1 |
\chapter{The module \pyvisi} |
2 |
\label{PYVISI CHAP} |
3 |
\declaremodule{extension}{esys.pyvisi} |
4 |
\modulesynopsis{Python Visualization Interface} |
5 |
|
6 |
\section{Introduction} |
7 |
\pyvisi is a Python module that is used to generate 2D and 3D visualization |
8 |
for escript and its PDE solvers: finley and bruce. This module provides |
9 |
an easy to use interface to the \VTK library (\VTKUrl). There are three |
10 |
approaches of rendering an object. (1) Online - object is rendered on-screen |
11 |
with interaction (i.e. zoom and rotate) capability, (2) Offline - object is |
12 |
rendered off-screen (no window comes up) and (3) Display - object is rendered |
13 |
on-screen but with no interaction capability (able to produce on-the-fly |
14 |
animation). All three approaches have the option to save the rendered object |
15 |
as an image. |
16 |
|
17 |
The following points outline the general guidelines when using \pyvisi: |
18 |
|
19 |
\begin{enumerate} |
20 |
\item Create a \Scene instance, a window in which objects are to be rendered on. |
21 |
\item Create a data input instance (i.e. \DataCollector or \ImageReader), which |
22 |
reads and loads the source data for visualization. |
23 |
\item Create a data visualization instance (i.e. \Map, \Velocity, \Ellipsoid, |
24 |
\Contour, \Carpet, \StreamLine or \Image), which proccesses and manipulates the |
25 |
source data. |
26 |
\item Create a \Camera or \Light instance, which controls the viewing angle and |
27 |
lighting effects. |
28 |
\item Render the object using either the Online, Offline or Display approach. |
29 |
\end{enumerate} |
30 |
\begin{center} |
31 |
\begin{math} |
32 |
scene \rightarrow data input \rightarrow data visualization \rightarrow |
33 |
camera/light \rightarrow render |
34 |
\end{math} |
35 |
\end{center} |
36 |
|
37 |
The sequence in which instances are created is very important due to |
38 |
to the dependencies among them. For example, a data input instance must |
39 |
be created BEFORE a data visualization instance, because the source data must |
40 |
be specified before it can be manipulated. If the sequence is switched, |
41 |
the program will throw an error. Similarly, a camera and light instance must |
42 |
be created AFTER a data input instance because the camera and light instance |
43 |
calculates their position based on the source data. If the sequence is switched, |
44 |
the programthe will throw an error . |
45 |
|
46 |
\section{\pyvisi Classes} |
47 |
The following subsections give a brief overview of the important classes |
48 |
and some of their corresponding methods. Please refer to \ReferenceGuide for |
49 |
full details. |
50 |
|
51 |
|
52 |
%############################################################################# |
53 |
|
54 |
|
55 |
\subsection{Scene Classes} |
56 |
This subsection details the instances used to setup the viewing environment. |
57 |
|
58 |
\subsubsection{\Scene class} |
59 |
|
60 |
\begin{classdesc}{Scene}{renderer = Renderer.ONLINE, num_viewport = 1, |
61 |
x_size = 1152, y_size = 864} |
62 |
A scene is a window in which objects are to be rendered on. Only |
63 |
one scene needs to be created. However, a scene may be divided into four |
64 |
smaller windows called viewports (if needed). Each viewport can |
65 |
render a different object. |
66 |
\end{classdesc} |
67 |
|
68 |
The following are some of the methods available: |
69 |
\begin{methoddesc}[Scene]{setBackground}{color} |
70 |
Set the background color of the scene. |
71 |
\end{methoddesc} |
72 |
|
73 |
\begin{methoddesc}[Scene]{render}{image_name = None} |
74 |
Render the object using either the Online, Offline or Display mode. |
75 |
\end{methoddesc} |
76 |
|
77 |
\subsubsection{\Camera class} |
78 |
|
79 |
\begin{classdesc}{Camera}{scene, data_collector, viewport = Viewport.SOUTH_WEST} |
80 |
A camera controls the display angle of the rendered object and one is |
81 |
usually created for a \Scene. However, if a \Scene has four viewports, then a |
82 |
separate camera may be created for each viewport. |
83 |
\end{classdesc} |
84 |
|
85 |
The following are some of the methods available: |
86 |
\begin{methoddesc}[Camera]{setFocalPoint}{position} |
87 |
Set the focal point of the camera. |
88 |
\end{methoddesc} |
89 |
|
90 |
\begin{methoddesc}[Camera]{setPosition}{position} |
91 |
Set the position of the camera. |
92 |
\end{methoddesc} |
93 |
|
94 |
\begin{methoddesc}[Camera]{azimuth}{angle} |
95 |
Rotate the camera to the left and right. |
96 |
\end{methoddesc} |
97 |
|
98 |
\begin{methoddesc}[Camera]{elevation}{angle} |
99 |
Rotate the camera to the top and bottom (only between -90 and 90). |
100 |
\end{methoddesc} |
101 |
|
102 |
\begin{methoddesc}[Camera]{backView}{} |
103 |
Rotate the camera to view the back of the rendered object. |
104 |
\end{methoddesc} |
105 |
|
106 |
\begin{methoddesc}[Camera]{topView}{} |
107 |
Rotate the camera to view the top of the rendered object. |
108 |
\end{methoddesc} |
109 |
|
110 |
\begin{methoddesc}[Camera]{bottomView}{} |
111 |
Rotate the camera to view the bottom of the rendered object. |
112 |
\end{methoddesc} |
113 |
|
114 |
\begin{methoddesc}[Camera]{leftView}{} |
115 |
Rotate the camera to view the left side of the rendered object. |
116 |
\end{methoddesc} |
117 |
|
118 |
\begin{methoddesc}[Camera]{rightView}{} |
119 |
Rotate the camera to view the right side of the rendered object. |
120 |
\end{methoddesc} |
121 |
|
122 |
\begin{methoddesc}[Camera]{isometricView}{} |
123 |
Rotate the camera to view the isometric angle of the rendered object. |
124 |
\end{methoddesc} |
125 |
|
126 |
\begin{methoddesc}[Camera]{dolly}{distance} |
127 |
Move the camera towards (greater than 1) and away (less than 1) from |
128 |
the rendered object. |
129 |
\end{methoddesc} |
130 |
|
131 |
\subsubsection{\Light class} |
132 |
|
133 |
\begin{classdesc}{Light}{scene, data_collector, viewport = Viewport.SOUTH_WEST} |
134 |
A light controls the lighting for the rendered object and works in |
135 |
a similar way to \Camera. |
136 |
\end{classdesc} |
137 |
|
138 |
The following are some of the methods available: |
139 |
\begin{methoddesc}[Light]{setColor}{color} |
140 |
Set the light color. |
141 |
\end{methoddesc} |
142 |
|
143 |
\begin{methoddesc}[Light]{setFocalPoint}{position} |
144 |
Set the focal point of the light. |
145 |
\end{methoddesc} |
146 |
|
147 |
\begin{methoddesc}[Light]{setPosition}{position} |
148 |
Set the position of the light. |
149 |
\end{methoddesc} |
150 |
|
151 |
\begin{methoddesc}[Light]{setAngle}{elevation = 0, azimuth = 0} |
152 |
An alternative to set the position and focal point of the light by using the |
153 |
elevation and azimuth. |
154 |
\end{methoddesc} |
155 |
|
156 |
|
157 |
%############################################################################## |
158 |
|
159 |
|
160 |
\subsection{Input Classes} |
161 |
This subsection details the instances used to read and load the source data |
162 |
for visualization. |
163 |
|
164 |
\subsubsection{\DataCollector class} |
165 |
|
166 |
\begin{classdesc}{DataCollector}{source = Source.XML} |
167 |
A data collector is used to read data from an XML file or from |
168 |
an escript object directly. |
169 |
\end{classdesc} |
170 |
|
171 |
The following are some of the methods available: |
172 |
\begin{methoddesc}[DataCollector]{setFileName}{file_name} |
173 |
Set the XML file name to read. |
174 |
\end{methoddesc} |
175 |
|
176 |
\begin{methoddesc}[DataCollector]{setData}{**args} |
177 |
Create data using the \textless name\textgreater=\textless data\textgreater |
178 |
pairing. Assumption is made that the data will be given in the |
179 |
appropriate format. |
180 |
|
181 |
BUG: Reading source data directly from an escript object is NOT |
182 |
work properly. Therefore this method should NOT be used at this stage. |
183 |
\end{methoddesc} |
184 |
|
185 |
\begin{methoddesc}[DataCollector]{setActiveScalar}{scalar} |
186 |
Specify the scalar field to load. |
187 |
\end{methoddesc} |
188 |
|
189 |
\begin{methoddesc}[DataCollector]{setActiveVector}{vector} |
190 |
Specify the vector field to load. |
191 |
\end{methoddesc} |
192 |
|
193 |
\begin{methoddesc}[DataCollector]{setActiveTensor}{tensor} |
194 |
Specify the tensor field to load. |
195 |
\end{methoddesc} |
196 |
|
197 |
\subsubsection{\ImageReader class} |
198 |
|
199 |
\begin{classdesc}{ImageReader}{format} |
200 |
An image reader is used to read data from an image in a variety of formats. |
201 |
\end{classdesc} |
202 |
|
203 |
The following are some of the methods available: |
204 |
\begin{methoddesc}[ImageReader]{setImageName}{image_name} |
205 |
Set the image name to be read. |
206 |
\end{methoddesc} |
207 |
|
208 |
\subsubsection{\TextTwoD class} |
209 |
|
210 |
\begin{classdesc}{Text2D}{scene, text, viewport = Viewport.SOUTH_WEST} |
211 |
A two-dimensional text is used to annotate the rendered object |
212 |
(i.e. adding titles, authors and labels). |
213 |
\end{classdesc} |
214 |
|
215 |
The following are some of the methods available: |
216 |
\begin{methoddesc}[Text2D]{setFontSize}{size} |
217 |
Set the 2D text size. |
218 |
\end{methoddesc} |
219 |
|
220 |
\begin{methoddesc}[Text2D]{boldOn}{} |
221 |
Bold the 2D text. |
222 |
\end{methoddesc} |
223 |
|
224 |
\begin{methoddesc}[Text2D]{setColor}{color} |
225 |
Set the color of the 2D text. |
226 |
\end{methoddesc} |
227 |
|
228 |
Including methods from \ActorTwoD. |
229 |
|
230 |
|
231 |
%############################################################################## |
232 |
|
233 |
|
234 |
\subsection{Data Visualization Classes} |
235 |
This subsection details the instances used to process and manipulate the source |
236 |
data. |
237 |
|
238 |
One point to note is that the source can either be point or cell data. If the |
239 |
source is cell data, a conversion to point data may or may not be |
240 |
required, in order for the object to be rendered correctly. |
241 |
If a conversion is needed, the 'cell_to_point' flag (see below) must be set to |
242 |
'True', otherwise 'False' (which is the default). |
243 |
|
244 |
\subsubsection{\Map class} |
245 |
|
246 |
\begin{classdesc}{Map}{scene, data_collector, |
247 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
248 |
outline = True} |
249 |
Class that shows a scalar field on a domain surface. The domain surface |
250 |
can either be colored or grey-scaled, depending on the lookup table used. |
251 |
\end{classdesc} |
252 |
|
253 |
The following are some of the methods available:\\ |
254 |
Methods from \ActorThreeD. |
255 |
|
256 |
\subsubsection{\MapOnPlaneCut class} |
257 |
|
258 |
\begin{classdesc}{MapOnPlaneCut}{scene, data_collector, |
259 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
260 |
outline = True} |
261 |
This class works in a similar way to \Map, except that it shows a scalar |
262 |
field on a plane. The plane can be translated and rotated along the X, Y and |
263 |
Z axes. |
264 |
\end{classdesc} |
265 |
|
266 |
The following are some of the methods available:\\ |
267 |
Methods from \ActorThreeD and \Transform. |
268 |
|
269 |
\subsubsection{\MapOnPlaneClip class} |
270 |
|
271 |
\begin{classdesc}{MapOnPlaneClip}{scene, data_collector, |
272 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
273 |
outline = True} |
274 |
This class works in a similar way to \MapOnPlaneCut, except that it shows a |
275 |
scalar field clipped using a plane. |
276 |
\end{classdesc} |
277 |
|
278 |
The following are some of the methods available:\\ |
279 |
Methods from \ActorThreeD, \Transform and \Clipper. |
280 |
|
281 |
\subsubsection{\MapOnScalarClip class} |
282 |
|
283 |
\begin{classdesc}{MapOnScalarClip}{scene, data_collector, |
284 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
285 |
outline = True} |
286 |
This class works in a similar way to \Map, except that it shows a scalar |
287 |
field clipped using a scalar value. |
288 |
\end{classdesc} |
289 |
|
290 |
The following are some of the methods available:\\ |
291 |
Methods from \ActorThreeD and \Clipper. |
292 |
|
293 |
\subsubsection{\Velocity class} |
294 |
|
295 |
\begin{classdesc}{Velocity}{scene, data_collector, |
296 |
viewport = Viewport.SOUTH_WEST, color_mode = ColorMode.VECTOR, |
297 |
arrow = Arrow.TWO_D, lut = Lut.COLOR, cell_to_point = False, outline = True} |
298 |
Class that shows a vector field using arrows. The arrows can either be |
299 |
colored or grey-scaled, depending on the lookup table used. If the arrows |
300 |
are colored, there are two possible coloring modes, either using vector data or |
301 |
scalar data. Similarly, there are two possible types of arrows, either |
302 |
using two-dimensional or three-dimensional. |
303 |
\end{classdesc} |
304 |
|
305 |
The following are some of the methods available:\\ |
306 |
Methods from \ActorThreeD, \GlyphThreeD and \MaskPoints. |
307 |
|
308 |
\subsubsection{\VelocityOnPlaneCut class} |
309 |
|
310 |
\begin{classdesc}{VelocityOnPlaneCut}{scene, data_collector, |
311 |
arrow = Arrow.TWO_D, color_mode = ColorMode.VECTOR, |
312 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, |
313 |
cell_to_point = False, outline = True} |
314 |
This class works in a similar way to \MapOnPlaneCut, except that |
315 |
it shows a vector field using arrows on a plane. |
316 |
\end{classdesc} |
317 |
|
318 |
The following are some of the methods available:\\ |
319 |
Methods from \ActorThreeD, \GlyphThreeD, \Transform and \MaskPoints. |
320 |
|
321 |
\subsubsection{\VelocityOnPlaneClip class} |
322 |
|
323 |
\begin{classdesc}{VelocityOnPlaneClip}{scene, data_collector, |
324 |
arrow = Arrow.TWO_D, color_mode = ColorMode.VECTOR, |
325 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, |
326 |
cell_to_point = False, online = True} |
327 |
This class works in a similar way to \MapOnPlaneClip, except that it shows a |
328 |
vector field using arrows clipped using a plane. |
329 |
\end{classdesc} |
330 |
|
331 |
The following are some of the methods available:\\ |
332 |
Methods from \ActorThreeD, \GlyphThreeD, \Transform, \Clipper and |
333 |
\MaskPoints. |
334 |
|
335 |
\subsubsection{\Ellipsoid class} |
336 |
|
337 |
\begin{classdesc}{Ellipsoid}{scene, data_collector, |
338 |
viewport = Viewport = SOUTH_WEST, lut = Lut.COLOR, outline = True} |
339 |
Class that shows a tensor field using ellipsoids. The ellipsoids can either be |
340 |
colored or grey-scaled, depending on the lookup table used. |
341 |
\end{classdesc} |
342 |
|
343 |
The following are some of the methods available:\\ |
344 |
Methods from \ActorThreeD, \Sphere, \TensorGlyph and \StructuredPoints. |
345 |
|
346 |
\subsubsection{\EllipsoidOnPlaneCut class} |
347 |
|
348 |
\begin{classdesc}{EllipsoidOnPlaneCut}{scene, data_collector, |
349 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True} |
350 |
This class works in a similar way to \MapOnPlaneCut, except that it shows |
351 |
a tensor field using ellipsoids cut using a plane. |
352 |
\end{classdesc} |
353 |
|
354 |
The following are some of the methods available:\\ |
355 |
Methods from \ActorThreeD, \Sphere, \TensorGlyph, \Transform and |
356 |
\StructuredPoints. |
357 |
|
358 |
\subsubsection{\EllipsoidOnPlaneClip class} |
359 |
|
360 |
\begin{classdesc}{EllipsoidOnPlaneClip}{scene, data_collector, |
361 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, outline = True} |
362 |
This class works in a similar way to \MapOnPlaneClip, except that it shows a |
363 |
tensor field using ellipsoids clipped using a plane. |
364 |
\end{classdesc} |
365 |
|
366 |
The following are some of the methods available:\\ |
367 |
Methods from \ActorThreeD, \Sphere, \TensorGlyph, \Transform, \Clipper |
368 |
and \StructuredPoints. |
369 |
|
370 |
\subsubsection{\Contour class} |
371 |
|
372 |
\begin{classdesc}{Contour}{scene, data_collector, |
373 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
374 |
outline = True} |
375 |
Class that shows a scalar field by contour surfaces. The contour surfaces can |
376 |
either be colored or grey-scaled, depending on the lookup table used. This |
377 |
class can also be used to generate iso surfaces. |
378 |
\end{classdesc} |
379 |
|
380 |
The following are some of the methods available:\\ |
381 |
Methods from \ActorThreeD and \ContourModule. |
382 |
|
383 |
\subsubsection{\ContourOnPlaneCut class} |
384 |
|
385 |
\begin{classdesc}{ContourOnPlaneCut}{scene, data_collector, |
386 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
387 |
outline = True} |
388 |
This class works in a similar way to \MapOnPlaneCut, except that it shows a |
389 |
scalar field by contour surfaces on a plane. |
390 |
\end{classdesc} |
391 |
|
392 |
The following are some of the methods available:\\ |
393 |
Methods from \ActorThreeD, \ContourModule and \Transform. |
394 |
|
395 |
\subsubsection{\ContourOnPlaneClip class} |
396 |
|
397 |
\begin{classdesc}{ContourOnPlaneClip}{scene, data_collector, |
398 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
399 |
outline = True} |
400 |
This class works in a similar way to \MapOnPlaneClip, except that it shows a |
401 |
scalar field by contour surfaces clipped using a plane. |
402 |
\end{classdesc} |
403 |
|
404 |
The following are some of the methods available:\\ |
405 |
Methods from \ActorThreeD, \ContourModule, \Transform and \Clipper. |
406 |
|
407 |
\subsubsection{\StreamLine class} |
408 |
|
409 |
\begin{classdesc}{StreamLine}{scene, data_collector, |
410 |
viewport = Viewport.SOUTH_WEST, color_mode = ColorMode.VECTOR, lut = Lut.COLOR, |
411 |
outline = True} |
412 |
Class that shows the direction of particles of a vector field using streamlines. |
413 |
The streamlines can either be colored or grey-scaled, depending on the lookup |
414 |
table used. If the streamlines are colored, there are two possible coloring |
415 |
modes, either using vector data or scalar data. |
416 |
\end{classdesc} |
417 |
|
418 |
The following are some of the methods available:\\ |
419 |
Methods from \ActorThreeD, \PointSource, \StreamLineModule and \Tube. |
420 |
|
421 |
\subsubsection{\Carpet class} |
422 |
|
423 |
\begin{classdesc}{Carpet}{scene, data_collector, |
424 |
viewport = Viewport.Viewport.SOUTH_WEST, warp_mode = WarpMode.SCALAR, |
425 |
lut = Lut.COLOR, outline = True} |
426 |
This class works in a similar way to \MapOnPlaneCut, except that it shows a |
427 |
scalar field on a plane deformated (warp) along the normal. The plane can |
428 |
either be colored or grey-scaled, depending on the lookup table used. |
429 |
Similarly, the plane can be deformated either using scalar data or vector data. |
430 |
\end{classdesc} |
431 |
|
432 |
The following are some of the methods available:\\ |
433 |
Methods from \ActorThreeD, \Warp and \Transform. |
434 |
|
435 |
\subsubsection{\Image class} |
436 |
|
437 |
\begin{classdesc}{Image}{scene, image_reader, viewport = Viewport.SOUTH_WEST} |
438 |
Class that displays an image which can be scaled (upwards and downwards). The |
439 |
image can also be translated and rotated along the X, Y and Z axes. |
440 |
\end{classdesc} |
441 |
|
442 |
The following are some of the methods available:\\ |
443 |
Methods from \ActorThreeD, \PlaneSource and \Transform. |
444 |
|
445 |
|
446 |
%############################################################################## |
447 |
|
448 |
|
449 |
\subsection{Coordinate Classes} |
450 |
This subsection details the instances used to position the rendered object. |
451 |
|
452 |
\begin{classdesc}{LocalPosition}{x_coor, y_coor} |
453 |
Class that defines the local positioning coordinate system (2D). |
454 |
\end{classdesc} |
455 |
|
456 |
\begin{classdesc}{GlobalPosition}{x_coor, y_coor, z_coor} |
457 |
Class that defines the global positioning coordinate system (3D). |
458 |
\end{classdesc} |
459 |
|
460 |
|
461 |
%############################################################################## |
462 |
|
463 |
|
464 |
\subsection{Supporting Classes} |
465 |
This subsection details the supporting classes inherited by the data |
466 |
visualization classes. These supporting |
467 |
|
468 |
\subsubsection{\ActorThreeD class} |
469 |
|
470 |
The following are some of the methods available: |
471 |
|
472 |
\begin{methoddesc}[Actor3D]{setOpacity}{opacity} |
473 |
Set the opacity (transparency) of the 3D actor. |
474 |
\end{methoddesc} |
475 |
|
476 |
\begin{methoddesc}[Actor3D]{setColor}{color} |
477 |
Set the color of the 3D actor. |
478 |
\end{methoddesc} |
479 |
|
480 |
\begin{methoddesc}[Actor3D]{setRepresentationToWireframe}{} |
481 |
Set the representation of the 3D actor to wireframe. |
482 |
\end{methoddesc} |
483 |
|
484 |
\subsubsection{\ActorTwoD class} |
485 |
|
486 |
The following are some of the methods available: |
487 |
|
488 |
\begin{methoddesc}[Actor2D]{setPosition}{position} |
489 |
Set the position (XY) of the 2D actor. Default position is the lower left hand |
490 |
corner of the window / viewport. |
491 |
\end{methoddesc} |
492 |
|
493 |
\subsubsection{\Clipper class} |
494 |
|
495 |
The following are some of the methods available: |
496 |
|
497 |
\begin{methoddesc}[Clipper]{setInsideOutOn}{} |
498 |
Clips one side of the rendered object. |
499 |
\end{methoddesc} |
500 |
|
501 |
\begin{methoddesc}[Clipper]{setInsideOutOff}{} |
502 |
Clips the other side of the rendered object. |
503 |
\end{methoddesc} |
504 |
|
505 |
\begin{methoddesc}[Clipper]{setClipValue}{value} |
506 |
Set the scalar clip value. |
507 |
\end{methoddesc} |
508 |
|
509 |
\subsubsection{\ContourModule class} |
510 |
|
511 |
The following are some of the methods available: |
512 |
|
513 |
\begin{methoddesc}[ContourModule]{generateContours}{contours, |
514 |
lower_range = None, upper_range = None} |
515 |
Generate the specified number of contours within the specified range. |
516 |
\end{methoddesc} |
517 |
|
518 |
\subsubsection{\GlyphThreeD class} |
519 |
|
520 |
The following are some of the methods available: |
521 |
|
522 |
\begin{methoddesc}[Glyph3D]{setScaleModeByVector}{} |
523 |
Set the 3D glyph to scale according to the vector data. |
524 |
\end{methoddesc} |
525 |
|
526 |
\begin{methoddesc}[Glyph3D]{setScaleModeByScalar}{} |
527 |
Set the 3D glyph to scale according to the scalar data. |
528 |
\end{methoddesc} |
529 |
|
530 |
\begin{methoddesc}[Glyph3D]{setScaleFactor}{scale_factor} |
531 |
Set the 3D glyph scale factor. |
532 |
\end{methoddesc} |
533 |
|
534 |
\subsubsection{\TensorGlyph class} |
535 |
|
536 |
The following are some of the methods available: |
537 |
|
538 |
\begin{methoddesc}[TensorGlyph]{setScaleFactor}{scale_factor} |
539 |
Set the scale factor for the tensor glyph. |
540 |
\end{methoddesc} |
541 |
|
542 |
\subsubsection{\PlaneSource class} |
543 |
|
544 |
The following are some of the methods available: |
545 |
|
546 |
\begin{methoddesc}[PlaneSource]{setPoint1}{position} |
547 |
Set the first point from the origin of the plane source. |
548 |
\end{methoddesc} |
549 |
|
550 |
\begin{methoddesc}[PlaneSource]{setPoint2}{position} |
551 |
Set the second point from the origin of the plane source. |
552 |
\end{methoddesc} |
553 |
|
554 |
\subsubsection{\PointSource class} |
555 |
|
556 |
The following are some of the methods available: |
557 |
|
558 |
\begin{methoddesc}[PointSource]{setPointSourceRadius}{radius} |
559 |
Set the radius of the sphere. |
560 |
\end{methoddesc} |
561 |
|
562 |
\begin{methoddesc}[PointSource]{setPointSourceNumberOfPoints}{points} |
563 |
Set the number of points to generate within the sphere (the larger the |
564 |
number of points, the more streamlines are generated). |
565 |
\end{methoddesc} |
566 |
|
567 |
\subsubsection{\StructuredPoints class} |
568 |
|
569 |
The following are some of the methods available: |
570 |
|
571 |
\begin{methoddesc}[StructuredPoints]{setDimension}{x, y, z} |
572 |
Set the dimension on the x, y and z axes. The smaller the dimension, |
573 |
the more points are populated. |
574 |
\end{methoddesc} |
575 |
|
576 |
\subsubsection{\Sphere class} |
577 |
|
578 |
The following are some of the methods available: |
579 |
|
580 |
\begin{methoddesc}[Sphere]{setThetaResolution}{resolution} |
581 |
Set the theta resolution of the sphere. |
582 |
\end{methoddesc} |
583 |
|
584 |
\begin{methoddesc}[Sphere]{setPhiResolution}{resolution} |
585 |
Set the phi resoluton of the sphere. |
586 |
\end{methoddesc} |
587 |
|
588 |
\subsubsection{\StreamLineModule class} |
589 |
|
590 |
The following are some of the methods available: |
591 |
|
592 |
\begin{methoddesc}[StreamLineModule]{setMaximumPropagationTime}{time} |
593 |
Set the maximum length of the streamline expressed in elapsed time. |
594 |
\end{methoddesc} |
595 |
|
596 |
\begin{methoddesc}[StreamLineModule]{setIntegrationToBothDirections}{} |
597 |
Set the integration to occur both sides: forward (where the streamline |
598 |
goes) and backward (where the streamline came from). |
599 |
\end{methoddesc} |
600 |
|
601 |
\subsubsection{\Transform class} |
602 |
|
603 |
\begin{methoddesc}[Transform]{translate}{x_offset, y_offset, z_offset} |
604 |
Translate the rendered object along the x, y and z-axes. |
605 |
\end{methoddesc} |
606 |
|
607 |
\begin{methoddesc}[Transform]{rotateX}{angle} |
608 |
Rotate the plane along the x-axis. |
609 |
\end{methoddesc} |
610 |
|
611 |
\begin{methoddesc}[Transform]{rotateY}{angle} |
612 |
Rotate the plane along the y-axis. |
613 |
\end{methoddesc} |
614 |
|
615 |
\begin{methoddesc}[Transform]{rotateZ}{angle} |
616 |
Rotate the plane along the z-axis. |
617 |
\end{methoddesc} |
618 |
|
619 |
\begin{methoddesc}[Transform]{setPlaneToXY}{offset = 0} |
620 |
Set the plane orthogonal to the z-axis. |
621 |
\end{methoddesc} |
622 |
|
623 |
\begin{methoddesc}[Transform]{setPlaneToYZ}{offset = 0} |
624 |
Set the plane orthogonal to the x-axis. |
625 |
\end{methoddesc} |
626 |
|
627 |
\begin{methoddesc}[Transform]{setPlaneToXZ}{offset = 0} |
628 |
Set the plane orthogonal to the y-axis. |
629 |
\end{methoddesc} |
630 |
|
631 |
\subsubsection{\Tube class} |
632 |
|
633 |
\begin{methoddesc}[Tube]{setTubeRadius}{radius} |
634 |
Set the radius of the tube. |
635 |
\end{methoddesc} |
636 |
|
637 |
\begin{methoddesc}[Tube]{setTubeRadiusToVaryByVector}{} |
638 |
Set the radius of the tube to vary by vector data. |
639 |
\end{methoddesc} |
640 |
|
641 |
\begin{methoddesc}[Tube]{setTubeRadiusToVaryByScalar}{} |
642 |
Set the radius of the tube to vary by scalar data. |
643 |
\end{methoddesc} |
644 |
|
645 |
\subsubsection{\Warp class} |
646 |
|
647 |
\begin{methoddesc}[Warp]{setScaleFactor}{scale_factor} |
648 |
Set the displacement scale factor. |
649 |
\end{methoddesc} |
650 |
|
651 |
|
652 |
\section{Online Rendering Mechnism} |
653 |
|
654 |
|
655 |
|
656 |
same word on rendering, off-line, on-line, how to rotate, zoom, close the window, ... |
657 |
|
658 |
%============================================== |
659 |
\section{How to Make a Movie} |