the name of the input vtk file  
     @type fname: string  
   
     @param format: the format of the input vtk file ('vtk' or 'vtk-xml')  
     @type format: string  
   
     @param scalars: the name of the scalar data in the vtk file to use  
     @type scalars: string  
         """  
   
 class LinePlot(Plot):  
     """  
     Line plot  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the LinePlot class  
           
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
         """  
   
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
     @param options: Dictionary of extra options  
     @type options: dict  
   
     @param offset: whether or not to offset the lines from one another  
     @type offset: boolean  
   
     @param fname: Filename of the input vtk file  
     @type fname: string  
   
     @param format: format of the input vtk file ('vtk' or 'vtk-xml')  
     @type format: string  
   
     @param scalars: the name of the scalar data in the vtk file to use  
     @type scalars: string  
         """  
   
 class OffsetPlot(Plot):  
     """  
     Offset plot  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the OffsetPlot class  
           
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
         """  
   
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
         @param options: Dictionary of extra options  
         @type options: dict  
   
     @param fname: Filename of the input vtk file  
     @type fname: string  
   
     @param format: Format of the input vtk file ('vtk' or 'vtk-xml')  
     @type format: string  
   
     @param scalars: the name of the scalar data in the vtk file to use  
     @type scalars: string  
         """  
 class Plane(Item):  
     """  
     Generic class for Plane objects  
     """  
   
     def __init__(self, scene):  
         """  
         Initialisation of the Plane object  
         """  
   
     def setOrigin(self, x, y, z):  
         """  
         Set the origin of the plane  
         """  
   
     def getOrigin(self):  
         """  
         Get the current origin of the plane  
         """  
   
     def setNormal(self, vx, vy, vz):  
         """  
         Set the normal vector to the plane  
         """  
   
     def getNormal(self):  
         """  
         Get the current normal vector to the plane  
         """  
   
     def mapImageToPlane(self, image):  
         # this really needs to go somewhere else!!!  
         """  
         Maps an Image object onto a Plane object  
         """  
   
 class CutPlane(Plane):  
     """  
     Cut plane class: used to cut data sets with a plane  
   
     Cut plane objects define a plane to cut a data set or plot by and return  
     the data along the intersection between the data set or plot with the  
     defined plane.  
     """  
   
     def __init__(self):  
         """  
         Intialisation of the CutPlane object  
         """  
   
   
 class ClipPlane(Plane):  
     """  
     Class for planes used to clip datasets  
     """  
   
     def __init__(self):  
         """  
         Intialisation of the ClipPlane object  
         """  
   
     def setInsideOut(self, insideOut):  
         """  
         Set the inside out flag  
         """  
   
     def getInsideOut(self):  
         """  
         Get the current value of the inside out flag  
         """  
   
 class Plot(Item):  
     """  
     Abstract plot class  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the abstract Plot class  
           
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
         """  
   
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
     @param options: Dictionary of extra options  
     @type options: dict  
         """  
   
     def setTitle(self, title):  
         """  
         Set the plot title  
   
         @param title: the string holding the title to the plot  
         @type title: string  
         """  
         debugMsg("Called setTitle() in Plot()")  
   
   
     def setXLabel(self, label):  
         """  
         Set the label of the x-axis  
   
         @param label: the string holding the label of the x-axis  
         @type label: string  
         """  
   
     def setYLabel(self, label):  
         """  
         Set the label of the y-axis  
   
         @param label: the string holding the label of the y-axis  
         @type label: string  
         """  
   
     def setZLabel(self, label):  
         """  
         Set the label of the z-axis  
   
         @param label: the string holding the label of the z-axis  
         @type label: string  
         """  
   
     def setLabel(self, axis, label):  
         """  
         Set the label of a given axis  
   
         @param axis: string (Axis object maybe??) of the axis (e.g. x, y, z)  
         @type axis: string or Axis object  
   
         @param label: string of the label to set for the axis  
         @type label: string  
         """  
   
 class Renderer(BaseRenderer):  
     """  
     A generic object holding a renderer of a Scene().  
     """  
   
     def __init__(self):  
         """  
         Initialisation of Renderer() class  
         """  
         debugMsg("Called Renderer.__init__()")  
         BaseRenderer.__init__(self)  
   
         # initialise some attributes  
         self.renderWindowWidth = 640  
         self.renderWindowHeight = 480  
   
         # what is the name of my renderer?  
         self.name = _rendererName  
   
         # the namespace to run the exec code  
         self.renderDict = {}  
   
         # initialise the evalstack  
         self._evalStack = ""  
   
         # keep the initial setup of the module for later reuse  
         self._initStack = ""  
   
         # initialise the renderer module  
         self.runString("# Renderer._initRendererModule")  
         self.addToInitStack("import vtk")  
         self.addToInitStack("from numarray import *")  
   
 __revision__ = '$Revision: 1.33 $'  
   
 class Scene(BaseScene):  
     """  
     The main object controlling the scene.  
       
     Scene object methods and classes overriding the BaseScene class.  
     """  
   
     def __init__(self):  
         """  
         The init function  
         """  
   
     def add(self, obj):  
         """  
         Add a new item to the scene  
   
         @param obj: The object to add to the scene  
         @type obj: object  
         """  
   
     def place(self, obj):  
         """  
         Place an object within a scene  
   
         @param obj: The object to place within the scene  
         @type obj: object  
         """  
   
     def render(self, pause=False, interactive=False):  
         """  
         Render (or re-render) the scene  
           
         Render the scene, either to screen, or to a buffer waiting for a save  
   
         @param pause: Flag to wait at end of script evaluation for user input  
         @type pause: boolean  
   
         @param interactive: Whether or not to have interactive use of the output  
         @type interactive: boolean  
         """  
   
     def save(self, fname, format):  
         """  
         Save the scene to a file  
   
         Possible formats are:  
             - Postscript  
             - PNG  
             - JPEG  
             - TIFF  
             - BMP  
             - PNM  
   
         @param fname: Name of output file  
         @type fname: string  
   
         @param format: Graphics format of output file  
         @type format: Image object or string  
         """  
   
     def setBackgroundColor(self, *color):  
         """  
         Sets the background color of the Scene  
   
         @param color: The color to set the background to.  Can be RGB or CMYK  
         @type color: tuple  
         """  
   
     def getBackgroundColor(self):  
         """  
         Gets the current background color setting of the Scene  
         """  
   
     def setSize(self, xSize, ySize):  
         """  
         Sets the size of the scene.  
   
         This size is effectively the renderer window size.  
   
         @param xSize: the size to set the x dimension  
         @type xSize: float  
   
         @param ySize: the size to set the y dimension  
         @type ySize: float  
         """  
   
     def getSize(self):  
         """  
         Gets the current size of the scene  
   
         This size is effectively the renderer window size.  Returns a tuple  
         of the x and y dimensions respectively, in pixel units(??).  
         """  
 class SurfacePlot(Plot):  
     """  
     Surface plot  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the SurfacePlot class  
           
         @param scene: The Scene to render the plot in  
         @type scene: Scene object  
         """  
   
     def setData(self, *dataList, **options):  
         """  
         Set data to the plot  
   
         @param dataList: List of data to set to the plot  
         @type dataList: tuple  
   
         @param options: Dictionary of extra options  
         @type options: dict  
   
         @param fname: the name of the input vtk file  
         @type fname: string  
   
         @param format: the format of the input vtk file ('vtk' or 'vtk-xml')  
         @type format: string  
   
         @param scalars: the scalar data in the vtk file to use  
         @type scalars: string  
         """  
   
 class Text(Item):  
     """  
     Text  
     """  
     def __init__(self, scene):  
         """  
         Initialisation of the Text object  
   
         @param scene: the scene with which to associate the Text object  
         @type scene: Scene object  
         """  
   
     def setFont(self, font):  
         """  
         Set the current font  
   
         @param font: the font to set  
         @type font: string  
         """  
   
     def getFont(self):  
         """  
 \end{verbose}  

Legend:
Removed from v.878  
changed lines
  Added in v.879

  ViewVC Help
Powered by ViewVC 1.1.26