1 |
ksteube |
1811 |
|
2 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
3 |
ksteube |
1316 |
% |
4 |
ksteube |
1811 |
% Copyright (c) 2003-2008 by University of Queensland |
5 |
|
|
% Earth Systems Science Computational Center (ESSCC) |
6 |
|
|
% http://www.uq.edu.au/esscc |
7 |
gross |
625 |
% |
8 |
ksteube |
1811 |
% Primary Business: Queensland, Australia |
9 |
|
|
% Licensed under the Open Software License version 3.0 |
10 |
|
|
% http://www.opensource.org/licenses/osl-3.0.php |
11 |
gross |
625 |
% |
12 |
ksteube |
1811 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
13 |
ksteube |
1316 |
|
14 |
ksteube |
1811 |
|
15 |
ksteube |
1318 |
\section{3-D Wave Propagation} |
16 |
jgs |
107 |
\label{WAVE CHAP} |
17 |
|
|
|
18 |
artak |
1971 |
In this next example we want to calculate the displacement field $u\hackscore{i}$ for any time $t>0$ by solving the wave equation: |
19 |
|
|
\index{wave equation} |
20 |
jgs |
107 |
\begin{eqnarray}\label{WAVE general problem} |
21 |
|
|
\rho u\hackscore{i,tt} - \sigma\hackscore{ij,j}=0 |
22 |
|
|
\end{eqnarray} |
23 |
|
|
in a three dimensional block of length $L$ in $x\hackscore{0}$ |
24 |
|
|
and $x\hackscore{1}$ direction and height $H$ |
25 |
|
|
in $x\hackscore{2}$ direction. $\rho$ is the known density which may be a function of its location. |
26 |
|
|
$\sigma\hackscore{ij}$ is the stress field \index{stress} which in case of an isotropic, linear elastic material is given by |
27 |
|
|
\begin{eqnarray} \label{WAVE stress} |
28 |
|
|
\sigma\hackscore{ij} & = & \lambda u\hackscore{k,k} \delta\hackscore{ij} + \mu ( u\hackscore{i,j} + u\hackscore{j,i}) |
29 |
|
|
\end{eqnarray} |
30 |
|
|
where $\lambda$ and $\mu$ are the Lame coefficients |
31 |
|
|
\index{Lame coefficients} and $\delta\hackscore{ij}$ denotes the Kronecker symbol\index{Kronecker symbol}. |
32 |
|
|
On the boundary the normal stress is given by |
33 |
|
|
\begin{eqnarray} \label{WAVE natural} |
34 |
|
|
\sigma\hackscore{ij}n\hackscore{j}=0 |
35 |
|
|
\end{eqnarray} |
36 |
lkettle |
581 |
for all time $t>0$. |
37 |
|
|
|
38 |
|
|
At initial time $t=0$ the displacement |
39 |
|
|
$u\hackscore{i}$ and the velocity $u\hackscore{i,t}$ are given: |
40 |
jgs |
107 |
\begin{eqnarray} \label{WAVE initial} |
41 |
lkettle |
581 |
u\hackscore{i}(0,x)= \left\{\begin{array}{cc} U\hackscore{0} & \mbox{for $x$ at point charge, $x\hackscore{C}$} \\ 0 & \mbox{elsewhere}\end{array} \right. & \mbox{ and } & u\hackscore{i,t}(0,x)=0 \; |
42 |
jgs |
107 |
\end{eqnarray} |
43 |
|
|
for all $x$ in the domain. |
44 |
|
|
|
45 |
lkettle |
581 |
Here we are modelling a point source at the point $x\hackscore C$, in the numerical solution we |
46 |
|
|
set the initial displacement to be $U\hackscore 0$ in a sphere of small radius around the point |
47 |
|
|
$x\hackscore C$. |
48 |
jgs |
107 |
|
49 |
ksteube |
1316 |
We use an explicit time integration scheme to calculate the displacement field $u$ at |
50 |
jgs |
107 |
certain time marks $t^{(n)}$ where $t^{(n)}=t^{(n-1)}+h$ with time step size $h>0$. In the following the upper index ${(n)}$ refers to values at time $t^{(n)}$. We use the Verlet scheme \index{Verlet scheme} with constant time step size $h$ |
51 |
|
|
which is defined by |
52 |
|
|
\begin{eqnarray} \label{WAVE dyn 2} |
53 |
lkettle |
575 |
u^{(n)}=2u^{(n-1)}-u^{(n-2)} + h^2 a^{(n)} \\ |
54 |
jgs |
107 |
\end{eqnarray} |
55 |
lkettle |
581 |
for all $n=2,3,\ldots$. It is designed to solve a system of equations of the form |
56 |
jgs |
107 |
\begin{eqnarray} \label{WAVE dyn 2b} |
57 |
|
|
u\hackscore{,tt}=G(u) |
58 |
|
|
\end{eqnarray} |
59 |
gross |
660 |
where one sets $a^{(n)}=G(u^{(n-1)})$. |
60 |
jgs |
107 |
|
61 |
|
|
In our case $a^{(n)}$ is given by |
62 |
|
|
\begin{eqnarray}\label{WAVE dyn 3} |
63 |
|
|
\rho a^{(n)}\hackscore{i}=\sigma^{(n-1)}\hackscore{ij,j} |
64 |
|
|
\end{eqnarray} |
65 |
|
|
and boundary conditions |
66 |
gross |
593 |
\begin{eqnarray} \label{WAVE natural at n} |
67 |
jgs |
107 |
\sigma^{(n-1)}\hackscore{ij}n\hackscore{j}=0 |
68 |
|
|
\end{eqnarray} |
69 |
|
|
derived from \eqn{WAVE natural} where |
70 |
|
|
\begin{eqnarray} \label{WAVE dyn 3a} |
71 |
lkettle |
581 |
\sigma\hackscore{ij}^{(n-1)} & = & \lambda u^{(n-1)}\hackscore{k,k} \delta\hackscore{ij} + \mu ( u^{(n-1)}\hackscore{i,j} + u^{(n-1)}\hackscore{j,i}). |
72 |
jgs |
107 |
\end{eqnarray} |
73 |
lkettle |
581 |
Now we have converted our problem for displacement, $u^{(n)}$, into a problem for |
74 |
|
|
acceleration, $a^(n)$, which now depends |
75 |
|
|
on the solution at the previous two time steps, $u^{(n-1)}$ and $u^{(n-2)}$. |
76 |
jgs |
107 |
|
77 |
ksteube |
1316 |
In each time step we have to solve this problem to get the acceleration $a^{(n)}$, and we will |
78 |
gross |
565 |
use the \LinearPDE class of the \linearPDEs to do so. The general form of the PDE defined through |
79 |
ksteube |
1316 |
the \LinearPDE class is discussed in \Sec{SEC LinearPDE}. The form which is relevant here is |
80 |
jgs |
107 |
\begin{equation}\label{WAVE dyn 100} |
81 |
lkettle |
581 |
D\hackscore{ij} a^{(n)}\hackscore{j} = - X\hackscore{ij,j}\; . |
82 |
jgs |
107 |
\end{equation} |
83 |
ksteube |
1316 |
The natural boundary condition |
84 |
jgs |
107 |
\begin{equation}\label{WAVE dyn 101} |
85 |
|
|
n\hackscore{j}X\hackscore{ij} =0 |
86 |
|
|
\end{equation} |
87 |
ksteube |
1316 |
is used. |
88 |
jgs |
107 |
|
89 |
ksteube |
1316 |
With $u=a^{(n)}$ we can identify the values to be assigned to $D$ and $X$: |
90 |
jgs |
107 |
\begin{equation}\label{WAVE dyn 6} |
91 |
|
|
\begin{array}{ll} |
92 |
|
|
D\hackscore{ij}=\rho \delta\hackscore{ij}& |
93 |
|
|
X\hackscore{ij}=-\sigma^{(n-1)}\hackscore{ij} \\ |
94 |
|
|
\end{array} |
95 |
|
|
\end{equation} |
96 |
lkettle |
581 |
|
97 |
|
|
|
98 |
|
|
%Remember that \var{y.whereZero()} returns a function which is $1$ for those points $x$ where $y$ is zero |
99 |
|
|
%(up to a certain tolerance, see \Sec{SEC ESCRIPT DATA}) and $0$ for those points where $y$ is not equal to zero. |
100 |
jgs |
107 |
|
101 |
lkettle |
581 |
The following script defines a the function \function{wavePropagation} which |
102 |
jgs |
107 |
implements the Verlet scheme to solve our wave propagation problem. |
103 |
|
|
The argument \var{domain} which is a \Domain class object |
104 |
ksteube |
1316 |
defines the domain of the problem. \var{h} and \var{tend} are the time step size |
105 |
|
|
and the end time of the simulation. \var{lam}, \var{mu} and |
106 |
lkettle |
581 |
\var{rho} are material properties. |
107 |
jgs |
107 |
\begin{python} |
108 |
|
|
from esys.linearPDEs import LinearPDE |
109 |
lkettle |
581 |
from numarray import identity,zeros,ones |
110 |
jgs |
107 |
from esys.escript import * |
111 |
lkettle |
581 |
from esys.escript.pdetools import Locator |
112 |
|
|
def wavePropagation(domain,h,tend,lam,mu,rho,U0): |
113 |
jgs |
107 |
x=domain.getX() |
114 |
|
|
# ... open new PDE ... |
115 |
|
|
mypde=LinearPDE(domain) |
116 |
lkettle |
581 |
mypde.setSolverMethod(LinearPDE.LUMPING) |
117 |
jgs |
110 |
kronecker=identity(mypde.getDim()) |
118 |
lkettle |
581 |
# spherical source at middle of bottom face |
119 |
|
|
xc=[width/2.,width/2.,0.] |
120 |
|
|
# define small radius around point xc |
121 |
|
|
# Lsup(x) returns the maximum value of the argument x |
122 |
|
|
src_radius = 0.1*Lsup(domain.getSize()) |
123 |
|
|
print "src_radius = ",src_radius |
124 |
|
|
dunit=numarray.array([1.,0.,0.]) # defines direction of point source |
125 |
|
|
mypde.setValue(D=kronecker*rho) |
126 |
jgs |
107 |
# ... set initial values .... |
127 |
jgs |
110 |
n=0 |
128 |
lkettle |
581 |
# initial value of displacement at point source is constant (U0=0.01) |
129 |
|
|
# for first two time steps |
130 |
|
|
u=U0*whereNegative(length(x-xc)-src_radius)*dunit |
131 |
|
|
u_last=U0*whereNegative(length(x-xc)-src_radius)*dunit |
132 |
jgs |
107 |
t=0 |
133 |
lkettle |
581 |
# define the location of the point source |
134 |
|
|
L=Locator(domain,xc) |
135 |
|
|
# find potential at point source |
136 |
|
|
u_pc=L.getValue(u) |
137 |
|
|
print "u at point charge=",u_pc |
138 |
|
|
u_pc_x = u_pc[0] |
139 |
|
|
u_pc_y = u_pc[1] |
140 |
|
|
u_pc_z = u_pc[2] |
141 |
|
|
# open file to save displacement at point source |
142 |
|
|
u_pc_data=open('./data/U_pc.out','w') |
143 |
|
|
u_pc_data.write("%f %f %f %f\n"%(t,u_pc_x,u_pc_y,u_pc_z)) |
144 |
jgs |
107 |
while t<tend: |
145 |
|
|
# ... get current stress .... |
146 |
|
|
g=grad(u) |
147 |
jgs |
110 |
stress=lam*trace(g)*kronecker+mu*(g+transpose(g)) |
148 |
|
|
# ... get new acceleration .... |
149 |
lkettle |
581 |
mypde.setValue(X=-stress) |
150 |
jgs |
107 |
a=mypde.getSolution() |
151 |
|
|
# ... get new displacement ... |
152 |
|
|
u_new=2*u-u_last+h**2*a |
153 |
|
|
# ... shift displacements .... |
154 |
|
|
u_last=u |
155 |
|
|
u=u_new |
156 |
|
|
t+=h |
157 |
jgs |
110 |
n+=1 |
158 |
|
|
print n,"-th time step t ",t |
159 |
lkettle |
581 |
L=Locator(domain,xc) |
160 |
|
|
u_pc=L.getValue(u) |
161 |
|
|
print "u at point charge=",u_pc |
162 |
|
|
u_pc_x=u_pc[0] |
163 |
|
|
u_pc_y=u_pc[1] |
164 |
|
|
u_pc_z=u_pc[2] |
165 |
|
|
# save displacements at point source to file for t > 0 |
166 |
|
|
u_pc_data.write("%f %f %f %f\n"%(t,u_pc_x,u_pc_y,u_pc_z)) |
167 |
|
|
# ... save current acceleration in units of gravity and displacements |
168 |
|
|
if n==1 or n%10==0: saveVTK("./data/usoln.%i.vtu"%(n/10),acceleration=length(a)/9.81, |
169 |
|
|
displacement = length(u), Ux = u[0] ) |
170 |
|
|
u_pc_data.close() |
171 |
jgs |
107 |
\end{python} |
172 |
jgs |
110 |
Notice that |
173 |
ksteube |
1316 |
all coefficients of the PDE which are independent of time $t$ are set outside the \code{while} |
174 |
|
|
loop. This is very efficient since it allows the \LinearPDE class to reuse information as much as possible |
175 |
jgs |
110 |
when iterating over time. |
176 |
|
|
|
177 |
ksteube |
1316 |
there are a few new \escript functions in this example: |
178 |
jgs |
107 |
\code{grad(u)} returns the gradient $u\hackscore{i,j}$ of $u$ (in fact \var{grad(g)[i,j]}=$=u\hackscore{i,j}$). |
179 |
ksteube |
1316 |
There are restrictions on the argument of the \function{grad} function, for instance |
180 |
|
|
the statement \code{grad(grad(u))} will raise an exception. |
181 |
jgs |
107 |
\code{trace(g)} returns the sum of the main diagonal elements \var{g[k,k]} of \var{g} |
182 |
ksteube |
1316 |
and \code{transpose(g)} returns the matrix transpose of \var{g} (ie. $\var{transpose(g)[i,j]}=\var{g[j,i]}$). |
183 |
jgs |
107 |
|
184 |
lkettle |
581 |
We initialize the values of \code{u} and \code{u_last} to be $U\hackscore 0$ for a small |
185 |
|
|
sphere of radius, \code{src_radius} around the point source located at $x\hackscore C$. |
186 |
|
|
These satisfy the initial conditions defined in \eqn{WAVE initial}. |
187 |
jgs |
107 |
|
188 |
lkettle |
581 |
The output \code{U_pc.out} and \code{vtu} files are saved in a directory called \code{data}. |
189 |
|
|
The \code{U_pc.out} stores 4 columns of data: $t,u\hackscore x,u\hackscore y,u\hackscore z$ |
190 |
|
|
respectively, where $u\hackscore x,u\hackscore y,u\hackscore z$ are the $x\hackscore 0,x\hackscore 1,x\hackscore 2$ components of |
191 |
|
|
the displacement vector $u$ at the point source. These can be |
192 |
|
|
plotted easily using any plotting package. In gnuplot the command: |
193 |
|
|
\code{plot 'U_pc.out' u 1:2 title 'U_x' w l lw 2, 'U_pc.out' u 1:3 title 'U_y' w l lw 2, |
194 |
|
|
'U_pc.out' u 1:4 title 'U_z' w l lw 2} will reproduce Figure \ref{WAVE FIG 1}. |
195 |
|
|
%\begin{python} |
196 |
|
|
%u=Vector(0.,ContinuousFunction(domain)) |
197 |
|
|
%\end{python} |
198 |
|
|
%declares \var{u} as a vector-valued function of its coordinates |
199 |
|
|
%in the domain (i.e. with two or three components in the case of |
200 |
ksteube |
1316 |
%a two or three dimensional domain, respectively). The first argument defines the value of the function which is equal |
201 |
lkettle |
581 |
%to $0$ for all vectot components. The second argument \var{ContinuousFunction(domain)} |
202 |
|
|
%specifies the `smoothness` of the function. In our case we want the displacement field to be |
203 |
|
|
%a continuous function over the \Domain \var{domain}. On other option would be |
204 |
ksteube |
1316 |
%\var{Function(domain)} in which case continuity is not guaranteed. In fact the |
205 |
lkettle |
581 |
%argument of the \function{grad} function has to be of the typ \var{ContinuousFunction(domain)} while |
206 |
|
|
%returned function is of the var{Function(domain)} type. For more details see \Sec{SEC ESCRIPT DATA}. |
207 |
|
|
|
208 |
jgs |
110 |
The statement \code{myPDE.setLumpingOn()} |
209 |
ksteube |
1316 |
switches on the use of an aggressive approximation of the PDE operator as a diagonal matrix |
210 |
|
|
formed from the coefficient \var{D}. |
211 |
|
|
The approximation allows, at the cost of |
212 |
|
|
additional error, very fast |
213 |
|
|
solution of the PDE. When using \code{setLumpingOn} the presence of \var{A}, \var{B} or \var |
214 |
|
|
{C} will produce wrong results. |
215 |
jgs |
110 |
|
216 |
jgs |
107 |
|
217 |
jgs |
110 |
One of the big advantages of the Verlet scheme is the fact that the problem to be solved |
218 |
ksteube |
1316 |
in each time step is very simple and does not involve any spatial derivatives (which is what allows us to use lumping in this simulation). |
219 |
lkettle |
581 |
The problem becomes so simple because we use the stress from the last time step rather then the stress which is |
220 |
|
|
actually present at the current time step. Schemes using this approach are called an explicit time integration |
221 |
ksteube |
1316 |
schemes \index{explicit scheme} \index{time integration!explicit}. The |
222 |
jgs |
110 |
backward Euler scheme we have used in \Chap{DIFFUSION CHAP} is |
223 |
ksteube |
1316 |
an example of an implicit scheme |
224 |
jgs |
110 |
\index{implicit scheme} \index{time integration!implicit}. In this case one uses the actual status of |
225 |
lkettle |
581 |
each variable at a particular time rather then values from previous time steps. This will lead to a problem which is |
226 |
jgs |
110 |
more expensive to solve, in particular for non-linear problems. |
227 |
|
|
Although |
228 |
lkettle |
581 |
explicit time integration schemes are cheap to finalize a single time step, they need significantly smaller time |
229 |
|
|
steps then implicit schemes and can suffer from stability problems. Therefore they need a |
230 |
jgs |
110 |
very careful selection of the time step size $h$. |
231 |
jgs |
107 |
|
232 |
jgs |
110 |
An easy, heuristic way of choosing an appropriate |
233 |
jgs |
107 |
time step size is the Courant condition \index{Courant condition} \index{explicit scheme!Courant condition} |
234 |
|
|
which says that within a time step a information should not travel further than a cell used in the |
235 |
|
|
discretization scheme. In the case of the wave equation the velocity of a (p-) wave is given as |
236 |
|
|
$\sqrt{\frac{\lambda+2\mu}{\rho}}$ so one should choose $h$ from |
237 |
|
|
\begin{eqnarray}\label{WAVE dyn 66} |
238 |
|
|
h= \frac{1}{5} \sqrt{\frac{\rho}{\lambda+2\mu}} \Delta x |
239 |
|
|
\end{eqnarray} |
240 |
lkettle |
581 |
where $\Delta x$ is the cell diameter. The factor $\frac{1}{5}$ is a safety factor considering the heuristics of |
241 |
jgs |
107 |
the formula. |
242 |
|
|
|
243 |
lkettle |
581 |
The following script uses the \code{wavePropagation} function to solve the |
244 |
|
|
wave equation for a point source located at the bottom face of a block. The width of the block in |
245 |
|
|
each direction on the bottom face is $10\mbox{km}$ ($x\hackscore 0$ and $x\hackscore 1$ directions ie. \code{l0} and \code{l1}). |
246 |
artak |
1971 |
The \code{ne} gives the number of elements in $x\hackscore{0}$ and $x\hackscore 1$ directions. |
247 |
lkettle |
581 |
The depth of the block is aligned with the $x\hackscore{2}$-direction. |
248 |
|
|
The depth (\code{l2}) of the block in |
249 |
|
|
the $x\hackscore{2}$-direction is chosen so that there are 10 elements and the magnitude of the |
250 |
|
|
of the depth is chosen such that the elements |
251 |
|
|
become cubic. We chose 10 for the number of elements in $x\hackscore{2}$-direction so that the |
252 |
|
|
computation would be faster. \code{Brick($n\hackscore 0, n\hackscore 1, n\hackscore 2,l\hackscore 0,l\hackscore 1,l\hackscore 2$)} is an \finley function which creates a rectangular mesh |
253 |
|
|
with $n\hackscore 0 \times n\hackscore 1 \times n\hackscore2$ elements over the brick $[0,l\hackscore 0] \times [0,l\hackscore 1] \times [0,l\hackscore 2]$. |
254 |
jgs |
107 |
\begin{python} |
255 |
lkettle |
581 |
from esys.finley import Brick |
256 |
|
|
ne=32 # number of cells in x_0 and x_1 directions |
257 |
|
|
width=10000. # length in x_0 and x_1 directions |
258 |
jgs |
110 |
lam=3.462e9 |
259 |
|
|
mu=3.462e9 |
260 |
jgs |
107 |
rho=1154. |
261 |
jgs |
110 |
tend=60 |
262 |
lkettle |
581 |
h=(1./5.)*sqrt(rho/(lam+2*mu))*(width/ne) |
263 |
|
|
print "time step size = ",h |
264 |
|
|
U0=0.01 # amplitude of point source |
265 |
jgs |
110 |
|
266 |
lkettle |
581 |
mydomain=Brick(ne,ne,10,l0=width,l1=width,l2=10.*width/32.) |
267 |
|
|
wavePropagation(mydomain,h,tend,lam,mu,rho,U0) |
268 |
jgs |
107 |
\end{python} |
269 |
lkettle |
581 |
The script is available as \file{wave.py} in the \ExampleDirectory \index{scripts!\file{wave.py}}. Before running the code make sure you have created a directory called \code{data} in the current |
270 |
|
|
working directory. |
271 |
|
|
To visualize the results from the data directory: |
272 |
|
|
\begin{verbatim} mayavi -d usoln.1.vtu -m SurfaceMap &\end{verbatim} You can rotate this figure by clicking on it with the mouse and moving it around. |
273 |
|
|
Again use \code{Configure Data} to move backwards and forward in time, and |
274 |
|
|
also to choose the results (acceleration, displacement or $u\hackscore x$) by using \code{Select Scalar}. Figure \ref{WAVE FIG 2} shows the results for the displacement at various time steps. |
275 |
jgs |
107 |
|
276 |
jfenwick |
2104 |
\begin{figure}[t!] |
277 |
gross |
599 |
\centerline{\includegraphics[width=3.in,angle=270]{figures/WavePC.eps}} |
278 |
gross |
593 |
\caption{Amplitude at Point source} |
279 |
|
|
\label{WAVE FIG 1} |
280 |
|
|
\end{figure} |
281 |
jgs |
107 |
|
282 |
jfenwick |
2104 |
\begin{figure}[t] |
283 |
lkettle |
581 |
\begin{center} |
284 |
gross |
599 |
\includegraphics[width=2in,angle=270]{figures/Wavet0.eps} |
285 |
|
|
\includegraphics[width=2in,angle=270]{figures/Wavet1.eps} |
286 |
|
|
\includegraphics[width=2in,angle=270]{figures/Wavet3.eps} |
287 |
|
|
\includegraphics[width=2in,angle=270]{figures/Wavet10.eps} |
288 |
|
|
\includegraphics[width=2in,angle=270]{figures/Wavet30.eps} |
289 |
|
|
\includegraphics[width=2in,angle=270]{figures/Wavet288.eps} |
290 |
lkettle |
581 |
\end{center} |
291 |
|
|
\caption{Selected time steps ($n = 0,1,30,100,300$ and 2880) of a wave propagation over a $10\mbox{km} \times 10\mbox{km} \times 3.125\mbox{km}$ block |
292 |
|
|
from a point source initially at $(5\mbox{km},5\mbox{km},0)$ |
293 |
|
|
with time step size $h=0.02083$. Color represents the displacement. |
294 |
gross |
707 |
Here the view is oriented onto the bottom face. |
295 |
|
|
\label{WAVE FIG 2}} |
296 |
jgs |
110 |
\end{figure} |