1 |
\chapter{The module \pyvisi} |
2 |
\label{PYVISI CHAP} |
3 |
\declaremodule{extension}{esys.pyvisi} |
4 |
\modulesynopsis{Python Visualization Interface} |
5 |
|
6 |
\section{Introduction} |
7 |
\pyvisi is a Python module that is used to generate 2D and 3D visualization |
8 |
for escript and its PDE solvers: finley and bruce. This module provides |
9 |
an easy to use interface to the \VTK library (\VTKUrl). Pyvisi can be used to |
10 |
render (generate) surface maps and contours for scalar fields, arrows and |
11 |
streamlines for vector fields, and ellipsoids for tensor fields. |
12 |
There are three |
13 |
approaches for rendering an object. (1) Online - object is rendered on-screen |
14 |
with interaction capability (i.e. zoom and rotate), (2) Offline - object is |
15 |
rendered off-screen (no pop-up window) and (3) Display - object is rendered |
16 |
on-screen but with no interaction capability (on-the-fly |
17 |
animation). All three approaches have the option to save the rendered object |
18 |
as an image (i.e. jpg) and subsequently converting a series of images into a |
19 |
movie (.mpg). |
20 |
|
21 |
The following outlines the general steps to use Pyvisi: |
22 |
|
23 |
\begin{enumerate} |
24 |
\item Create a \Scene instance - a window in which objects are to be |
25 |
rendered on. |
26 |
\item Create a data input instance (i.e. \DataCollector or \ImageReader) - |
27 |
reads and loads the source data for visualization. |
28 |
\item Create a data visualization instance (i.e. \Map, \Velocity, \Ellipsoid, |
29 |
\Contour, \Carpet, \StreamLine or \Image) - proccesses and manipulates |
30 |
the source data. |
31 |
\item Create a \Camera or \Light instance - controls the viewing angle and |
32 |
lighting effects. |
33 |
\item Render the object - using either the Online, Offline or Display approach. |
34 |
\item Generate movie - converts a series of images into a movie. |
35 |
\end{enumerate} |
36 |
\begin{center} |
37 |
\begin{math} |
38 |
scene \rightarrow data \; input \rightarrow data \; visualization \rightarrow |
39 |
camera \, / \, light \rightarrow render \rightarrow movie |
40 |
\end{math} |
41 |
\end{center} |
42 |
|
43 |
\section{\pyvisi Classes} |
44 |
The following subsections give a brief overview of the important classes |
45 |
and some of their corresponding methods. Please refer to \ReferenceGuide for |
46 |
full details. |
47 |
|
48 |
|
49 |
%############################################################################# |
50 |
|
51 |
|
52 |
\subsection{Scene Classes} |
53 |
This subsection details the instances used to setup the viewing environment. |
54 |
|
55 |
\subsubsection{\Scene class} |
56 |
|
57 |
\begin{classdesc}{Scene}{renderer = Renderer.ONLINE, num_viewport = 1, |
58 |
x_size = 1152, y_size = 864} |
59 |
A scene is a window in which objects are to be rendered on. Only |
60 |
one scene needs to be created. However, a scene may be divided into four |
61 |
smaller windows called viewports (if needed). Each viewport in turn can |
62 |
render a different object. |
63 |
\end{classdesc} |
64 |
|
65 |
The following are some of the methods available: |
66 |
\begin{methoddesc}[Scene]{setBackground}{color} |
67 |
Set the background color of the scene. |
68 |
\end{methoddesc} |
69 |
|
70 |
\begin{methoddesc}[Scene]{render}{image_name = None} |
71 |
Render the object using either the Online, Offline or Display mode. |
72 |
\end{methoddesc} |
73 |
|
74 |
\subsubsection{\Camera class} |
75 |
|
76 |
\begin{classdesc}{Camera}{scene, viewport = Viewport.SOUTH_WEST} |
77 |
A camera controls the display angle of the rendered object and one is |
78 |
usually created for a \Scene. However, if a \Scene has four viewports, then a |
79 |
separate camera may be created for each viewport. |
80 |
\end{classdesc} |
81 |
|
82 |
The following are some of the methods available: |
83 |
\begin{methoddesc}[Camera]{setFocalPoint}{position} |
84 |
Set the focal point of the camera. |
85 |
\end{methoddesc} |
86 |
|
87 |
\begin{methoddesc}[Camera]{setPosition}{position} |
88 |
Set the position of the camera. |
89 |
\end{methoddesc} |
90 |
|
91 |
\begin{methoddesc}[Camera]{azimuth}{angle} |
92 |
Rotate the camera to the left and right. |
93 |
\end{methoddesc} |
94 |
|
95 |
\begin{methoddesc}[Camera]{elevation}{angle} |
96 |
Rotate the camera to the top and bottom (only between -90 and 90). |
97 |
\end{methoddesc} |
98 |
|
99 |
\begin{methoddesc}[Camera]{backView}{} |
100 |
Rotate the camera to view the back of the rendered object. |
101 |
\end{methoddesc} |
102 |
|
103 |
\begin{methoddesc}[Camera]{topView}{} |
104 |
Rotate the camera to view the top of the rendered object. |
105 |
\end{methoddesc} |
106 |
|
107 |
\begin{methoddesc}[Camera]{bottomView}{} |
108 |
Rotate the camera to view the bottom of the rendered object. |
109 |
\end{methoddesc} |
110 |
|
111 |
\begin{methoddesc}[Camera]{leftView}{} |
112 |
Rotate the camera to view the left side of the rendered object. |
113 |
\end{methoddesc} |
114 |
|
115 |
\begin{methoddesc}[Camera]{rightView}{} |
116 |
Rotate the camera to view the right side of the rendered object. |
117 |
\end{methoddesc} |
118 |
|
119 |
\begin{methoddesc}[Camera]{isometricView}{} |
120 |
Rotate the camera to view the isometric angle of the rendered object. |
121 |
\end{methoddesc} |
122 |
|
123 |
\begin{methoddesc}[Camera]{dolly}{distance} |
124 |
Move the camera towards (greater than 1) the rendered object. However, |
125 |
the camera is unable to be moved away from the rendered object. |
126 |
\end{methoddesc} |
127 |
|
128 |
\subsubsection{\Light class} |
129 |
|
130 |
\begin{classdesc}{Light}{scene, viewport = Viewport.SOUTH_WEST} |
131 |
A light controls the lighting effect for the rendered object and works in |
132 |
a similar way to \Camera. |
133 |
\end{classdesc} |
134 |
|
135 |
The following are some of the methods available: |
136 |
\begin{methoddesc}[Light]{setColor}{color} |
137 |
Set the light color. |
138 |
\end{methoddesc} |
139 |
|
140 |
\begin{methoddesc}[Light]{setFocalPoint}{position} |
141 |
Set the focal point of the light. |
142 |
\end{methoddesc} |
143 |
|
144 |
\begin{methoddesc}[Light]{setPosition}{position} |
145 |
Set the position of the light. |
146 |
\end{methoddesc} |
147 |
|
148 |
\begin{methoddesc}[Light]{setAngle}{elevation = 0, azimuth = 0} |
149 |
An alternative to set the position and focal point of the light by using the |
150 |
elevation and azimuth. |
151 |
\end{methoddesc} |
152 |
|
153 |
|
154 |
%############################################################################## |
155 |
|
156 |
|
157 |
\subsection{Input Classes} |
158 |
\label{INPUT SEC} |
159 |
This subsection details the instances used to read and load the source data |
160 |
for visualization. |
161 |
|
162 |
\subsubsection{\DataCollector class} |
163 |
\begin{classdesc}{DataCollector}{source = Source.XML} |
164 |
A data collector is used to read data either from a XML file (using |
165 |
\texttt{setFileName()}) or from an escript object directly (using |
166 |
\texttt{setData()}). Writing XML files are expensive, but this approach has |
167 |
the advantage given that the results can be analyzed easily after the |
168 |
simulation has completed. |
169 |
\end{classdesc} |
170 |
|
171 |
The following are some of the methods available: |
172 |
\begin{methoddesc}[DataCollector]{setFileName}{file_name} |
173 |
Set the XML file name to read. |
174 |
\end{methoddesc} |
175 |
|
176 |
\begin{methoddesc}[DataCollector]{setData}{**args} |
177 |
Create data using the \textless name\textgreater=\textless data\textgreater |
178 |
pairing. Assumption is made that the data will be given in the |
179 |
appropriate format. |
180 |
\end{methoddesc} |
181 |
|
182 |
\begin{methoddesc}[DataCollector]{setActiveScalar}{scalar} |
183 |
Specify the scalar field to load. |
184 |
\end{methoddesc} |
185 |
|
186 |
\begin{methoddesc}[DataCollector]{setActiveVector}{vector} |
187 |
Specify the vector field to load. |
188 |
\end{methoddesc} |
189 |
|
190 |
\begin{methoddesc}[DataCollector]{setActiveTensor}{tensor} |
191 |
Specify the tensor field to load. |
192 |
\end{methoddesc} |
193 |
|
194 |
\subsubsection{\ImageReader class} |
195 |
|
196 |
\begin{classdesc}{ImageReader}{format} |
197 |
An image reader is used to read data from an image in a variety of formats. |
198 |
\end{classdesc} |
199 |
|
200 |
The following are some of the methods available: |
201 |
\begin{methoddesc}[ImageReader]{setImageName}{image_name} |
202 |
Set the image name to be read. |
203 |
\end{methoddesc} |
204 |
|
205 |
\subsubsection{\TextTwoD class} |
206 |
|
207 |
\begin{classdesc}{Text2D}{scene, text, viewport = Viewport.SOUTH_WEST} |
208 |
A two-dimensional text is used to annotate the rendered object |
209 |
(i.e. inserting titles, authors and labels). |
210 |
\end{classdesc} |
211 |
|
212 |
The following are some of the methods available: |
213 |
\begin{methoddesc}[Text2D]{setFontSize}{size} |
214 |
Set the 2D text size. |
215 |
\end{methoddesc} |
216 |
|
217 |
\begin{methoddesc}[Text2D]{boldOn}{} |
218 |
Bold the 2D text. |
219 |
\end{methoddesc} |
220 |
|
221 |
\begin{methoddesc}[Text2D]{setColor}{color} |
222 |
Set the color of the 2D text. |
223 |
\end{methoddesc} |
224 |
|
225 |
Including methods from \ActorTwoD. |
226 |
|
227 |
|
228 |
%############################################################################## |
229 |
|
230 |
|
231 |
\subsection{Data Visualization Classes} |
232 |
\label{DATAVIS SEC} |
233 |
This subsection details the instances used to process and manipulate the source |
234 |
data. The typical usage of some of the classes are also shown. |
235 |
|
236 |
One point to note is that the source can either be point or cell data. If the |
237 |
source is cell data, a conversion to point data may or may not be |
238 |
required, in order for the object to be rendered correctly. |
239 |
If a conversion is needed, the 'cell_to_point' flag (see below) must |
240 |
be set to 'True', otherwise 'False' (which is the default). On occasions, an |
241 |
inaccurate object may be rendered from cell data even after conversion. |
242 |
|
243 |
\subsubsection{\Map class} |
244 |
|
245 |
\begin{classdesc}{Map}{scene, data_collector, |
246 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
247 |
outline = True} |
248 |
Class that shows a scalar field on a domain surface. The domain surface |
249 |
can either be colored or grey-scaled, depending on the lookup table used. |
250 |
\end{classdesc} |
251 |
|
252 |
The following are some of the methods available:\\ |
253 |
Methods from \ActorThreeD and \DataSetMapper. |
254 |
|
255 |
A typical usage of \Map is shown below. |
256 |
|
257 |
\begin{python} |
258 |
""" |
259 |
Author: John Ngui, john.ngui@uq.edu.au |
260 |
""" |
261 |
|
262 |
# Import the necessary modules. |
263 |
from esys.pyvisi import Scene, DataCollector, Map, Camera |
264 |
from esys.pyvisi.constant import * |
265 |
import os |
266 |
|
267 |
PYVISI_EXAMPLE_MESHES_PATH = "data_meshes" |
268 |
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images" |
269 |
X_SIZE = 800 |
270 |
Y_SIZE = 800 |
271 |
|
272 |
SCALAR_FIELD_POINT_DATA = "temperature" |
273 |
SCALAR_FIELD_CELL_DATA = "temperature_cell" |
274 |
FILE_3D = "interior_3D.xml" |
275 |
IMAGE_NAME = "map.jpg" |
276 |
JPG_RENDERER = Renderer.ONLINE_JPG |
277 |
|
278 |
# Create a Scene with four viewports. |
279 |
s = Scene(renderer = JPG_RENDERER, num_viewport = 4, x_size = X_SIZE, |
280 |
y_size = Y_SIZE) |
281 |
|
282 |
# Create a DataCollector reading from a XML file. |
283 |
dc1 = DataCollector(source = Source.XML) |
284 |
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D)) |
285 |
dc1.setActiveScalar(scalar = SCALAR_FIELD_POINT_DATA) |
286 |
|
287 |
# Create a Map for the first viewport. |
288 |
m1 = Map(scene = s, data_collector = dc1, viewport = Viewport.SOUTH_WEST, |
289 |
lut = Lut.COLOR, cell_to_point = False, outline = True) |
290 |
m1.setRepresentationToWireframe() |
291 |
|
292 |
# Create a Camera for the first viewport |
293 |
c1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST) |
294 |
c1.isometricView() |
295 |
|
296 |
# Create a second DataCollector reading from the same XML file but specifying |
297 |
# a different scalar field. |
298 |
dc2 = DataCollector(source = Source.XML) |
299 |
dc2.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D)) |
300 |
dc2.setActiveScalar(scalar = SCALAR_FIELD_CELL_DATA) |
301 |
|
302 |
# Create a Map for the third viewport. |
303 |
m2 = Map(scene = s, data_collector = dc2, viewport = Viewport.NORTH_EAST, |
304 |
lut = Lut.COLOR, cell_to_point = True, outline = True) |
305 |
|
306 |
# Create a Camera for the third viewport |
307 |
c2 = Camera(scene = s, viewport = Viewport.NORTH_EAST) |
308 |
|
309 |
# Render the object. |
310 |
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, IMAGE_NAME)) |
311 |
\end{python} |
312 |
|
313 |
\subsubsection{\MapOnPlaneCut class} |
314 |
|
315 |
\begin{classdesc}{MapOnPlaneCut}{scene, data_collector, |
316 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
317 |
outline = True} |
318 |
This class works in a similar way to \Map, except that it shows a scalar |
319 |
field cut using a plane. The plane can be translated and rotated along the |
320 |
X, Y and Z axes. |
321 |
\end{classdesc} |
322 |
|
323 |
The following are some of the methods available:\\ |
324 |
Methods from \ActorThreeD, \Transform and \DataSetMapper. |
325 |
|
326 |
\subsubsection{\MapOnPlaneClip class} |
327 |
|
328 |
\begin{classdesc}{MapOnPlaneClip}{scene, data_collector, |
329 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
330 |
outline = True} |
331 |
This class works in a similar way to \MapOnPlaneCut, except that it shows a |
332 |
scalar field clipped using a plane. |
333 |
\end{classdesc} |
334 |
|
335 |
The following are some of the methods available:\\ |
336 |
Methods from \ActorThreeD, \Transform, \Clipper and \DataSetMapper. |
337 |
|
338 |
\subsubsection{\MapOnScalarClip class} |
339 |
|
340 |
\begin{classdesc}{MapOnScalarClip}{scene, data_collector, |
341 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
342 |
outline = True} |
343 |
This class works in a similar way to \Map, except that it shows a scalar |
344 |
field clipped using a scalar value. |
345 |
\end{classdesc} |
346 |
|
347 |
The following are some of the methods available:\\ |
348 |
Methods from \ActorThreeD, \Clipper and \DataSetMapper. |
349 |
|
350 |
\subsubsection{\MapOnScalarClipWithRotation class} |
351 |
|
352 |
\begin{classdesc}{MapOnScalarClipWithRotation}{scene, data_collector, |
353 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False} |
354 |
This class works in a similar way to \Map except that it |
355 |
shows a 2D scalar field clipped using a scalar value and subsequently |
356 |
rotated around the z-axis to create a 3D looking effect. This class should |
357 |
only be used with 2D data sets and NOT 3D. |
358 |
\end{classdesc} |
359 |
|
360 |
The following are some of the methods available:\\ |
361 |
Methods from \ActorThreeD, \Clipper, \Rotation and \DataSetMapper. |
362 |
|
363 |
\subsubsection{\Velocity class} |
364 |
|
365 |
\begin{classdesc}{Velocity}{scene, data_collector, arrow = Arrow.TWO_D, |
366 |
color_mode = ColorMode.VECTOR, viewport = Viewport.SOUTH_WEST, |
367 |
lut = Lut.COLOR, cell_to_point = False, outline = True} |
368 |
Class that shows a vector field using arrows. The arrows can either be |
369 |
colored or grey-scaled, depending on the lookup table used. If the arrows |
370 |
are colored, there are two possible coloring modes, either using vector data or |
371 |
scalar data. Similarly, there are two possible types of arrows, either |
372 |
using two-dimensional or three-dimensional. |
373 |
\end{classdesc} |
374 |
|
375 |
The following are some of the methods available:\\ |
376 |
Methods from \ActorThreeD, \GlyphThreeD, \MaskPoints and \DataSetMapper. |
377 |
|
378 |
\subsubsection{\VelocityOnPlaneCut class} |
379 |
|
380 |
\begin{classdesc}{VelocityOnPlaneCut}{scene, data_collector, |
381 |
arrow = Arrow.TWO_D, color_mode = ColorMode.VECTOR, |
382 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, |
383 |
cell_to_point = False, outline = True} |
384 |
This class works in a similar way to \MapOnPlaneCut, except that |
385 |
it shows a vector field using arrows cut using a plane. |
386 |
\end{classdesc} |
387 |
|
388 |
The following are some of the methods available:\\ |
389 |
Methods from \ActorThreeD, \GlyphThreeD, \Transform, \MaskPoints and |
390 |
\DataSetMapper. |
391 |
|
392 |
A typical usage of \VelocityOnPlaneCut is shown below. |
393 |
|
394 |
\begin{python} |
395 |
""" |
396 |
Author: John Ngui, john.ngui@uq.edu.au |
397 |
""" |
398 |
|
399 |
# Import the necessary modules |
400 |
from esys.pyvisi import Scene, DataCollector, VelocityOnPlaneCut, Camera |
401 |
from esys.pyvisi.constant import * |
402 |
import os |
403 |
|
404 |
PYVISI_EXAMPLE_MESHES_PATH = "data_meshes" |
405 |
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images" |
406 |
X_SIZE = 400 |
407 |
Y_SIZE = 400 |
408 |
|
409 |
VECTOR_FIELD_CELL_DATA = "velocity" |
410 |
FILE_3D = "interior_3D.xml" |
411 |
IMAGE_NAME = "velocity.jpg" |
412 |
JPG_RENDERER = Renderer.ONLINE_JPG |
413 |
|
414 |
# Create a Scene. |
415 |
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE, |
416 |
y_size = Y_SIZE) |
417 |
|
418 |
# Create a DataCollector reading from a XML file. |
419 |
dc1 = DataCollector(source = Source.XML) |
420 |
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D)) |
421 |
dc1.setActiveVector(vector = VECTOR_FIELD_CELL_DATA) |
422 |
|
423 |
# Create VelocityOnPlaneCut. |
424 |
vopc1 = VelocityOnPlaneCut(scene = s, data_collector = dc1, |
425 |
viewport = Viewport.SOUTH_WEST, color_mode = ColorMode.VECTOR, |
426 |
arrow = Arrow.THREE_D, lut = Lut.COLOR, cell_to_point = False, |
427 |
outline = True) |
428 |
vopc1.setScaleFactor(scale_factor = 0.5) |
429 |
vopc1.setPlaneToXY(offset = 0.5) |
430 |
vopc1.setRatio(2) |
431 |
vopc1.randomOn() |
432 |
|
433 |
# Create a Camera. |
434 |
c1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST) |
435 |
c1.isometricView() |
436 |
c1.elevation(angle = -20) |
437 |
|
438 |
# Render the object. |
439 |
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, IMAGE_NAME)) |
440 |
\end{python} |
441 |
|
442 |
\subsubsection{\VelocityOnPlaneClip class} |
443 |
|
444 |
\begin{classdesc}{VelocityOnPlaneClip}{scene, data_collector, |
445 |
arrow = Arrow.TWO_D, color_mode = ColorMode.VECTOR, |
446 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, |
447 |
cell_to_point = False, online = True} |
448 |
This class works in a similar way to \MapOnPlaneClip, except that it shows a |
449 |
vector field using arrows clipped using a plane. |
450 |
\end{classdesc} |
451 |
|
452 |
The following are some of the methods available:\\ |
453 |
Methods from \ActorThreeD, \GlyphThreeD, \Transform, \Clipper, |
454 |
\MaskPoints and \DataSetMapper. |
455 |
|
456 |
\subsubsection{\Ellipsoid class} |
457 |
|
458 |
\begin{classdesc}{Ellipsoid}{scene, data_collector, |
459 |
viewport = Viewport = SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
460 |
outline = True} |
461 |
Class that shows a tensor field using ellipsoids. The ellipsoids can either be |
462 |
colored or grey-scaled, depending on the lookup table used. |
463 |
\end{classdesc} |
464 |
|
465 |
The following are some of the methods available:\\ |
466 |
Methods from \ActorThreeD, \Sphere, \TensorGlyph, \MaskPoints and |
467 |
\DataSetMapper. |
468 |
|
469 |
\subsubsection{\EllipsoidOnPlaneCut class} |
470 |
|
471 |
\begin{classdesc}{EllipsoidOnPlaneCut}{scene, data_collector, |
472 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
473 |
outline = True} |
474 |
This class works in a similar way to \MapOnPlaneCut, except that it shows |
475 |
a tensor field using ellipsoids cut using a plane. |
476 |
\end{classdesc} |
477 |
|
478 |
The following are some of the methods available:\\ |
479 |
Methods from \ActorThreeD, \Sphere, \TensorGlyph, \Transform, |
480 |
\MaskPoints and \DataSetMapper. |
481 |
|
482 |
\subsubsection{\EllipsoidOnPlaneClip class} |
483 |
|
484 |
\begin{classdesc}{EllipsoidOnPlaneClip}{scene, data_collector, |
485 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
486 |
outline = True} |
487 |
This class works in a similar way to \MapOnPlaneClip, except that it shows a |
488 |
tensor field using ellipsoids clipped using a plane. |
489 |
\end{classdesc} |
490 |
|
491 |
The following are some of the methods available:\\ |
492 |
Methods from \ActorThreeD, \Sphere, \TensorGlyph, \Transform, \Clipper, |
493 |
\MaskPoints and \DataSetMapper. |
494 |
|
495 |
A typical usage of \EllipsoidOnPlaneClip is shown below. |
496 |
|
497 |
\begin{python} |
498 |
""" |
499 |
Author: John Ngui, john.ngui@uq.edu.au |
500 |
""" |
501 |
|
502 |
# Import the necessary modules |
503 |
from esys.pyvisi import Scene, DataCollector, EllipsoidOnPlaneClip, Camera |
504 |
from esys.pyvisi.constant import * |
505 |
import os |
506 |
|
507 |
PYVISI_EXAMPLE_MESHES_PATH = "data_meshes" |
508 |
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images" |
509 |
X_SIZE = 400 |
510 |
Y_SIZE = 400 |
511 |
|
512 |
TENSOR_FIELD_CELL_DATA = "stress_cell" |
513 |
FILE_3D = "interior_3D.xml" |
514 |
IMAGE_NAME = "ellipsoid.jpg" |
515 |
JPG_RENDERER = Renderer.ONLINE_JPG |
516 |
|
517 |
# Create a Scene. |
518 |
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE, |
519 |
y_size = Y_SIZE) |
520 |
|
521 |
# Create a DataCollector reading from a XML file. |
522 |
dc1 = DataCollector(source = Source.XML) |
523 |
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D)) |
524 |
dc1.setActiveTensor(tensor = TENSOR_FIELD_CELL_DATA) |
525 |
|
526 |
# Create an EllipsoidOnPlaneClip. |
527 |
eopc1 = EllipsoidOnPlaneClip(scene = s, data_collector = dc1, |
528 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = True, |
529 |
outline = True) |
530 |
eopc1.setPlaneToXY() |
531 |
eopc1.setScaleFactor(scale_factor = 0.2) |
532 |
eopc1.rotateX(angle = 10) |
533 |
|
534 |
# Create a Camera. |
535 |
c1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST) |
536 |
c1.bottomView() |
537 |
c1.azimuth(angle = -90) |
538 |
c1.elevation(angle = 10) |
539 |
|
540 |
# Render the object. |
541 |
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, IMAGE_NAME)) |
542 |
\end{python} |
543 |
|
544 |
\subsubsection{\Contour class} |
545 |
|
546 |
\begin{classdesc}{Contour}{scene, data_collector, |
547 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
548 |
outline = True} |
549 |
Class that shows a scalar field using contour surfaces. The contour surfaces can |
550 |
either be colored or grey-scaled, depending on the lookup table used. This |
551 |
class can also be used to generate iso surfaces. |
552 |
\end{classdesc} |
553 |
|
554 |
The following are some of the methods available:\\ |
555 |
Methods from \ActorThreeD, \ContourModule and \DataSetMapper. |
556 |
|
557 |
A typical usage of \Contour is shown below. |
558 |
|
559 |
\begin{python} |
560 |
""" |
561 |
Author: John Ngui, john.ngui@uq.edu.au |
562 |
""" |
563 |
|
564 |
# Import the necessary modules |
565 |
from esys.pyvisi import Scene, DataCollector, Contour, Camera |
566 |
from esys.pyvisi.constant import * |
567 |
import os |
568 |
|
569 |
PYVISI_EXAMPLE_MESHES_PATH = "data_meshes" |
570 |
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images" |
571 |
X_SIZE = 400 |
572 |
Y_SIZE = 400 |
573 |
|
574 |
SCALAR_FIELD_POINT_DATA = "temperature" |
575 |
FILE_3D = "interior_3D.xml" |
576 |
IMAGE_NAME = "contour.jpg" |
577 |
JPG_RENDERER = Renderer.ONLINE_JPG |
578 |
|
579 |
# Create a Scene. |
580 |
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE, |
581 |
y_size = Y_SIZE) |
582 |
|
583 |
# Create a DataCollector reading a XML file. |
584 |
dc1 = DataCollector(source = Source.XML) |
585 |
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D)) |
586 |
dc1.setActiveScalar(scalar = SCALAR_FIELD_POINT_DATA) |
587 |
|
588 |
# Create a Contour. |
589 |
ctr1 = Contour(scene = s, data_collector = dc1, viewport = Viewport.SOUTH_WEST, |
590 |
lut = Lut.COLOR, cell_to_point = False, outline = True) |
591 |
ctr1.generateContours(contours = 3) |
592 |
|
593 |
# Create a Camera. |
594 |
cam1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST) |
595 |
cam1.elevation(angle = -40) |
596 |
|
597 |
# Render the object. |
598 |
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, IMAGE_NAME)) |
599 |
\end{python} |
600 |
|
601 |
\subsubsection{\ContourOnPlaneCut class} |
602 |
|
603 |
\begin{classdesc}{ContourOnPlaneCut}{scene, data_collector, |
604 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
605 |
outline = True} |
606 |
This class works in a similar way to \MapOnPlaneCut, except that it shows a |
607 |
scalar field using contour surfaces cut using a plane. |
608 |
\end{classdesc} |
609 |
|
610 |
The following are some of the methods available:\\ |
611 |
Methods from \ActorThreeD, \ContourModule, \Transform and \DataSetMapper. |
612 |
|
613 |
\subsubsection{\ContourOnPlaneClip class} |
614 |
|
615 |
\begin{classdesc}{ContourOnPlaneClip}{scene, data_collector, |
616 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
617 |
outline = True} |
618 |
This class works in a similar way to \MapOnPlaneClip, except that it shows a |
619 |
scalar field using contour surfaces clipped using a plane. |
620 |
\end{classdesc} |
621 |
|
622 |
The following are some of the methods available:\\ |
623 |
Methods from \ActorThreeD, \ContourModule, \Transform, \Clipper and |
624 |
\DataSetMapper. |
625 |
|
626 |
\subsubsection{\StreamLine class} |
627 |
|
628 |
\begin{classdesc}{StreamLine}{scene, data_collector, |
629 |
viewport = Viewport.SOUTH_WEST, color_mode = ColorMode.VECTOR, lut = Lut.COLOR, |
630 |
cell_to_point = False, outline = True} |
631 |
Class that shows the direction of particles of a vector field using streamlines. |
632 |
The streamlines can either be colored or grey-scaled, depending on the lookup |
633 |
table used. If the streamlines are colored, there are two possible coloring |
634 |
modes, either using vector data or scalar data. |
635 |
\end{classdesc} |
636 |
|
637 |
The following are some of the methods available:\\ |
638 |
Methods from \ActorThreeD, \PointSource, \StreamLineModule, \Tube and |
639 |
\DataSetMapper. |
640 |
|
641 |
A typical usage of \StreamLine is shown below. |
642 |
|
643 |
\begin{python} |
644 |
""" |
645 |
Author: John Ngui, john.ngui@uq.edu.au |
646 |
""" |
647 |
|
648 |
# Import the necessary modules. |
649 |
from esys.pyvisi import Scene, DataCollector, StreamLine, Camera |
650 |
from esys.pyvisi.constant import * |
651 |
import os |
652 |
|
653 |
PYVISI_EXAMPLE_MESHES_PATH = "data_meshes" |
654 |
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images" |
655 |
X_SIZE = 400 |
656 |
Y_SIZE = 400 |
657 |
|
658 |
VECTOR_FIELD_CELL_DATA = "temperature" |
659 |
FILE_3D = "interior_3D.xml" |
660 |
IMAGE_NAME = "streamline.jpg" |
661 |
JPG_RENDERER = Renderer.ONLINE_JPG |
662 |
|
663 |
# Create a Scene. |
664 |
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE, |
665 |
y_size = Y_SIZE) |
666 |
|
667 |
# Create a DataCollector reading from a XML file. |
668 |
dc1 = DataCollector(source = Source.XML) |
669 |
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D)) |
670 |
|
671 |
# Create a Streamline. |
672 |
sl1 = StreamLine(scene = s, data_collector = dc1, |
673 |
viewport = Viewport.SOUTH_WEST, color_mode = ColorMode.SCALAR, |
674 |
lut = Lut.COLOR, cell_to_point = False, outline = True) |
675 |
sl1.setTubeRadius(radius = 0.02) |
676 |
sl1.setTubeNumberOfSides(3) |
677 |
sl1.setTubeRadiusToVaryByVector() |
678 |
sl1.setPointSourceRadius(0.9) |
679 |
|
680 |
# Create a Camera. |
681 |
c1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST) |
682 |
c1.isometricView() |
683 |
|
684 |
# Render the object. |
685 |
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, IMAGE_NAME)) |
686 |
\end{python} |
687 |
|
688 |
\subsubsection{\Carpet class} |
689 |
|
690 |
\begin{classdesc}{Carpet}{scene, data_collector, |
691 |
viewport = Viewport.Viewport.SOUTH_WEST, warp_mode = WarpMode.SCALAR, |
692 |
lut = Lut.COLOR, cell_to_point = False, outline = True} |
693 |
This class works in a similar way to \MapOnPlaneCut, except that it shows a |
694 |
scalar field cut on a plane and deformated (warp) along the normal. The |
695 |
plane can either be colored or grey-scaled, depending on the lookup table used. |
696 |
Similarly, the plane can be deformated either using scalar data or vector data. |
697 |
\end{classdesc} |
698 |
|
699 |
The following are some of the methods available:\\ |
700 |
Methods from \ActorThreeD, \Warp, \Transform and \DataSetMapper. |
701 |
|
702 |
A typical usage of \Carpet is shown below. |
703 |
|
704 |
\begin{python} |
705 |
""" |
706 |
Author: John Ngui, john.ngui@uq.edu.au |
707 |
""" |
708 |
|
709 |
# Import the necessary modules. |
710 |
from esys.pyvisi import Scene, DataCollector, Carpet, Camera |
711 |
from esys.pyvisi.constant import * |
712 |
import os |
713 |
|
714 |
PYVISI_EXAMPLE_MESHES_PATH = "data_meshes" |
715 |
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images" |
716 |
X_SIZE = 400 |
717 |
Y_SIZE = 400 |
718 |
|
719 |
SCALAR_FIELD_CELL_DATA = "temperature_cell" |
720 |
FILE_3D = "interior_3D.xml" |
721 |
IMAGE_NAME = "carpet.jpg" |
722 |
JPG_RENDERER = Renderer.ONLINE_JPG |
723 |
|
724 |
# Create a Scene. |
725 |
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE, |
726 |
y_size = Y_SIZE) |
727 |
|
728 |
# Create a DataCollector reading from a XML file. |
729 |
dc1 = DataCollector(source = Source.XML) |
730 |
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D)) |
731 |
dc1.setActiveScalar(scalar = SCALAR_FIELD_CELL_DATA) |
732 |
|
733 |
# Create a Carpet. |
734 |
cpt1 = Carpet(scene = s, data_collector = dc1, viewport = Viewport.SOUTH_WEST, |
735 |
warp_mode = WarpMode.SCALAR, lut = Lut.COLOR, cell_to_point = True, |
736 |
outline = True) |
737 |
cpt1.setPlaneToXY(0.2) |
738 |
cpt1.setScaleFactor(1.9) |
739 |
|
740 |
# Create a Camera. |
741 |
c1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST) |
742 |
c1.isometricView() |
743 |
|
744 |
# Render the object. |
745 |
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, IMAGE_NAME)) |
746 |
\end{python} |
747 |
|
748 |
\subsubsection{\Legend class} |
749 |
|
750 |
\begin{classdesc}{Legend}{scene, data_collector, |
751 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, legend = LegendType.SCALAR} |
752 |
Class that shows a scalar field on a domain surface. The domain surface |
753 |
can either be colored or grey-scaled, depending on the lookup table used |
754 |
\end{classdesc} |
755 |
|
756 |
The following are some of the methods available:\\ |
757 |
Methods from \ActorThreeD, \ScalarBar and \DataSetMapper. |
758 |
|
759 |
\subsubsection{\Rectangle class} |
760 |
|
761 |
\begin{classdesc}{Rectangle}{scene, viewport = Viewport.SOUTH_WEST} |
762 |
Class that generates a rectangle box. |
763 |
\end{classdesc} |
764 |
|
765 |
The following are some of the methods available:\\ |
766 |
Methods from \ActorThreeD, \CubeSource and \DataSetMapper. |
767 |
|
768 |
\subsubsection{\Image class} |
769 |
|
770 |
\begin{classdesc}{Image}{scene, image_reader, viewport = Viewport.SOUTH_WEST} |
771 |
Class that displays an image which can be scaled (upwards and downwards) and |
772 |
has interaction capability. The image can also be translated and rotated along |
773 |
the X, Y and Z axes. One of the most common use of this feature is pasting an |
774 |
image on a surface map. |
775 |
\end{classdesc} |
776 |
|
777 |
The following are some of the methods available:\\ |
778 |
Methods from \ActorThreeD, \PlaneSource and \Transform. |
779 |
|
780 |
A typical usage of \Image is shown below. |
781 |
|
782 |
\begin{python} |
783 |
""" |
784 |
Author: John Ngui, john.ngui@uq.edu.au |
785 |
""" |
786 |
|
787 |
# Import the necessary modules. |
788 |
from esys.pyvisi import Scene, DataCollector, Map, ImageReader, Image, Camera |
789 |
from esys.pyvisi import GlobalPosition |
790 |
from esys.pyvisi.constant import * |
791 |
import os |
792 |
|
793 |
PYVISI_EXAMPLE_MESHES_PATH = "data_meshes" |
794 |
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images" |
795 |
X_SIZE = 400 |
796 |
Y_SIZE = 400 |
797 |
|
798 |
SCALAR_FIELD_POINT_DATA = "temperature" |
799 |
FILE_3D = "interior_3D.xml" |
800 |
LOAD_IMAGE_NAME = "flinders.jpg" |
801 |
SAVE_IMAGE_NAME = "image.jpg" |
802 |
JPG_RENDERER = Renderer.ONLINE_JPG |
803 |
|
804 |
# Create a Scene. |
805 |
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE, |
806 |
y_size = Y_SIZE) |
807 |
|
808 |
# Create a DataCollector reading from a XML file. |
809 |
dc1 = DataCollector(source = Source.XML) |
810 |
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D)) |
811 |
|
812 |
# Create a Map. |
813 |
m1 = Map(scene = s, data_collector = dc1, viewport = Viewport.SOUTH_WEST, |
814 |
lut = Lut.COLOR, cell_to_point = False, outline = True) |
815 |
m1.setOpacity(0.3) |
816 |
|
817 |
# Create an ImageReader (in place of DataCollector). |
818 |
ir = ImageReader(ImageFormat.JPG) |
819 |
ir.setImageName(image_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, \ |
820 |
LOAD_IMAGE_NAME)) |
821 |
|
822 |
# Create an Image. |
823 |
i = Image(scene = s, image_reader = ir, viewport = Viewport.SOUTH_WEST) |
824 |
i.setOpacity(opacity = 0.9) |
825 |
i.translate(0,0,-1) |
826 |
i.setPoint1(GlobalPosition(2,0,0)) |
827 |
i.setPoint2(GlobalPosition(0,2,0)) |
828 |
|
829 |
# Create a Camera. |
830 |
c1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST) |
831 |
|
832 |
# Render the image. |
833 |
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, SAVE_IMAGE_NAME)) |
834 |
\end{python} |
835 |
|
836 |
\subsubsection{\Logo class} |
837 |
|
838 |
\begin{classdesc}{Logo}{scene, image_reader, viewport = Viewport.SOUTH_WEST} |
839 |
Class that displays a static image, in particular a logo |
840 |
(i.e. company symbol) and has NO interaction capability. The position and size |
841 |
of the logo can be specified. |
842 |
\end{classdesc} |
843 |
|
844 |
The following are some of the methods available:\\ |
845 |
Methods from \ImageReslice and \ActorTwoD. |
846 |
|
847 |
\subsubsection{\Movie class} |
848 |
|
849 |
\begin{classdesc}{Movie}{parameter_file = "make_movie"} |
850 |
Class that creates a file called 'make_movie' by default (if a parameter |
851 |
file name is not speficied) which contains a list of parameters required |
852 |
by the 'ppmtompeg' command to generate a movie from a series of images. |
853 |
\end{classdesc} |
854 |
|
855 |
The following are some of the methods available:\\ |
856 |
\begin{methoddesc}[Movie]{imageRange}{input_directory, first_image, last_image} |
857 |
The image range from which the movie is to be generated from. |
858 |
\end{methoddesc} |
859 |
|
860 |
\begin{methoddesc}[Movie]{imageList}{input_directory, image_list} |
861 |
The image list from which the movie is to be generated from. |
862 |
\end{methoddesc} |
863 |
|
864 |
\begin{methoddesc}[Movie]{makeMovie}{movie} |
865 |
Generate the movie. |
866 |
\end{methoddesc} |
867 |
|
868 |
A typical usage of \Movie is shown below. |
869 |
|
870 |
\begin{python} |
871 |
""" |
872 |
Author: John Ngui, john.ngui@uq.edu.au |
873 |
""" |
874 |
|
875 |
# Import the necessary modules. |
876 |
from esys.pyvisi import Scene, DataCollector, Map, Camera, Velocity, Legend |
877 |
from esys.pyvisi import Movie, LocalPosition |
878 |
from esys.pyvisi.constant import * |
879 |
import os |
880 |
|
881 |
PYVISI_EXAMPLE_MESHES_PATH = "data_meshes" |
882 |
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images" |
883 |
X_SIZE = 800 |
884 |
Y_SIZE = 800 |
885 |
|
886 |
SCALAR_FIELD_POINT_DATA = "temp" |
887 |
FILE_2D = "tempvel-" |
888 |
IMAGE_NAME = "movie" |
889 |
JPG_RENDERER = Renderer.ONLINE_JPG |
890 |
|
891 |
# Create a Scene. |
892 |
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE, |
893 |
y_size = Y_SIZE) |
894 |
|
895 |
# Create a DataCollector reading from a XML file. |
896 |
dc1 = DataCollector(source = Source.XML) |
897 |
dc1.setActiveScalar(scalar = SCALAR_FIELD_POINT_DATA) |
898 |
|
899 |
# Create a Map. |
900 |
m1 = Map(scene = s, data_collector = dc1, |
901 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
902 |
outline = True) |
903 |
|
904 |
# Create a Camera. |
905 |
cam1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST) |
906 |
|
907 |
# Create a movie. |
908 |
mov = Movie() |
909 |
#lst = [] |
910 |
|
911 |
# Read in one file one after another and render the object. |
912 |
for i in range(938, 949): |
913 |
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, \ |
914 |
FILE_2D + "%06d.vtu") % i) |
915 |
|
916 |
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, \ |
917 |
IMAGE_NAME + "%06d.jpg") % i) |
918 |
|
919 |
#lst.append(IMAGE_NAME + "%06d.jpg" % i) |
920 |
|
921 |
# Images (first and last inclusive) from which the movie is to be generated. |
922 |
mov.imageRange(input_directory = PYVISI_EXAMPLE_IMAGES_PATH, |
923 |
first_image = IMAGE_NAME + "000938.jpg", |
924 |
last_image = IMAGE_NAME + "000948.jpg") |
925 |
|
926 |
# Alternatively, a list of images can be specified. |
927 |
#mov.imageList(input_directory = PYVISI_EXAMPLE_IMAGES_PATH, image_list = lst) |
928 |
|
929 |
# Generate the movie. |
930 |
mov.makeMovie(os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, "movie.mpg")) |
931 |
\end{python} |
932 |
|
933 |
|
934 |
%############################################################################## |
935 |
|
936 |
|
937 |
\subsection{Coordinate Classes} |
938 |
This subsection details the instances used to position the rendered object. |
939 |
|
940 |
\subsubsection{\LocalPosition class} |
941 |
|
942 |
\begin{classdesc}{LocalPosition}{x_coor, y_coor} |
943 |
Class that defines the local positioning (X and Y) coordinate system (2D). |
944 |
\end{classdesc} |
945 |
|
946 |
\subsubsection{\GlobalPosition class} |
947 |
|
948 |
\begin{classdesc}{GlobalPosition}{x_coor, y_coor, z_coor} |
949 |
Class that defines the global positioning (X, Y and Z) coordinate system (3D). |
950 |
\end{classdesc} |
951 |
|
952 |
|
953 |
%############################################################################## |
954 |
|
955 |
|
956 |
\subsection{Supporting Classes} |
957 |
This subsection details the supporting classes and their corresponding methods |
958 |
inherited by the input (see Section \ref{INPUT SEC}) and data |
959 |
visualization classes (see Section \ref{DATAVIS SEC}). |
960 |
|
961 |
\subsubsection{\ActorThreeD class} |
962 |
Class that defines a 3D actor. \\ |
963 |
|
964 |
The following are some of the methods available: |
965 |
|
966 |
\begin{methoddesc}[Actor3D]{setOpacity}{opacity} |
967 |
Set the opacity (transparency) of the 3D actor. |
968 |
\end{methoddesc} |
969 |
|
970 |
\begin{methoddesc}[Actor3D]{setColor}{color} |
971 |
Set the color of the 3D actor. |
972 |
\end{methoddesc} |
973 |
|
974 |
\begin{methoddesc}[Actor3D]{setRepresentationToWireframe}{} |
975 |
Set the representation of the 3D actor to wireframe. |
976 |
\end{methoddesc} |
977 |
|
978 |
\subsubsection{\ActorTwoD class} |
979 |
Class that defines a 2D actor. \\ |
980 |
|
981 |
The following are some of the methods available: |
982 |
|
983 |
\begin{methoddesc}[Actor2D]{setPosition}{position} |
984 |
Set the position (XY) of the 2D actor. Default position is the lower left hand |
985 |
corner of the window / viewport. |
986 |
\end{methoddesc} |
987 |
|
988 |
\subsubsection{\Clipper class} |
989 |
Class that defines a clipper. \\ |
990 |
|
991 |
The following are some of the methods available: |
992 |
|
993 |
\begin{methoddesc}[Clipper]{setInsideOutOn}{} |
994 |
Clips one side of the rendered object. |
995 |
\end{methoddesc} |
996 |
|
997 |
\begin{methoddesc}[Clipper]{setInsideOutOff}{} |
998 |
Clips the other side of the rendered object. |
999 |
\end{methoddesc} |
1000 |
|
1001 |
\begin{methoddesc}[Clipper]{setClipValue}{value} |
1002 |
Set the scalar clip value (instead of using a plane) for the clipper. |
1003 |
\end{methoddesc} |
1004 |
|
1005 |
\subsubsection{\ContourModule class} |
1006 |
Class that defines the contour module. \\ |
1007 |
|
1008 |
The following are some of the methods available: |
1009 |
|
1010 |
\begin{methoddesc}[ContourModule]{generateContours}{contours = None, |
1011 |
lower_range = None, upper_range = None} |
1012 |
Generate the specified number of contours within the specified range. |
1013 |
In order to generate an iso surface, the 'lower_range' and 'upper_range' |
1014 |
must be equal. |
1015 |
\end{methoddesc} |
1016 |
|
1017 |
\subsubsection{\GlyphThreeD class} |
1018 |
Class that defines 3D glyphs. \\ |
1019 |
|
1020 |
The following are some of the methods available: |
1021 |
|
1022 |
\begin{methoddesc}[Glyph3D]{setScaleModeByVector}{} |
1023 |
Set the 3D glyph to scale according to the vector data. |
1024 |
\end{methoddesc} |
1025 |
|
1026 |
\begin{methoddesc}[Glyph3D]{setScaleModeByScalar}{} |
1027 |
Set the 3D glyph to scale according to the scalar data. |
1028 |
\end{methoddesc} |
1029 |
|
1030 |
\begin{methoddesc}[Glyph3D]{setScaleFactor}{scale_factor} |
1031 |
Set the 3D glyph scale factor. |
1032 |
\end{methoddesc} |
1033 |
|
1034 |
\subsubsection{\TensorGlyph class} |
1035 |
Class that defines tensor glyphs. \\ |
1036 |
|
1037 |
The following are some of the methods available: |
1038 |
|
1039 |
\begin{methoddesc}[TensorGlyph]{setScaleFactor}{scale_factor} |
1040 |
Set the scale factor for the tensor glyph. |
1041 |
\end{methoddesc} |
1042 |
|
1043 |
\begin{methoddesc}[TensorGlyph]{setMaxScaleFactor}{max_scale_factor} |
1044 |
Set the maximum allowable scale factor for the tensor glyph. |
1045 |
\end{methoddesc} |
1046 |
|
1047 |
\subsubsection{\PlaneSource class} |
1048 |
Class that defines a plane source. A plane source is defined by an origin |
1049 |
and two other points, which form the axes (X and Y). \\ |
1050 |
|
1051 |
The following are some of the methods available: |
1052 |
|
1053 |
\begin{methoddesc}[PlaneSource]{setPoint1}{position} |
1054 |
Set the first point from the origin of the plane source. |
1055 |
\end{methoddesc} |
1056 |
|
1057 |
\begin{methoddesc}[PlaneSource]{setPoint2}{position} |
1058 |
Set the second point from the origin of the plane source. |
1059 |
\end{methoddesc} |
1060 |
|
1061 |
\subsubsection{\PointSource class} |
1062 |
Class that defines the source (location) to generate points. The points are |
1063 |
generated within the radius of a sphere. \\ |
1064 |
|
1065 |
The following are some of the methods available: |
1066 |
|
1067 |
\begin{methoddesc}[PointSource]{setPointSourceRadius}{radius} |
1068 |
Set the radius of the sphere. |
1069 |
\end{methoddesc} |
1070 |
|
1071 |
\begin{methoddesc}[PointSource]{setPointSourceCenter}{center} |
1072 |
Set the center of the sphere. |
1073 |
\end{methoddesc} |
1074 |
|
1075 |
\begin{methoddesc}[PointSource]{setPointSourceNumberOfPoints}{points} |
1076 |
Set the number of points to generate within the sphere (the larger the |
1077 |
number of points, the more streamlines are generated). |
1078 |
\end{methoddesc} |
1079 |
|
1080 |
\subsubsection{\Sphere class} |
1081 |
Class that defines a sphere. \\ |
1082 |
|
1083 |
The following are some of the methods available: |
1084 |
|
1085 |
\begin{methoddesc}[Sphere]{setThetaResolution}{resolution} |
1086 |
Set the theta resolution of the sphere. |
1087 |
\end{methoddesc} |
1088 |
|
1089 |
\begin{methoddesc}[Sphere]{setPhiResolution}{resolution} |
1090 |
Set the phi resolution of the sphere. |
1091 |
\end{methoddesc} |
1092 |
|
1093 |
\subsubsection{\StreamLineModule class} |
1094 |
Class that defines the streamline module. \\ |
1095 |
|
1096 |
The following are some of the methods available: |
1097 |
|
1098 |
\begin{methoddesc}[StreamLineModule]{setMaximumPropagationTime}{time} |
1099 |
Set the maximum length of the streamline expressed in elapsed time. |
1100 |
\end{methoddesc} |
1101 |
|
1102 |
\begin{methoddesc}[StreamLineModule]{setIntegrationToBothDirections}{} |
1103 |
Set the integration to occur both sides: forward (where the streamline |
1104 |
goes) and backward (where the streamline came from). |
1105 |
\end{methoddesc} |
1106 |
|
1107 |
\subsubsection{\Transform class} |
1108 |
Class that defines the orientation of planes. \\ |
1109 |
|
1110 |
The following are some of the methods available: |
1111 |
|
1112 |
\begin{methoddesc}[Transform]{translate}{x_offset, y_offset, z_offset} |
1113 |
Translate the rendered object along the x, y and z-axes. |
1114 |
\end{methoddesc} |
1115 |
|
1116 |
\begin{methoddesc}[Transform]{rotateX}{angle} |
1117 |
Rotate the plane along the x-axis. |
1118 |
\end{methoddesc} |
1119 |
|
1120 |
\begin{methoddesc}[Transform]{rotateY}{angle} |
1121 |
Rotate the plane along the y-axis. |
1122 |
\end{methoddesc} |
1123 |
|
1124 |
\begin{methoddesc}[Transform]{rotateZ}{angle} |
1125 |
Rotate the plane along the z-axis. |
1126 |
\end{methoddesc} |
1127 |
|
1128 |
\begin{methoddesc}[Transform]{setPlaneToXY}{offset = 0} |
1129 |
Set the plane orthogonal to the z-axis. |
1130 |
\end{methoddesc} |
1131 |
|
1132 |
\begin{methoddesc}[Transform]{setPlaneToYZ}{offset = 0} |
1133 |
Set the plane orthogonal to the x-axis. |
1134 |
\end{methoddesc} |
1135 |
|
1136 |
\begin{methoddesc}[Transform]{setPlaneToXZ}{offset = 0} |
1137 |
Set the plane orthogonal to the y-axis. |
1138 |
\end{methoddesc} |
1139 |
|
1140 |
\subsubsection{\Tube class} |
1141 |
Class that defines the tube wrapped around the streamlines. \\ |
1142 |
|
1143 |
The following are some of the methods available: |
1144 |
|
1145 |
\begin{methoddesc}[Tube]{setTubeRadius}{radius} |
1146 |
Set the radius of the tube. |
1147 |
\end{methoddesc} |
1148 |
|
1149 |
\begin{methoddesc}[Tube]{setTubeRadiusToVaryByVector}{} |
1150 |
Set the radius of the tube to vary by vector data. |
1151 |
\end{methoddesc} |
1152 |
|
1153 |
\begin{methoddesc}[Tube]{setTubeRadiusToVaryByScalar}{} |
1154 |
Set the radius of the tube to vary by scalar data. |
1155 |
\end{methoddesc} |
1156 |
|
1157 |
\subsubsection{\Warp class} |
1158 |
Class that defines the deformation of a scalar field. \\ |
1159 |
|
1160 |
The following are some of the methods available: |
1161 |
|
1162 |
\begin{methoddesc}[Warp]{setScaleFactor}{scale_factor} |
1163 |
Set the displacement scale factor. |
1164 |
\end{methoddesc} |
1165 |
|
1166 |
\subsubsection{\MaskPoints class} |
1167 |
Class that defines the masking of points |
1168 |
every n'th point. This is useful to prevent the rendered object |
1169 |
from being cluttered with arrows or ellipsoids. \\ |
1170 |
|
1171 |
The following are some of the methods available: |
1172 |
|
1173 |
\begin{methoddesc}[MaskPoints]{setRatio}{ratio} |
1174 |
Mask every n'th point. |
1175 |
\end{methoddesc} |
1176 |
|
1177 |
\begin{methoddesc}[MaskPoints]{randomOn}{} |
1178 |
Enables the randomization of the points selected for masking. |
1179 |
\end{methoddesc} |
1180 |
|
1181 |
\subsubsection{\ScalarBar class} |
1182 |
Class that defines a scalar bar. \\ |
1183 |
|
1184 |
The following are some of the methods available: |
1185 |
|
1186 |
\begin{methoddesc}[ScalarBar]{setTitle}{title} |
1187 |
Set the title of the scalar bar. |
1188 |
\end{methoddesc} |
1189 |
|
1190 |
\begin{methoddesc}[ScalarBar]{setPosition}{position} |
1191 |
Set the local position of the scalar bar. |
1192 |
\end{methoddesc} |
1193 |
|
1194 |
\begin{methoddesc}[ScalarBar]{setOrientationToHorizontal}{} |
1195 |
Set the orientation of the scalar bar to horizontal. |
1196 |
\end{methoddesc} |
1197 |
|
1198 |
\begin{methoddesc}[ScalarBar]{setOrientationToVertical}{} |
1199 |
Set the orientation of the scalar bar to vertical. |
1200 |
\end{methoddesc} |
1201 |
|
1202 |
\begin{methoddesc}[ScalarBar]{setHeight}{height} |
1203 |
Set the height of the scalar bar. |
1204 |
\end{methoddesc} |
1205 |
|
1206 |
\begin{methoddesc}[ScalarBar]{setWidth}{width} |
1207 |
Set the width of the scalar bar. |
1208 |
\end{methoddesc} |
1209 |
|
1210 |
\begin{methoddesc}[ScalarBar]{setLabelColor}{color} |
1211 |
Set the color of the scalar bar's label. |
1212 |
\end{methoddesc} |
1213 |
|
1214 |
\begin{methoddesc}[ScalarBar]{setTitleColor}{color} |
1215 |
Set the color of the scalar bar's title. |
1216 |
\end{methoddesc} |
1217 |
|
1218 |
\subsubsection{\ImageReslice class} |
1219 |
Class that defines an image reslice used to resize static |
1220 |
(no interaction capability) images (i.e. logo). \\ |
1221 |
|
1222 |
The following are some of the methods available: |
1223 |
|
1224 |
\begin{methoddesc}[ImageReslice]{setSize}{size} |
1225 |
Set the size of the image (logo in particular), between 0 and 2. Size 1 (one) |
1226 |
displays the image in its original size (which is the default). |
1227 |
\end{methoddesc} |
1228 |
|
1229 |
\subsubsection{\DataSetMapper class} |
1230 |
Class that defines a data set mapper. \\ |
1231 |
|
1232 |
The following are some of the methods available: |
1233 |
|
1234 |
\begin{methoddesc}[DataSetMapper]{setScalarRange}{lower_range, upper_range} |
1235 |
Set the minimum and maximium scalar range for the data set mapper. This |
1236 |
method is called when the range has been specified by the user. |
1237 |
Therefore, the scalar range read from the source will be ignored. |
1238 |
\end{methoddesc} |
1239 |
|
1240 |
\subsubsection{\CubeSource class} |
1241 |
Class that defines a cube source. The center of the cube souce defines |
1242 |
the point from which the cube is to be generated and the X, Y |
1243 |
and Z lengths define the length of the cube from the center point. If |
1244 |
X length is 3, then the X length to the left and right of the center |
1245 |
point is 1.5 respectively.\\ |
1246 |
|
1247 |
The following are some of the methods available: |
1248 |
|
1249 |
\begin{methoddesc}[CubeSource]{setCenter}{center} |
1250 |
Set the cube source center. |
1251 |
\end{methoddesc} |
1252 |
|
1253 |
\begin{methoddesc}[CubeSource]{setXLength}{length} |
1254 |
Set the cube source length along the x-axis. |
1255 |
\end{methoddesc} |
1256 |
|
1257 |
\begin{methoddesc}[CubeSource]{setYLength}{length} |
1258 |
Set the cube source length along the y-axis. |
1259 |
\end{methoddesc} |
1260 |
|
1261 |
\begin{methoddesc}[CubeSource]{setZLength}{length} |
1262 |
Set the cube source length along the z-axis. |
1263 |
\end{methoddesc} |
1264 |
|
1265 |
\subsubsection{\Rotation class} |
1266 |
Class that sweeps 2D data around the z-axis to create a 3D looking effect. \\ |
1267 |
|
1268 |
The following are some of the methods available: |
1269 |
|
1270 |
\begin{methoddesc}[Rotation]{setResolution}{resolution} |
1271 |
Set the resolution of the sweep for the rotation, which controls the |
1272 |
number of intermediate points |
1273 |
\end{methoddesc} |
1274 |
|
1275 |
\begin{methoddesc}[Rotation]{setAngle}{angle} |
1276 |
Set the angle of rotation. |
1277 |
\end{methoddesc} |
1278 |
|
1279 |
|
1280 |
% ############################################################################# |
1281 |
|
1282 |
|
1283 |
\section{More Examples} |
1284 |
This section shows more examples. |
1285 |
|
1286 |
\textsf{Reading A Series of Files} |
1287 |
|
1288 |
\begin{python} |
1289 |
""" |
1290 |
Author: John Ngui, john.ngui@uq.edu.au |
1291 |
""" |
1292 |
|
1293 |
# Import the necessary modules. |
1294 |
from esys.pyvisi import Scene, DataCollector, Contour, Camera |
1295 |
from esys.pyvisi.constant import * |
1296 |
import os |
1297 |
|
1298 |
PYVISI_EXAMPLE_MESHES_PATH = "data_meshes" |
1299 |
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images" |
1300 |
X_SIZE = 400 |
1301 |
Y_SIZE = 300 |
1302 |
|
1303 |
SCALAR_FIELD_POINT_DATA_1 = "lava" |
1304 |
SCALAR_FIELD_POINT_DATA_2 = "talus" |
1305 |
FILE_2D = "phi_talus_lava." |
1306 |
|
1307 |
IMAGE_NAME = "seriesofreads" |
1308 |
JPG_RENDERER = Renderer.ONLINE_JPG |
1309 |
|
1310 |
# Create a Scene. |
1311 |
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE, |
1312 |
y_size = Y_SIZE) |
1313 |
|
1314 |
# Create a DataCollector reading from a XML file. |
1315 |
dc1 = DataCollector(source = Source.XML) |
1316 |
dc1.setActiveScalar(scalar = SCALAR_FIELD_POINT_DATA_1) |
1317 |
|
1318 |
# Create a Contour. |
1319 |
mosc1 = Contour(scene = s, data_collector = dc1, |
1320 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
1321 |
outline = True) |
1322 |
mosc1.generateContours(0) |
1323 |
|
1324 |
# Create a second DataCollector reading from the same XML file |
1325 |
# but specifying a different scalar field. |
1326 |
dc2 = DataCollector(source = Source.XML) |
1327 |
dc2.setActiveScalar(scalar = SCALAR_FIELD_POINT_DATA_2) |
1328 |
|
1329 |
# Create a second Contour. |
1330 |
mosc2 = Contour(scene = s, data_collector = dc2, |
1331 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
1332 |
outline = True) |
1333 |
mosc2.generateContours(0) |
1334 |
|
1335 |
# Create a Camera. |
1336 |
cam1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST) |
1337 |
|
1338 |
# Read in one file one after another and render the object. |
1339 |
for i in range(99, 104): |
1340 |
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, \ |
1341 |
FILE_2D + "%04d.vtu") % i) |
1342 |
dc2.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, \ |
1343 |
FILE_2D + "%04d.vtu") % i) |
1344 |
|
1345 |
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, \ |
1346 |
IMAGE_NAME + "%04d.jpg") % i) |
1347 |
\end{python} |
1348 |
|
1349 |
\textsf{Manipulating A Single File with A Series of Translation} |
1350 |
|
1351 |
\begin{python} |
1352 |
""" |
1353 |
Author: John Ngui, john.ngui@uq.edu.au |
1354 |
""" |
1355 |
|
1356 |
# Import the necessary modules. |
1357 |
from esys.pyvisi import Scene, DataCollector, MapOnPlaneCut, Camera |
1358 |
from esys.pyvisi.constant import * |
1359 |
import os |
1360 |
|
1361 |
PYVISI_EXAMPLE_MESHES_PATH = "data_meshes" |
1362 |
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images" |
1363 |
X_SIZE = 400 |
1364 |
Y_SIZE = 400 |
1365 |
|
1366 |
SCALAR_FIELD_POINT_DATA = "temperature" |
1367 |
FILE_3D = "interior_3D.xml" |
1368 |
IMAGE_NAME = "seriesofcuts" |
1369 |
JPG_RENDERER = Renderer.ONLINE_JPG |
1370 |
|
1371 |
# Create a Scene. |
1372 |
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE, |
1373 |
y_size = Y_SIZE) |
1374 |
|
1375 |
# Create a DataCollector reading from a XML file. |
1376 |
dc1 = DataCollector(source = Source.XML) |
1377 |
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D)) |
1378 |
dc1.setActiveScalar(scalar = SCALAR_FIELD_POINT_DATA) |
1379 |
|
1380 |
# Create a MapOnPlaneCut. |
1381 |
mopc1 = MapOnPlaneCut(scene = s, data_collector = dc1, |
1382 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False, |
1383 |
outline = True) |
1384 |
mopc1.setPlaneToYZ(offset = 0.1) |
1385 |
|
1386 |
# Create a Camera. |
1387 |
c1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST) |
1388 |
c1.isometricView() |
1389 |
|
1390 |
# Render the object with multiple cuts using a series of translation. |
1391 |
for i in range(0, 5): |
1392 |
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, IMAGE_NAME + |
1393 |
"%02d.jpg") % i) |
1394 |
mopc1.translate(0.6,0,0) |
1395 |
\end{python} |
1396 |
|
1397 |
\textsf{Reading Data Directly from Escript Objects} |
1398 |
|
1399 |
\begin{python} |
1400 |
""" |
1401 |
Author: Lutz Gross, l.gross@uq.edu.au |
1402 |
Author: John Ngui, john.ngui@uq.edu.au |
1403 |
""" |
1404 |
|
1405 |
# Import the necessary modules. |
1406 |
from esys.escript import * |
1407 |
from esys.escript.linearPDEs import LinearPDE |
1408 |
from esys.finley import Rectangle |
1409 |
from esys.pyvisi import Scene, DataCollector, Map, Camera |
1410 |
from esys.pyvisi.constant import * |
1411 |
import os |
1412 |
|
1413 |
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images" |
1414 |
X_SIZE = 400 |
1415 |
Y_SIZE = 400 |
1416 |
JPG_RENDERER = Renderer.ONLINE_JPG |
1417 |
|
1418 |
#... set some parameters ... |
1419 |
xc=[0.02,0.002] |
1420 |
r=0.001 |
1421 |
qc=50.e6 |
1422 |
Tref=0. |
1423 |
rhocp=2.6e6 |
1424 |
eta=75. |
1425 |
kappa=240. |
1426 |
tend=5. |
1427 |
# ... time, time step size and counter ... |
1428 |
t=0 |
1429 |
h=0.1 |
1430 |
i=0 |
1431 |
|
1432 |
#... generate domain ... |
1433 |
mydomain = Rectangle(l0=0.05,l1=0.01,n0=250, n1=50) |
1434 |
#... open PDE ... |
1435 |
mypde=LinearPDE(mydomain) |
1436 |
mypde.setSymmetryOn() |
1437 |
mypde.setValue(A=kappa*kronecker(mydomain),D=rhocp/h,d=eta,y=eta*Tref) |
1438 |
# ... set heat source: .... |
1439 |
x=mydomain.getX() |
1440 |
qH=qc*whereNegative(length(x-xc)-r) |
1441 |
# ... set initial temperature .... |
1442 |
T=Tref |
1443 |
|
1444 |
# Create a Scene. |
1445 |
s = Scene(renderer = JPG_RENDERER, x_size = X_SIZE, y_size = Y_SIZE) |
1446 |
|
1447 |
# Create a DataCollector reading directly from escript objects. |
1448 |
dc = DataCollector(source = Source.ESCRIPT) |
1449 |
|
1450 |
# Create a Map. |
1451 |
m = Map(scene = s, data_collector = dc, \ |
1452 |
viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, \ |
1453 |
cell_to_point = False, outline = True) |
1454 |
|
1455 |
# Create a Camera. |
1456 |
c = Camera(scene = s, viewport = Viewport.SOUTH_WEST) |
1457 |
|
1458 |
# ... start iteration: |
1459 |
while t<0.4: |
1460 |
i+=1 |
1461 |
t+=h |
1462 |
mypde.setValue(Y=qH+rhocp/h*T) |
1463 |
T=mypde.getSolution() |
1464 |
|
1465 |
dc.setData(temp = T) |
1466 |
|
1467 |
# Render the object. |
1468 |
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, \ |
1469 |
"diffusion%02d.jpg") % i) |
1470 |
\end{python} |
1471 |
|
1472 |
\newpage |
1473 |
|
1474 |
\section{Useful Keys} |
1475 |
This section shows some of the useful keys when interacting with the rendered |
1476 |
object (in the Online approach). |
1477 |
|
1478 |
\begin{table}[ht] |
1479 |
\begin{center} |
1480 |
\begin{tabular}{| c | p{13cm} |} |
1481 |
\hline |
1482 |
\textbf{Key} & \textbf{Description} \\ \hline |
1483 |
Keypress 'c' / 'a' & Toggle between the camera ('c') and object ('a') mode. In |
1484 |
camera mode, mouse events affect the camera position and focal point. In |
1485 |
object mode, mouse events affect the rendered object's element (i.e. |
1486 |
cut surface map, clipped velocity field, streamline, etc) that is under the |
1487 |
mouse pointer.\\ \hline |
1488 |
Mouse button 1 & Rotate the camera around its focal point (if in camera mode) |
1489 |
or rotate the rendered object's element (if in object mode).\\ \hline |
1490 |
Mourse button 2 & Pan the camera (if in camera mode) or translate the rendered |
1491 |
object's element (if in object mode). \\ \hline |
1492 |
Mouse button 3 & Zoom the camera (if in camera mode) or scale the rendered |
1493 |
object's element (if in object mode). \\ \hline |
1494 |
Keypress 3 & Toggle the render window in and out of stereo mode. By default, |
1495 |
red-blue stereo pairs are created. \\ \hline |
1496 |
Keypress 'e' / 'q' & Exit the application if only one file is to be read, or |
1497 |
read and display the next file if multiple files are to be read. \\ \hline |
1498 |
Keypress 's' & Modify the representation of the rendered object to surfaces. |
1499 |
\\ \hline |
1500 |
Keypress 'w' & Modify the representation of the rendered object to wireframe. |
1501 |
\\ \hline |
1502 |
Keypress 'r' & Reset the position of the rendered object to the center. |
1503 |
\\ \hline |
1504 |
\end{tabular} |
1505 |
\caption{Useful keys} |
1506 |
\end{center} |
1507 |
\end{table} |
1508 |
|
1509 |
|
1510 |
% ############################################################################ |
1511 |
|
1512 |
|
1513 |
\newpage |
1514 |
|
1515 |
\section{Sample Output} |
1516 |
This section displays some of the sample output by Pyvisi. |
1517 |
|
1518 |
\begin{table}[ht] |
1519 |
\begin{tabular}{c c c} |
1520 |
\includegraphics[width=\thumbnailwidth]{figures/Map} & |
1521 |
\includegraphics[width=\thumbnailwidth]{figures/MapOnPlaneCut} & |
1522 |
\includegraphics[width=\thumbnailwidth]{figures/MapOnPlaneClip} \\ |
1523 |
Map & MapOnPlaneCut & MapOnPlaneClip \\ |
1524 |
\includegraphics[width=\thumbnailwidth]{figures/MapOnScalarClip} & |
1525 |
\includegraphics[width=\thumbnailwidth]{figures/MapOnScalarClipWithRotation} & |
1526 |
\includegraphics[width=\thumbnailwidth]{figures/Velocity} \\ |
1527 |
MapOnScalarClip & MapOnScalarClipWithRotation & Velocity \\ \\ \\ \\ |
1528 |
\includegraphics[width=\thumbnailwidth]{figures/VelocityOnPlaneCut} & |
1529 |
\includegraphics[width=\thumbnailwidth]{figures/VelocityOnPlaneClip} & |
1530 |
\includegraphics[width=\thumbnailwidth]{figures/Ellipsoid} \\ |
1531 |
VelocityOnPlaneCut & VelocityOnPlaneClip & Ellipsoid \\ \\ \\ \\ |
1532 |
\includegraphics[width=\thumbnailwidth]{figures/EllipsoidOnPlaneCut} & |
1533 |
\includegraphics[width=\thumbnailwidth]{figures/EllipsoidOnPlaneClip} \\ |
1534 |
EllipsoidOnPlaneCut & EllipsoidOnPlaneClip \\ \\ \\ \\ |
1535 |
\end{tabular} |
1536 |
\caption{Sample output} |
1537 |
\end{table} |
1538 |
|
1539 |
\begin{table}[t] |
1540 |
\begin{tabular}{c c c} |
1541 |
\includegraphics[width=\thumbnailwidth]{figures/Contour} & |
1542 |
\includegraphics[width=\thumbnailwidth]{figures/ContourOnPlaneCut} & |
1543 |
\includegraphics[width=\thumbnailwidth]{figures/ContourOnPlaneClip} \\ |
1544 |
Contour & ContourOnPlaneCut & ContourOnPlaneClip\\ \\ |
1545 |
\includegraphics[width=\thumbnailwidth]{figures/StreamLine} & |
1546 |
\includegraphics[width=\thumbnailwidth]{figures/Carpet} & |
1547 |
\includegraphics[width=\thumbnailwidth]{figures/Rectangle} \\ |
1548 |
Streamline & Carpet & Rectangle \\ \\ \\ |
1549 |
\includegraphics[width=\thumbnailwidth]{figures/Text} & |
1550 |
\includegraphics[width=\thumbnailwidth]{figures/Logo} & |
1551 |
\includegraphics[width=\thumbnailwidth]{figures/Image} \\ |
1552 |
Text & Logo & Image \\ \\ |
1553 |
\includegraphics[width=\thumbnailwidth]{figures/Legend} \\ |
1554 |
Legend \\ \\ |
1555 |
\end{tabular} |
1556 |
\caption{Sample Output} |
1557 |
\end{table} |
1558 |
|
1559 |
|