# Annotation of /trunk/doc/user/stokesflow.tex

Revision 6928 - (hide annotations)
Mon Dec 9 05:29:21 2019 UTC (13 months, 1 week ago) by acodd
File MIME type: application/x-tex
File size: 9829 byte(s)
more updates to userguide


 1 lgraham 2191 2 jfenwick 3989 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3 jfenwick 6651 % Copyright (c) 2003-2018 by The University of Queensland 4 jfenwick 3989 5 caltinay 3325 % 6 % Primary Business: Queensland, Australia 7 jfenwick 6112 % Licensed under the Apache License, version 2.0 8 9 caltinay 3325 % 10 jfenwick 3989 % Development until 2012 by Earth Systems Science Computational Center (ESSCC) 11 jfenwick 4657 % Development 2012-2013 by School of Earth Sciences 12 % Development from 2014 by Centre for Geoscience Computing (GeoComp) 13 jfenwick 3989 % 14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 15 caltinay 3325 16 lgraham 2191 \section{Stokes Flow} 17 \label{STOKES FLOW CHAP} 18 acodd 6928 In this section we look at Computational Fluid Dynamics (CFD) to simulate 19 caltinay 3288 the flow of fluid under the influence of gravity. 20 The \class{StokesProblemCartesian} class will be used to calculate the velocity 21 and pressure of the fluid. 22 The fluid dynamics is governed by the Stokes equation. In geophysical problems 23 the velocity of fluids is low; that is, the inertial forces are small compared 24 with the viscous forces, therefore the inertial terms in the Navier-Stokes 25 equations can be ignored. 26 For a body force $f$, the governing equations are given by: 27 lgraham 2191 % 28 \begin{equation} 29 \nabla \cdot (\eta(\nabla \vec{v} + \nabla^{T} \vec{v})) - \nabla p = -f, 30 \label{GENERAL NAVIER STOKES} 31 \end{equation} 32 % 33 with the incompressibility condition 34 % 35 \begin{equation} 36 \nabla \cdot \vec{v} = 0. 37 \label{INCOMPRESSIBILITY} 38 \end{equation} 39 % 40 caltinay 3288 where $p$, $\eta$ and $f$ are the pressure, viscosity and body forces, respectively. 41 Alternatively, the Stokes equations can be represented in Einstein summation 42 tensor notation (compact notation): 43 lgraham 2191 % 44 \begin{equation} 45 acodd 6928 -(\eta(v_{i,j} + v_{j,i})),_{j} + p,_{i} = f_{i}, 46 lgraham 2191 \label{GENERAL NAVIER STOKES COM} 47 \end{equation} 48 % 49 with the incompressibility condition 50 % 51 \begin{equation} 52 jfenwick 3295 -v_{i,i} = 0. 53 lgraham 2191 \label{INCOMPRESSIBILITY COM} 54 \end{equation} 55 % 56 jfenwick 3295 The subscript comma $i$ denotes the derivative of the function with respect to $x_{i}$. 57 %A linear relationship between the deviatoric stress $\sigma^{'}_{ij}$ and the stretching $D_{ij} = \frac{1}{2}(v_{i,j} + v_{j,i})$ is defined as \cite{GROSS2006}: 58 lgraham 2191 % 59 % 60 jfenwick 3295 %\sigma^{'}_{ij} = 2\eta D^{'}_{ij}, 61 lgraham 2191 %\label{STRESS} 62 % 63 % 64 jfenwick 3295 %where the deviatoric stretching $D^{'}_{ij}$ is defined as 65 lgraham 2191 % 66 % 67 jfenwick 3295 %D^{'}_{ij} = D^{'}_{ij} - \frac{1}{3}D_{kk}\delta_{ij}. 68 lgraham 2191 %\label{DEVIATORIC STRETCHING} 69 % 70 % 71 sshaw 4552 %where $\delta_{ij}$ is the Kronecker $\delta$-symbol, which is a matrix wi-th ones for its diagonal entries ($i = j$) and zeros for the remaining entries ($i \neq j$). 72 caltinay 3288 The body force $f$ in \eqn{GENERAL NAVIER STOKES COM} is the gravity acting in 73 jfenwick 3295 the $x_{3}$ direction and is given as $f=-g\rho\delta_{i3}$. 74 caltinay 3288 The Stokes equation is a saddle point problem, and can be solved using a Uzawa scheme. 75 A class called \class{StokesProblemCartesian} in \escript can be used to solve 76 for velocity and pressure. A more detailed discussion of the class can be 77 found in Chapter \ref{MODELS CHAPTER}. 78 caltinay 5296 In order to keep numerical stability and satisfy the Courant-Friedrichs-Lewy condition (CFL condition)\index{Courant number}\index{CFL condition}, the 79 caltinay 3288 time-step size needs to be kept below a certain value. 80 gross 3379 The Courant number \index{Courant number} is defined as: 81 lgraham 2191 % 82 \begin{equation} 83 caltinay 3291 C = \frac{v \delta t}{h} 84 lgraham 2191 \label{COURANT} 85 \end{equation} 86 % 87 caltinay 3288 where $\delta t$, $v$, and $h$ are the time-step, velocity, and the width of 88 an element in the mesh, respectively. The velocity $v$ may be chosen as the 89 maximum velocity in the domain. In this problem the time-step size was 90 calculated for a Courant number of $0.4$. 91 lgraham 2191 92 caltinay 3288 The following \PYTHON script is the setup for the Stokes flow simulation, and 93 is available in the \ExampleDirectory as \file{fluid.py}. 94 It starts off by importing the classes, such as the \class{StokesProblemCartesian} 95 class, for solving the Stokes equation and the incompressibility condition for 96 velocity and pressure. 97 Physical constants are defined for the viscosity and density of the fluid, 98 along with the acceleration due to gravity. 99 Solver settings are set for the maximum iterations and tolerance; the default 100 caltinay 5296 solver used is PCG (Preconditioned Conjugate Gradients). 101 The mesh is defined as a rectangle to represent the body of fluid. 102 caltinay 3288 We are using $20 \times 20$ elements with piecewise linear elements for the 103 pressure and for velocity but the elements are subdivided for the velocity. 104 This approach is called \textit{macro elements}\index{macro elements} and 105 needs to be applied to make sure that the discretized problem has a unique 106 solution, see~\cite{LBB} for details\footnote{Alternatively, one can use 107 second order elements for the velocity and first order elements for pressure 108 caltinay 3291 on the same element. You can set \code{order=2} in \class{esys.finley.Rectangle}.}. 109 caltinay 3288 The fact that pressure and velocity are represented in different ways is 110 expressed by 111 gross 2793 \begin{python} 112 caltinay 3288 velocity=Vector(0., Solution(mesh)) 113 pressure=Scalar(0., ReducedSolution(mesh)) 114 gross 2793 \end{python} 115 caltinay 3288 The gravitational force is calculated based on the fluid density and the 116 acceleration due to gravity. 117 The boundary conditions are set for a slip condition at the base and the left 118 jfenwick 3295 face of the domain. At the base fluid movement in the $x_{0}$-direction 119 is free, but fixed in the $x_{1}$-direction, and similarly at the left 120 face fluid movement in the $x_{1}$-direction is free but fixed in 121 the $x_{0}$-direction. 122 caltinay 3288 An instance of the \class{StokesProblemCartesian} class is defined for the 123 given computational mesh, and the solver tolerance set. 124 Inside the \code{while} loop, the boundary conditions, viscosity and body 125 force are initialized. 126 The Stokes equation is then solved for velocity and pressure. 127 sshaw 4552 The time-step size is calculated based on the Courant-Friedrichs-Lewy condition 128 (CFL condition)\index{Courant number}\index{CFL condition}, to ensure stable solutions. 129 caltinay 3288 The nodes in the mesh are then displaced based on the current velocity and 130 time-step size, to move the body of fluid. 131 The output for the simulation of velocity and pressure is then saved to a file 132 for visualization. 133 lgraham 2191 % 134 \begin{python} 135 caltinay 3288 from esys.escript import * 136 import esys.finley 137 from esys.escript.linearPDEs import LinearPDE 138 from esys.escript.models import StokesProblemCartesian 139 caltinay 3348 from esys.weipa import saveVTK 140 lgraham 2191 141 caltinay 3288 # physical constants 142 eta=1. 143 rho=100. 144 g=10. 145 lgraham 2191 146 caltinay 3288 # solver settings 147 tolerance=1.0e-4 148 max_iter=200 149 t_end=50 150 t=0.0 151 time=0 152 verbose=True 153 lgraham 2191 154 caltinay 3288 # define mesh 155 H=2. 156 L=1. 157 W=1. 158 mesh = esys.finley.Rectangle(l0=L, l1=H, order=-1, n0=20, n1=20) 159 coordinates = mesh.getX() 160 lgraham 2191 161 caltinay 3288 # gravitational force 162 Y=Vector(0., Function(mesh)) 163 Y[1] = -rho*g 164 lgraham 2191 165 caltinay 3288 # element spacing 166 h = Lsup(mesh.getSize()) 167 lgraham 2191 168 caltinay 3288 # boundary conditions for slip at base 169 jfenwick 6678 boundary_cond=whereZero(coordinates[1])*[0.0,1.0] 170 +whereZero(coordinates[0])*[1.0,0.0] 171 lgraham 2191 172 caltinay 3288 # velocity and pressure vectors 173 velocity=Vector(0., Solution(mesh)) 174 pressure=Scalar(0., ReducedSolution(mesh)) 175 lgraham 2191 176 caltinay 3288 # Stokes Cartesian 177 solution=StokesProblemCartesian(mesh) 178 solution.setTolerance(tolerance) 179 lgraham 2191 180 caltinay 3288 while t <= t_end: 181 print(" ----- Time step = %s -----"%t) 182 print("Time = %s seconds"%time) 183 lgraham 2191 184 caltinay 3288 solution.initialize(fixed_u_mask=boundary_cond, eta=eta, f=Y) 185 velocity,pressure=solution.solve(velocity,pressure,max_iter=max_iter, \ 186 verbose=verbose) 187 lgraham 2191 188 caltinay 3288 print("Max velocity =", Lsup(velocity), "m/s") 189 lgraham 2191 190 gross 3379 # CFL condition 191 caltinay 3288 dt=0.4*h/(Lsup(velocity)) 192 print("dt =", dt) 193 194 # displace the mesh 195 displacement = velocity * dt 196 coordinates = mesh.getX() 197 jfenwick 3914 newx=interpolate(coordinates + displacement, ContinuousFunction(mesh)) 198 mesh.setX(newx) 199 caltinay 3288 200 time += dt 201 202 vel_mag = length(velocity) 203 204 #save velocity and pressure output 205 saveVTK("vel.%2.2i.vtu"%t, vel=vel_mag, vec=velocity, pressure=pressure) 206 t = t+1. 207 lgraham 2191 \end{python} 208 lgraham 2193 % 209 caltinay 3288 The results from the simulation can be viewed with \mayavi, by executing the 210 following command: 211 \begin{verbatim} 212 caltinay 5296 mayavi2 -d vel.00.vtu -m Surface 213 caltinay 3288 \end{verbatim} 214 lgraham 2191 % 215 caltinay 3288 Colour-coded scalar maps and velocity flow fields can be viewed by selecting 216 them in the menu. 217 The time-steps can be swept through to view a movie of the simulation. 218 \fig{FLUID OUTPUT} shows the simulation output. 219 Velocity vectors and a colour map for pressure are shown. 220 As the time progresses the body of fluid falls under the influence of gravity. 221 lgraham 2193 % 222 gross 2654 \begin{figure}[ht] 223 lgraham 2191 \center 224 caltinay 3288 \subfigure[t=1]{\label{FLOW OUTPUT 01}\includegraphics[height=5cm]{stokes-fluid-t01}} 225 \hspace{1.6cm} 226 \subfigure[t=20]{\label{FLOW OUTPUT 10}\includegraphics[height=5cm]{stokes-fluid-t10}} 227 \hspace{1.6cm} 228 \subfigure[t=30]{\label{FLOW OUTPUT 20}\includegraphics[height=5cm]{stokes-fluid-t20}}\\ 229 \subfigure[t=40]{\label{FLOW OUTPUT 30}\includegraphics[height=5cm]{stokes-fluid-t30}} 230 \hspace{1cm} 231 \subfigure[t=50]{\label{FLOW OUTPUT 40}\includegraphics[height=5cm]{stokes-fluid-t40}} 232 \hspace{1cm} 233 \subfigure[t=60]{\label{FLOW OUTPUT 50}\includegraphics[height=5cm]{stokes-fluid-t50}} 234 caltinay 3279 %\includegraphics[scale=0.25]{stokes-fluid-colorbar} 235 caltinay 3288 \caption{Simulation output for Stokes flow. Fluid body starts off as a 236 rectangular shape, then progresses downwards under the influence of gravity. 237 Colour coded distribution represents the scalar values for pressure. 238 Velocity vectors are displayed at each node in the mesh to show the flow field. 239 Computational mesh used was 20$\times$20 elements.} 240 \label{FLUID OUTPUT} 241 lgraham 2191 \end{figure} 242 lgraham 2193 % 243 caltinay 3288 The view used here to track the fluid is the Lagrangian view, since the mesh 244 moves with the fluid. One of the disadvantages of using the Lagrangian view is 245 that the elements in the mesh become severely distorted after a period of time 246 and introduce solver errors. To get around this limitation the Level Set 247 Method can be used, with the Eulerian point of view for a fixed mesh. 248 gross 2371 %The Level Set Method is discussed in Section \ref{LEVELSET CHAP}. 249 caltinay 3288