1 |
ksteube |
1809 |
######################################################## |
2 |
gross |
1414 |
# |
3 |
ksteube |
1809 |
# Copyright (c) 2003-2008 by University of Queensland |
4 |
|
|
# Earth Systems Science Computational Center (ESSCC) |
5 |
|
|
# http://www.uq.edu.au/esscc |
6 |
gross |
1414 |
# |
7 |
ksteube |
1809 |
# Primary Business: Queensland, Australia |
8 |
|
|
# Licensed under the Open Software License version 3.0 |
9 |
|
|
# http://www.opensource.org/licenses/osl-3.0.php |
10 |
gross |
1414 |
# |
11 |
ksteube |
1809 |
######################################################## |
12 |
gross |
1414 |
|
13 |
ksteube |
1809 |
__copyright__="""Copyright (c) 2003-2008 by University of Queensland |
14 |
|
|
Earth Systems Science Computational Center (ESSCC) |
15 |
|
|
http://www.uq.edu.au/esscc |
16 |
|
|
Primary Business: Queensland, Australia""" |
17 |
|
|
__license__="""Licensed under the Open Software License version 3.0 |
18 |
|
|
http://www.opensource.org/licenses/osl-3.0.php""" |
19 |
|
|
__url__="http://www.uq.edu.au/esscc/escript-finley" |
20 |
|
|
|
21 |
gross |
1414 |
""" |
22 |
|
|
Some models for flow |
23 |
|
|
|
24 |
|
|
@var __author__: name of author |
25 |
|
|
@var __copyright__: copyrights |
26 |
|
|
@var __license__: licence agreement |
27 |
|
|
@var __url__: url entry point on documentation |
28 |
|
|
@var __version__: version |
29 |
|
|
@var __date__: date of the version |
30 |
|
|
""" |
31 |
|
|
|
32 |
|
|
__author__="Lutz Gross, l.gross@uq.edu.au" |
33 |
|
|
|
34 |
|
|
from escript import * |
35 |
|
|
import util |
36 |
gross |
2100 |
from linearPDEs import LinearPDE, LinearPDESystem, LinearSinglePDE |
37 |
|
|
from pdetools import HomogeneousSaddlePointProblem,Projector, ArithmeticTuple, PCG |
38 |
gross |
1414 |
|
39 |
gross |
2100 |
class DarcyFlow(object): |
40 |
|
|
""" |
41 |
|
|
solves the problem |
42 |
gross |
1659 |
|
43 |
gross |
2100 |
M{u_i+k_{ij}*p_{,j} = g_i} |
44 |
|
|
M{u_{i,i} = f} |
45 |
gross |
1659 |
|
46 |
gross |
2100 |
where M{p} represents the pressure and M{u} the Darcy flux. M{k} represents the permeability, |
47 |
gross |
1659 |
|
48 |
gross |
2100 |
@note: The problem is solved in a least squares formulation. |
49 |
|
|
""" |
50 |
gross |
1659 |
|
51 |
gross |
2100 |
def __init__(self, domain): |
52 |
|
|
""" |
53 |
|
|
initializes the Darcy flux problem |
54 |
|
|
@param domain: domain of the problem |
55 |
|
|
@type domain: L{Domain} |
56 |
|
|
""" |
57 |
|
|
self.domain=domain |
58 |
|
|
self.__pde_v=LinearPDESystem(domain) |
59 |
|
|
self.__pde_v.setValue(D=util.kronecker(domain), A=util.outer(util.kronecker(domain),util.kronecker(domain))) |
60 |
|
|
self.__pde_v.setSymmetryOn() |
61 |
|
|
self.__pde_p=LinearSinglePDE(domain) |
62 |
|
|
self.__pde_p.setSymmetryOn() |
63 |
|
|
self.__f=Scalar(0,self.__pde_v.getFunctionSpaceForCoefficient("X")) |
64 |
|
|
self.__g=Vector(0,self.__pde_v.getFunctionSpaceForCoefficient("Y")) |
65 |
gross |
1659 |
|
66 |
gross |
2100 |
def setValue(self,f=None, g=None, location_of_fixed_pressure=None, location_of_fixed_flux=None, permeability=None): |
67 |
|
|
""" |
68 |
|
|
assigns values to model parameters |
69 |
gross |
1659 |
|
70 |
gross |
2100 |
@param f: volumetic sources/sinks |
71 |
|
|
@type f: scalar value on the domain (e.g. L{Data}) |
72 |
|
|
@param g: flux sources/sinks |
73 |
|
|
@type g: vector values on the domain (e.g. L{Data}) |
74 |
|
|
@param location_of_fixed_pressure: mask for locations where pressure is fixed |
75 |
|
|
@type location_of_fixed_pressure: scalar value on the domain (e.g. L{Data}) |
76 |
|
|
@param location_of_fixed_flux: mask for locations where flux is fixed. |
77 |
|
|
@type location_of_fixed_flux: vector values on the domain (e.g. L{Data}) |
78 |
|
|
@param permeability: permeability tensor. If scalar C{s} is given the tensor with |
79 |
|
|
C{s} on the main diagonal is used. If vector C{v} is given the tensor with |
80 |
|
|
C{v} on the main diagonal is used. |
81 |
|
|
@type permeability: scalar, vector or tensor values on the domain (e.g. L{Data}) |
82 |
gross |
1659 |
|
83 |
gross |
2100 |
@note: the values of parameters which are not set by calling C{setValue} are not altered. |
84 |
|
|
@note: at any point on the boundary of the domain the pressure (C{location_of_fixed_pressure} >0) |
85 |
|
|
or the normal component of the flux (C{location_of_fixed_flux[i]>0} if direction of the normal |
86 |
|
|
is along the M{x_i} axis. |
87 |
|
|
""" |
88 |
|
|
if f !=None: |
89 |
|
|
f=util.interpolate(f, self.__pde_v.getFunctionSpaceForCoefficient("X")) |
90 |
|
|
if f.isEmpty(): |
91 |
|
|
f=Scalar(0,self.__pde_v.getFunctionSpaceForCoefficient("X")) |
92 |
|
|
else: |
93 |
|
|
if f.getRank()>0: raise ValueError,"illegal rank of f." |
94 |
|
|
self.f=f |
95 |
|
|
if g !=None: |
96 |
|
|
g=util.interpolate(g, self.__pde_p.getFunctionSpaceForCoefficient("Y")) |
97 |
|
|
if g.isEmpty(): |
98 |
|
|
g=Vector(0,self.__pde_v.getFunctionSpaceForCoefficient("Y")) |
99 |
|
|
else: |
100 |
|
|
if not g.getShape()==(self.domain.getDim(),): |
101 |
|
|
raise ValueError,"illegal shape of g" |
102 |
|
|
self.__g=g |
103 |
gross |
1659 |
|
104 |
gross |
2100 |
if location_of_fixed_pressure!=None: self.__pde_p.setValue(q=location_of_fixed_pressure) |
105 |
|
|
if location_of_fixed_flux!=None: self.__pde_v.setValue(q=location_of_fixed_flux) |
106 |
gross |
1659 |
|
107 |
gross |
2100 |
if permeability!=None: |
108 |
|
|
perm=util.interpolate(permeability,self.__pde_p.getFunctionSpaceForCoefficient("A")) |
109 |
|
|
if perm.getRank()==0: |
110 |
|
|
perm=perm*util.kronecker(self.domain.getDim()) |
111 |
|
|
elif perm.getRank()==1: |
112 |
|
|
perm, perm2=Tensor(0.,self.__pde_p.getFunctionSpaceForCoefficient("A")), perm |
113 |
|
|
for i in range(self.domain.getDim()): perm[i,i]=perm2[i] |
114 |
|
|
elif perm.getRank()==2: |
115 |
|
|
pass |
116 |
|
|
else: |
117 |
|
|
raise ValueError,"illegal rank of permeability." |
118 |
|
|
self.__permeability=perm |
119 |
|
|
self.__pde_p.setValue(A=util.transposed_tensor_mult(self.__permeability,self.__permeability)) |
120 |
gross |
1659 |
|
121 |
|
|
|
122 |
gross |
2100 |
def getFlux(self,p, fixed_flux=Data(),tol=1.e-8): |
123 |
|
|
""" |
124 |
|
|
returns the flux for a given pressure C{p} where the flux is equal to C{fixed_flux} |
125 |
|
|
on locations where C{location_of_fixed_flux} is positive (see L{setValue}). |
126 |
|
|
Note that C{g} and C{f} are used, L{setValue}. |
127 |
|
|
|
128 |
|
|
@param p: pressure. |
129 |
|
|
@type p: scalar value on the domain (e.g. L{Data}). |
130 |
|
|
@param fixed_flux: flux on the locations of the domain marked be C{location_of_fixed_flux}. |
131 |
|
|
@type fixed_flux: vector values on the domain (e.g. L{Data}). |
132 |
|
|
@param tol: relative tolerance to be used. |
133 |
|
|
@type tol: positive float. |
134 |
|
|
@return: flux |
135 |
|
|
@rtype: L{Data} |
136 |
|
|
@note: the method uses the least squares solution M{u=(I+D^*D)^{-1}(D^*f-g-Qp)} where M{D} is the M{div} operator and M{(Qp)_i=k_{ij}p_{,j}} |
137 |
|
|
for the permeability M{k_{ij}} |
138 |
|
|
""" |
139 |
|
|
self.__pde_v.setTolerance(tol) |
140 |
|
|
self.__pde_v.setValue(Y=self.__g, X=self.__f*util.kronecker(self.domain), r=boundary_flux) |
141 |
|
|
return self.__pde_v.getSolution() |
142 |
gross |
1659 |
|
143 |
gross |
2100 |
def solve(self,u0,p0,atol=0,rtol=1e-8, max_iter=100, verbose=False, show_details=False, sub_rtol=1.e-8): |
144 |
|
|
""" |
145 |
|
|
solves the problem. |
146 |
|
|
|
147 |
|
|
The iteration is terminated if the error in the pressure is less then C{rtol * |q| + atol} where |
148 |
|
|
C{|q|} denotes the norm of the right hand side (see escript user's guide for details). |
149 |
gross |
1659 |
|
150 |
gross |
2100 |
@param u0: initial guess for the flux. At locations in the domain marked by C{location_of_fixed_flux} the value of C{u0} is kept unchanged. |
151 |
|
|
@type u0: vector value on the domain (e.g. L{Data}). |
152 |
|
|
@param p0: initial guess for the pressure. At locations in the domain marked by C{location_of_fixed_pressure} the value of C{p0} is kept unchanged. |
153 |
|
|
@type p0: scalar value on the domain (e.g. L{Data}). |
154 |
|
|
@param atol: absolute tolerance for the pressure |
155 |
|
|
@type atol: non-negative C{float} |
156 |
|
|
@param rtol: relative tolerance for the pressure |
157 |
|
|
@type rtol: non-negative C{float} |
158 |
|
|
@param sub_rtol: tolerance to be used in the sub iteration. It is recommended that M{sub_rtol<rtol*5.e-3} |
159 |
|
|
@type sub_rtol: positive-negative C{float} |
160 |
|
|
@param verbose: if set some information on iteration progress are printed |
161 |
|
|
@type verbose: C{bool} |
162 |
|
|
@param show_details: if set information on the subiteration process are printed. |
163 |
|
|
@type show_details: C{bool} |
164 |
|
|
@return: flux and pressure |
165 |
|
|
@rtype: C{tuple} of L{Data}. |
166 |
|
|
|
167 |
|
|
@note: The problem is solved as a least squares form |
168 |
gross |
1659 |
|
169 |
gross |
2100 |
M{(I+D^*D)u+Qp=D^*f+g} |
170 |
|
|
M{Q^*u+Q^*Qp=Q^*g} |
171 |
gross |
1659 |
|
172 |
gross |
2100 |
where M{D} is the M{div} operator and M{(Qp)_i=k_{ij}p_{,j}} for the permeability M{k_{ij}}. |
173 |
|
|
We eliminate the flux form the problem by setting |
174 |
gross |
1659 |
|
175 |
gross |
2100 |
M{u=(I+D^*D)^{-1}(D^*f-g-Qp)} with u=u0 on location_of_fixed_flux |
176 |
|
|
|
177 |
|
|
form the first equation. Inserted into the second equation we get |
178 |
|
|
|
179 |
|
|
M{Q^*(I-(I+D^*D)^{-1})Qp= Q^*(g-(I+D^*D)^{-1}(D^*f+g))} with p=p0 on location_of_fixed_pressure |
180 |
|
|
|
181 |
|
|
which is solved using the PCG method (precondition is M{Q^*Q}). In each iteration step |
182 |
|
|
PDEs with operator M{I+D^*D} and with M{Q^*Q} needs to be solved using a sub iteration scheme. |
183 |
|
|
""" |
184 |
|
|
self.verbose=verbose |
185 |
|
|
self.show_details= show_details and self.verbose |
186 |
|
|
self.__pde_v.setTolerance(sub_rtol) |
187 |
|
|
self.__pde_p.setTolerance(sub_rtol) |
188 |
|
|
p2=p0*self.__pde_p.getCoefficient("q") |
189 |
|
|
u2=u0*self.__pde_v.getCoefficient("q") |
190 |
|
|
g=self.__g-u2-util.tensor_mult(self.__permeability,util.grad(p2)) |
191 |
|
|
f=self.__f-util.div(u2) |
192 |
|
|
self.__pde_v.setValue(Y=g, X=f*util.kronecker(self.domain), r=Data()) |
193 |
|
|
dv=self.__pde_v.getSolution(verbose=show_details) |
194 |
|
|
self.__pde_p.setValue(X=util.transposed_tensor_mult(self.__permeability,g-dv)) |
195 |
|
|
self.__pde_p.setValue(r=Data()) |
196 |
|
|
dp=self.__pde_p.getSolution(verbose=self.show_details) |
197 |
|
|
norm_rhs=self.__inner_PCG(dp,ArithmeticTuple(g,dv)) |
198 |
|
|
if norm_rhs<0: |
199 |
|
|
raise NegativeNorm,"negative norm. Maybe the sub-tolerance is too large." |
200 |
|
|
ATOL=util.sqrt(norm_rhs)*rtol +atol |
201 |
|
|
if not ATOL>0: |
202 |
|
|
raise ValueError,"Negative absolute tolerance (rtol = %e, norm right hand side =%, atol =%e)."%(rtol, util.sqrt(norm_rhs), atol) |
203 |
|
|
rhs=ArithmeticTuple(g,dv) |
204 |
gross |
2108 |
dp,r=PCG(rhs,self.__Aprod_PCG,self.__Msolve_PCG,self.__inner_PCG,atol=ATOL, rtol=0.,iter_max=max_iter, x=p0-p2, verbose=self.verbose, initial_guess=True) |
205 |
gross |
2100 |
return u2+r[1],p2+dp |
206 |
|
|
|
207 |
|
|
def __Aprod_PCG(self,p): |
208 |
|
|
if self.show_details: print "DarcyFlux: Applying operator" |
209 |
|
|
Qp=util.tensor_mult(self.__permeability,util.grad(p)) |
210 |
|
|
self.__pde_v.setValue(Y=Qp,X=Data()) |
211 |
|
|
w=self.__pde_v.getSolution(verbose=self.show_details) |
212 |
|
|
return ArithmeticTuple(Qp,w) |
213 |
|
|
|
214 |
|
|
def __inner_PCG(self,p,r): |
215 |
|
|
a=util.tensor_mult(self.__permeability,util.grad(p)) |
216 |
|
|
return util.integrate(util.inner(a,r[0]-r[1])) |
217 |
|
|
|
218 |
|
|
def __Msolve_PCG(self,r): |
219 |
|
|
if self.show_details: print "DarcyFlux: Applying preconditioner" |
220 |
|
|
self.__pde_p.setValue(X=util.transposed_tensor_mult(self.__permeability,r[0]-r[1])) |
221 |
|
|
return self.__pde_p.getSolution(verbose=self.show_details) |
222 |
|
|
|
223 |
gross |
1414 |
class StokesProblemCartesian(HomogeneousSaddlePointProblem): |
224 |
|
|
""" |
225 |
|
|
solves |
226 |
|
|
|
227 |
gross |
2100 |
-(eta*(u_{i,j}+u_{j,i}))_j + p_i = f_i-stress_{ij,j} |
228 |
gross |
1414 |
u_{i,i}=0 |
229 |
|
|
|
230 |
|
|
u=0 where fixed_u_mask>0 |
231 |
gross |
2100 |
eta*(u_{i,j}+u_{j,i})*n_j-p*n_i=surface_stress +stress_{ij}n_j |
232 |
gross |
1414 |
|
233 |
gross |
2100 |
if surface_stress is not given 0 is assumed. |
234 |
gross |
1414 |
|
235 |
|
|
typical usage: |
236 |
|
|
|
237 |
|
|
sp=StokesProblemCartesian(domain) |
238 |
|
|
sp.setTolerance() |
239 |
|
|
sp.initialize(...) |
240 |
|
|
v,p=sp.solve(v0,p0) |
241 |
|
|
""" |
242 |
|
|
def __init__(self,domain,**kwargs): |
243 |
gross |
2100 |
""" |
244 |
|
|
initialize the Stokes Problem |
245 |
|
|
|
246 |
|
|
@param domain: domain of the problem. The approximation order needs to be two. |
247 |
|
|
@type domain: L{Domain} |
248 |
|
|
@warning: The apprximation order needs to be two otherwise you may see oscilations in the pressure. |
249 |
|
|
""" |
250 |
gross |
1414 |
HomogeneousSaddlePointProblem.__init__(self,**kwargs) |
251 |
|
|
self.domain=domain |
252 |
|
|
self.vol=util.integrate(1.,Function(self.domain)) |
253 |
|
|
self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim()) |
254 |
|
|
self.__pde_u.setSymmetryOn() |
255 |
gross |
2100 |
# self.__pde_u.setSolverMethod(self.__pde_u.DIRECT) |
256 |
|
|
# self.__pde_u.setSolverMethod(preconditioner=LinearPDE.RILU) |
257 |
gross |
1414 |
|
258 |
|
|
self.__pde_prec=LinearPDE(domain) |
259 |
|
|
self.__pde_prec.setReducedOrderOn() |
260 |
gross |
2100 |
self.__pde_prec.setSolverMethod(self.__pde_prec.LUMPING) |
261 |
gross |
1414 |
self.__pde_prec.setSymmetryOn() |
262 |
|
|
|
263 |
|
|
self.__pde_proj=LinearPDE(domain) |
264 |
|
|
self.__pde_proj.setReducedOrderOn() |
265 |
|
|
self.__pde_proj.setSymmetryOn() |
266 |
|
|
self.__pde_proj.setValue(D=1.) |
267 |
|
|
|
268 |
gross |
2100 |
def initialize(self,f=Data(),fixed_u_mask=Data(),eta=1,surface_stress=Data(),stress=Data()): |
269 |
|
|
""" |
270 |
|
|
assigns values to the model parameters |
271 |
|
|
|
272 |
|
|
@param f: external force |
273 |
|
|
@type f: L{Vector} object in L{FunctionSpace} L{Function} or similar |
274 |
|
|
@param fixed_u_mask: mask of locations with fixed velocity. |
275 |
|
|
@type fixed_u_mask: L{Vector} object on L{FunctionSpace} L{Solution} or similar |
276 |
|
|
@param eta: viscosity |
277 |
|
|
@type eta: L{Scalar} object on L{FunctionSpace} L{Function} or similar |
278 |
|
|
@param surface_stress: normal surface stress |
279 |
|
|
@type eta: L{Vector} object on L{FunctionSpace} L{FunctionOnBoundary} or similar |
280 |
|
|
@param stress: initial stress |
281 |
|
|
@type stress: L{Tensor} object on L{FunctionSpace} L{Function} or similar |
282 |
|
|
@note: All values needs to be set. |
283 |
|
|
|
284 |
|
|
""" |
285 |
gross |
1414 |
self.eta=eta |
286 |
gross |
1841 |
A =self.__pde_u.createCoefficient("A") |
287 |
gross |
1414 |
self.__pde_u.setValue(A=Data()) |
288 |
|
|
for i in range(self.domain.getDim()): |
289 |
|
|
for j in range(self.domain.getDim()): |
290 |
|
|
A[i,j,j,i] += 1. |
291 |
|
|
A[i,j,i,j] += 1. |
292 |
artak |
1554 |
self.__pde_prec.setValue(D=1/self.eta) |
293 |
gross |
1414 |
self.__pde_u.setValue(A=A*self.eta,q=fixed_u_mask,Y=f,y=surface_stress) |
294 |
gross |
2100 |
self.__stress=stress |
295 |
gross |
1414 |
|
296 |
gross |
2100 |
def B(self,v): |
297 |
|
|
""" |
298 |
|
|
returns div(v) |
299 |
|
|
@rtype: equal to the type of p |
300 |
gross |
1414 |
|
301 |
gross |
2100 |
@note: boundary conditions on p should be zero! |
302 |
|
|
""" |
303 |
|
|
if self.show_details: print "apply divergence:" |
304 |
|
|
self.__pde_proj.setValue(Y=-util.div(v)) |
305 |
|
|
self.__pde_proj.setTolerance(self.getSubProblemTolerance()) |
306 |
|
|
return self.__pde_proj.getSolution(verbose=self.show_details) |
307 |
|
|
|
308 |
|
|
def inner_pBv(self,p,Bv): |
309 |
|
|
""" |
310 |
|
|
returns inner product of element p and Bv (overwrite) |
311 |
|
|
|
312 |
|
|
@type p: equal to the type of p |
313 |
|
|
@type Bv: equal to the type of result of operator B |
314 |
|
|
@rtype: C{float} |
315 |
|
|
|
316 |
|
|
@rtype: equal to the type of p |
317 |
|
|
""" |
318 |
|
|
s0=util.interpolate(p,Function(self.domain)) |
319 |
|
|
s1=util.interpolate(Bv,Function(self.domain)) |
320 |
gross |
1414 |
return util.integrate(s0*s1) |
321 |
|
|
|
322 |
gross |
2100 |
def inner_p(self,p0,p1): |
323 |
|
|
""" |
324 |
|
|
returns inner product of element p0 and p1 (overwrite) |
325 |
|
|
|
326 |
|
|
@type p0: equal to the type of p |
327 |
|
|
@type p1: equal to the type of p |
328 |
|
|
@rtype: C{float} |
329 |
artak |
1550 |
|
330 |
gross |
2100 |
@rtype: equal to the type of p |
331 |
|
|
""" |
332 |
|
|
s0=util.interpolate(p0/self.eta,Function(self.domain)) |
333 |
|
|
s1=util.interpolate(p1/self.eta,Function(self.domain)) |
334 |
|
|
return util.integrate(s0*s1) |
335 |
artak |
1550 |
|
336 |
gross |
2100 |
def inner_v(self,v0,v1): |
337 |
|
|
""" |
338 |
|
|
returns inner product of two element v0 and v1 (overwrite) |
339 |
|
|
|
340 |
|
|
@type v0: equal to the type of v |
341 |
|
|
@type v1: equal to the type of v |
342 |
|
|
@rtype: C{float} |
343 |
gross |
1414 |
|
344 |
gross |
2100 |
@rtype: equal to the type of v |
345 |
|
|
""" |
346 |
|
|
gv0=util.grad(v0) |
347 |
|
|
gv1=util.grad(v1) |
348 |
|
|
return util.integrate(util.inner(gv0,gv1)) |
349 |
|
|
|
350 |
gross |
1414 |
def solve_A(self,u,p): |
351 |
|
|
""" |
352 |
|
|
solves Av=f-Au-B^*p (v=0 on fixed_u_mask) |
353 |
|
|
""" |
354 |
gross |
2100 |
if self.show_details: print "solve for velocity:" |
355 |
gross |
1414 |
self.__pde_u.setTolerance(self.getSubProblemTolerance()) |
356 |
gross |
2100 |
if self.__stress.isEmpty(): |
357 |
|
|
self.__pde_u.setValue(X=-2*self.eta*util.symmetric(util.grad(u))+p*util.kronecker(self.domain)) |
358 |
|
|
else: |
359 |
|
|
self.__pde_u.setValue(X=self.__stress-2*self.eta*util.symmetric(util.grad(u))+p*util.kronecker(self.domain)) |
360 |
|
|
out=self.__pde_u.getSolution(verbose=self.show_details) |
361 |
|
|
return out |
362 |
gross |
1414 |
|
363 |
|
|
def solve_prec(self,p): |
364 |
gross |
2100 |
if self.show_details: print "apply preconditioner:" |
365 |
gross |
1414 |
self.__pde_prec.setTolerance(self.getSubProblemTolerance()) |
366 |
|
|
self.__pde_prec.setValue(Y=p) |
367 |
|
|
q=self.__pde_prec.getSolution(verbose=self.show_details) |
368 |
artak |
1554 |
return q |