# Diff of /trunk/escript/py_src/flows.py

revision 1673 by gross, Thu Jul 24 22:28:50 2008 UTC revision 2156 by gross, Mon Dec 15 05:09:02 2008 UTC
# Line 1  Line 1
1  # \$Id:\$  ########################################################
2  #  #
3  #######################################################  # Copyright (c) 2003-2008 by University of Queensland
4    # Earth Systems Science Computational Center (ESSCC)
5    # http://www.uq.edu.au/esscc
6  #  #
7  #       Copyright 2008 by University of Queensland  # Primary Business: Queensland, Australia
#
#######################################################
10  #  #
11    ########################################################
12
14    Earth Systems Science Computational Center (ESSCC)
15    http://www.uq.edu.au/esscc
19    __url__="http://www.uq.edu.au/esscc/escript-finley"
20
21  """  """
22  Some models for flow  Some models for flow
# Line 24  Some models for flow Line 30  Some models for flow
30  """  """
31
32  __author__="Lutz Gross, l.gross@uq.edu.au"  __author__="Lutz Gross, l.gross@uq.edu.au"
http://www.access.edu.au
__url__="http://www.iservo.edu.au/esys"
__version__="\$Revision:\$"
__date__="\$Date:\$"
33
34  from escript import *  from escript import *
35  import util  import util
36  from linearPDEs import LinearPDE  from linearPDEs import LinearPDE, LinearPDESystem, LinearSinglePDE
37  from pdetools import HomogeneousSaddlePointProblem,Projector  from pdetools import HomogeneousSaddlePointProblem,Projector, ArithmeticTuple, PCG, NegativeNorm

"""
solves

-(eta*(u_{i,j}+u_{j,i}))_j - p_i = f_i
u_{i,i}=0

eta*(u_{i,j}+u_{j,i})*n_j=surface_stress

if surface_stress is not give 0 is assumed.

typical usage:

sp=StokesProblemCartesian(domain)
sp.setTolerance()
sp.initialize(...)
v,p=sp.solve(v0,p0)
"""
def __init__(self,domain,**kwargs):
self.domain=domain
self.vol=util.integrate(1.,Function(self.domain))
self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim())
self.__pde_u.setSymmetryOn()
# self.__pde_u.setSolverMethod(preconditioner=LinearPDE.ILU0)

# self.__pde_proj=LinearPDE(domain,numEquations=1,numSolutions=1)
# self.__pde_proj.setReducedOrderOn()
# self.__pde_proj.setSymmetryOn()
# self.__pde_proj.setSolverMethod(LinearPDE.LUMPING)

self.eta=eta
A =self.__pde_u.createCoefficientOfGeneralPDE("A")
self.__pde_u.setValue(A=Data())
for i in range(self.domain.getDim()):
for j in range(self.domain.getDim()):
A[i,j,j,i] += 1.
A[i,j,i,j] += 1.
# self.__inv_eta=util.interpolate(self.eta,ReducedFunction(self.domain))

# self.__pde_proj.setValue(D=1/eta)
# self.__pde_proj.setValue(Y=1.)
# self.__inv_eta=util.interpolate(self.__pde_proj.getSolution(),ReducedFunction(self.domain))
self.__inv_eta=util.interpolate(self.eta,ReducedFunction(self.domain))

def B(self,arg):
a=util.div(arg, ReducedFunction(self.domain))
return a-util.integrate(a)/self.vol

def inner(self,p0,p1):
return util.integrate(p0*p1)
# return util.integrate(1/self.__inv_eta**2*p0*p1)

def getStress(self,u):
return 2.*self.eta*util.symmetric(mg)
def getEtaEffective(self):
return self.eta
38
39        def solve_A(self,u,p):  class DarcyFlow(object):
40        """
41        solves the problem
42
43        M{u_i+k_{ij}*p_{,j} = g_i}
44        M{u_{i,i} = f}
45
46        where M{p} represents the pressure and M{u} the Darcy flux. M{k} represents the permeability,
47
48        @note: The problem is solved in a least squares formulation.
49        """
50
51        def __init__(self, domain):
52            """
53            initializes the Darcy flux problem
54            @param domain: domain of the problem
55            @type domain: L{Domain}
56            """
57            self.domain=domain
58            self.__pde_v=LinearPDESystem(domain)
59            self.__pde_v.setValue(D=util.kronecker(domain), A=util.outer(util.kronecker(domain),util.kronecker(domain)))
60            self.__pde_v.setSymmetryOn()
61            self.__pde_p=LinearSinglePDE(domain)
62            self.__pde_p.setSymmetryOn()
63            self.__f=Scalar(0,self.__pde_v.getFunctionSpaceForCoefficient("X"))
64            self.__g=Vector(0,self.__pde_v.getFunctionSpaceForCoefficient("Y"))
65
66        def setValue(self,f=None, g=None, location_of_fixed_pressure=None, location_of_fixed_flux=None, permeability=None):
67            """
68            assigns values to model parameters
69
70            @param f: volumetic sources/sinks
71            @type f: scalar value on the domain (e.g. L{Data})
72            @param g: flux sources/sinks
73            @type g: vector values on the domain (e.g. L{Data})
74            @param location_of_fixed_pressure: mask for locations where pressure is fixed
75            @type location_of_fixed_pressure: scalar value on the domain (e.g. L{Data})
76            @param location_of_fixed_flux:  mask for locations where flux is fixed.
77            @type location_of_fixed_flux: vector values on the domain (e.g. L{Data})
78            @param permeability: permeability tensor. If scalar C{s} is given the tensor with
79                                 C{s} on the main diagonal is used. If vector C{v} is given the tensor with
80                                 C{v} on the main diagonal is used.
81            @type permeability: scalar, vector or tensor values on the domain (e.g. L{Data})
82
83            @note: the values of parameters which are not set by calling C{setValue} are not altered.
84            @note: at any point on the boundary of the domain the pressure (C{location_of_fixed_pressure} >0)
85                   or the normal component of the flux (C{location_of_fixed_flux[i]>0} if direction of the normal
86                   is along the M{x_i} axis.
87            """
88            if f !=None:
89               f=util.interpolate(f, self.__pde_v.getFunctionSpaceForCoefficient("X"))
90               if f.isEmpty():
91                   f=Scalar(0,self.__pde_v.getFunctionSpaceForCoefficient("X"))
92               else:
93                   if f.getRank()>0: raise ValueError,"illegal rank of f."
94               self.f=f
95            if g !=None:
96               g=util.interpolate(g, self.__pde_p.getFunctionSpaceForCoefficient("Y"))
97               if g.isEmpty():
98                 g=Vector(0,self.__pde_v.getFunctionSpaceForCoefficient("Y"))
99               else:
100                 if not g.getShape()==(self.domain.getDim(),):
101                   raise ValueError,"illegal shape of g"
102               self.__g=g
103
104            if location_of_fixed_pressure!=None: self.__pde_p.setValue(q=location_of_fixed_pressure)
105            if location_of_fixed_flux!=None: self.__pde_v.setValue(q=location_of_fixed_flux)
106
107            if permeability!=None:
108               perm=util.interpolate(permeability,self.__pde_p.getFunctionSpaceForCoefficient("A"))
109               if perm.getRank()==0:
110                   perm=perm*util.kronecker(self.domain.getDim())
111               elif perm.getRank()==1:
112                   perm, perm2=Tensor(0.,self.__pde_p.getFunctionSpaceForCoefficient("A")), perm
113                   for i in range(self.domain.getDim()): perm[i,i]=perm2[i]
114               elif perm.getRank()==2:
115                  pass
116               else:
117                  raise ValueError,"illegal rank of permeability."
118               self.__permeability=perm
119               self.__pde_p.setValue(A=util.transposed_tensor_mult(self.__permeability,self.__permeability))
120
121
122        def getFlux(self,p, fixed_flux=Data(),tol=1.e-8, show_details=False):
123            """
124            returns the flux for a given pressure C{p} where the flux is equal to C{fixed_flux}
125            on locations where C{location_of_fixed_flux} is positive (see L{setValue}).
126            Note that C{g} and C{f} are used, L{setValue}.
127
128            @param p: pressure.
129            @type p: scalar value on the domain (e.g. L{Data}).
130            @param fixed_flux: flux on the locations of the domain marked be C{location_of_fixed_flux}.
131            @type fixed_flux: vector values on the domain (e.g. L{Data}).
132            @param tol: relative tolerance to be used.
133            @type tol: positive float.
134            @return: flux
135            @rtype: L{Data}
136            @note: the method uses the least squares solution M{u=(I+D^*D)^{-1}(D^*f-g-Qp)} where M{D} is the M{div} operator and M{(Qp)_i=k_{ij}p_{,j}}
137                   for the permeability M{k_{ij}}
138            """
139            self.__pde_v.setTolerance(tol)
140            self.__pde_v.setValue(Y=self.__g, X=self.__f*util.kronecker(self.domain), r=fixed_flux)
141            return self.__pde_v.getSolution(verbose=show_details)
142
143        def solve(self,u0,p0,atol=0,rtol=1e-8, max_iter=100, verbose=False, show_details=False, sub_rtol=1.e-8):
144             """
145             solves the problem.
146
147             The iteration is terminated if the error in the pressure is less then C{rtol * |q| + atol} where
148             C{|q|} denotes the norm of the right hand side (see escript user's guide for details).
149
150             @param u0: initial guess for the flux. At locations in the domain marked by C{location_of_fixed_flux} the value of C{u0} is kept unchanged.
151             @type u0: vector value on the domain (e.g. L{Data}).
152             @param p0: initial guess for the pressure. At locations in the domain marked by C{location_of_fixed_pressure} the value of C{p0} is kept unchanged.
153             @type p0: scalar value on the domain (e.g. L{Data}).
154             @param atol: absolute tolerance for the pressure
155             @type atol: non-negative C{float}
156             @param rtol: relative tolerance for the pressure
157             @type rtol: non-negative C{float}
158             @param sub_rtol: tolerance to be used in the sub iteration. It is recommended that M{sub_rtol<rtol*5.e-3}
159             @type sub_rtol: positive-negative C{float}
160             @param verbose: if set some information on iteration progress are printed
161             @type verbose: C{bool}
162             @param show_details:  if set information on the subiteration process are printed.
163             @type show_details: C{bool}
164             @return: flux and pressure
165             @rtype: C{tuple} of L{Data}.
166
167             @note: The problem is solved as a least squares form
168
169             M{(I+D^*D)u+Qp=D^*f+g}
170             M{Q^*u+Q^*Qp=Q^*g}
171
172             where M{D} is the M{div} operator and M{(Qp)_i=k_{ij}p_{,j}} for the permeability M{k_{ij}}.
173             We eliminate the flux form the problem by setting
174
175             M{u=(I+D^*D)^{-1}(D^*f-g-Qp)} with u=u0 on location_of_fixed_flux
176
177             form the first equation. Inserted into the second equation we get
178
179             M{Q^*(I-(I+D^*D)^{-1})Qp= Q^*(g-(I+D^*D)^{-1}(D^*f+g))} with p=p0  on location_of_fixed_pressure
180
181             which is solved using the PCG method (precondition is M{Q^*Q}). In each iteration step
182             PDEs with operator M{I+D^*D} and with M{Q^*Q} needs to be solved using a sub iteration scheme.
183           """           """
184           solves Av=f-Au-B^*p (v=0 on fixed_u_mask)           self.verbose=verbose
185           """           self.show_details= show_details and self.verbose
186           self.__pde_u.setTolerance(self.getSubProblemTolerance())           self.__pde_v.setTolerance(sub_rtol)
187           self.__pde_u.setValue(X=-self.getStress(u),X_reduced=-p*util.kronecker(self.domain))           self.__pde_p.setTolerance(sub_rtol)
188           return  self.__pde_u.getSolution(verbose=self.show_details)           u2=u0*self.__pde_v.getCoefficient("q")
189             #
190             # first the reference velocity is calculated from
191        def solve_prec(self,p):           #
192          a=self.__inv_eta*p           #   (I+D^*D)u_ref=D^*f+g (including bundray conditions for u)
193          return a-util.integrate(a)/self.vol           #
194             self.__pde_v.setValue(Y=self.__g, X=self.__f*util.kronecker(self.domain), r=u0)
195        def stoppingcriterium(self,Bv,v,p):           u_ref=self.__pde_v.getSolution(verbose=show_details)
196            n_r=util.sqrt(self.inner(Bv,Bv))           if self.verbose: print "DarcyFlux: maximum reference flux = ",util.Lsup(u_ref)
198            if self.verbose: print "PCG step %s: L2(div(v)) = %s, L2(grad(v))=%s"%(self.iter,n_r,n_v) , util.Lsup(v)           #
199            if self.iter == 0: self.__n_v=n_v;           #   and then we calculate a reference pressure
200            self.__n_v, n_v_old =n_v, self.__n_v           #
201            self.iter+=1           #       Q^*Qp_ref=Q^*g-Q^*u_ref ((including bundray conditions for p)
202            if self.iter>1 and n_r <= n_v*self.getTolerance() and abs(n_v_old-self.__n_v) <= n_v * self.getTolerance():           #
203                if self.verbose: print "PCG terminated after %s steps."%self.iter           self.__pde_p.setValue(X=util.transposed_tensor_mult(self.__permeability,(self.__g-u_ref)), r=p0)
204                return True           p_ref=self.__pde_p.getSolution(verbose=self.show_details)
205            else:           if self.verbose: print "DarcyFlux: maximum reference pressure = ",util.Lsup(p_ref)
206                return False           self.__pde_p.setValue(r=Data())
207        def stoppingcriterium2(self,norm_r,norm_b,solver='GMRES',TOL=None):           #
208        if TOL==None:           #   (I+D^*D)du + Qdp = - Qp_ref                       u=du+u_ref
209               TOL=self.getTolerance()           #   Q^*du + Q^*Qdp = Q^*g-Q^*u_ref-Q^*Qp_ref=0        p=dp+pref
210            if self.verbose: print "%s step %s: L2(r) = %s, L2(b)*TOL=%s"%(solver,self.iter,norm_r,norm_b*TOL)           #
211            self.iter+=1           #      du= -(I+D^*D)^(-1} Q(p_ref+dp)  u = u_ref+du
212                       #
213            if norm_r <= norm_b*TOL:           #  => Q^*(I-(I+D^*D)^(-1})Q dp = Q^*(I+D^*D)^(-1} Qp_ref
214                if self.verbose: print "%s terminated after %s steps."%(solver,self.iter)           #  or Q^*(I-(I+D^*D)^(-1})Q p = Q^*Qp_ref
215                return True           #
216            else:           #   r= Q^*( (I+D^*D)^(-1} Qp_ref - Q dp + (I+D^*D)^(-1})Q dp) = Q^*(-du-Q dp)
217                return False           #            with du=-(I+D^*D)^(-1} Q(p_ref+dp)
218             #
219             #  we use the (du,Qdp) to represent the resudual
220             #  Q^*Q is a preconditioner
221             #
222             #  <(Q^*Q)^{-1}r,r> -> right hand side norm is <Qp_ref,Qp_ref>
223             #
225             norm_rhs=util.sqrt(util.integrate(util.inner(Qp_ref,Qp_ref)))
226             ATOL=max(norm_rhs*rtol +atol, 200. * util.EPSILON * norm_rhs)
227             if not ATOL>0:
228                 raise ValueError,"Negative absolute tolerance (rtol = %e, norm right hand side =%, atol =%e)."%(rtol, norm_rhs, atol)
229             if self.verbose: print "DarcyFlux: norm of right hand side = %e (absolute tolerance = %e)"%(norm_rhs,ATOL)
230             #
231             #   caclulate the initial residual
232             #
234             du=self.__pde_v.getSolution(verbose=show_details)
236             dp,r=PCG(r,self.__Aprod_PCG,p0,self.__Msolve_PCG,self.__inner_PCG,atol=ATOL, rtol=0.,iter_max=max_iter, verbose=self.verbose)
237             util.saveVTK("d.vtu",p=dp,p_ref=p_ref)
238             return u_ref+r[1],dp
239
240        def __Aprod_PCG(self,p):
241              if self.show_details: print "DarcyFlux: Applying operator"
243              self.__pde_v.setValue(Y=Qp,X=Data())
244              w=self.__pde_v.getSolution(verbose=self.show_details)
245              return ArithmeticTuple(-Qp,w)
246
247        def __inner_PCG(self,p,r):
249             out=-util.integrate(util.inner(a,r[0]+r[1]))
250             return out
251
252        def __Msolve_PCG(self,r):
253              if self.show_details: print "DarcyFlux: Applying preconditioner"
254              self.__pde_p.setValue(X=-util.transposed_tensor_mult(self.__permeability,r[0]+r[1]))
255              return self.__pde_p.getSolution(verbose=self.show_details)
256
258        """        """
259        solves        solves
260
261            -(eta*(u_{i,j}+u_{j,i}))_j - p_i = f_i            -(eta*(u_{i,j}+u_{j,i}))_j + p_i = f_i-stress_{ij,j}
262                  u_{i,i}=0                  u_{i,i}=0
263
265            eta*(u_{i,j}+u_{j,i})*n_j=surface_stress            eta*(u_{i,j}+u_{j,i})*n_j-p*n_i=surface_stress +stress_{ij}n_j
266
267        if surface_stress is not give 0 is assumed.        if surface_stress is not given 0 is assumed.
268
269        typical usage:        typical usage:
270
# Line 158  class StokesProblemCartesian(Homogeneous Line 274  class StokesProblemCartesian(Homogeneous
274              v,p=sp.solve(v0,p0)              v,p=sp.solve(v0,p0)
275        """        """
276        def __init__(self,domain,**kwargs):        def __init__(self,domain,**kwargs):
277             """
278             initialize the Stokes Problem
279
280             @param domain: domain of the problem. The approximation order needs to be two.
281             @type domain: L{Domain}
282             @warning: The apprximation order needs to be two otherwise you may see oscilations in the pressure.
283             """
285           self.domain=domain           self.domain=domain
286           self.vol=util.integrate(1.,Function(self.domain))           self.vol=util.integrate(1.,Function(self.domain))
287           self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim())           self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim())
288           self.__pde_u.setSymmetryOn()           self.__pde_u.setSymmetryOn()
289           # self.__pde_u.setSolverMethod(preconditioner=LinearPDE.ILU0)           # self.__pde_u.setSolverMethod(self.__pde_u.DIRECT)
290             # self.__pde_u.setSolverMethod(preconditioner=LinearPDE.RILU)
291
292           self.__pde_prec=LinearPDE(domain)           self.__pde_prec=LinearPDE(domain)
293           self.__pde_prec.setReducedOrderOn()           self.__pde_prec.setReducedOrderOn()
294             # self.__pde_prec.setSolverMethod(self.__pde_prec.LUMPING)
295           self.__pde_prec.setSymmetryOn()           self.__pde_prec.setSymmetryOn()
296
297           self.__pde_proj=LinearPDE(domain)           self.__pde_proj=LinearPDE(domain)
# Line 174  class StokesProblemCartesian(Homogeneous Line 299  class StokesProblemCartesian(Homogeneous
299           self.__pde_proj.setSymmetryOn()           self.__pde_proj.setSymmetryOn()
300           self.__pde_proj.setValue(D=1.)           self.__pde_proj.setValue(D=1.)
301
303            """
304            assigns values to the model parameters
305
306            @param f: external force
307            @type f: L{Vector} object in L{FunctionSpace} L{Function} or similar
309            @type fixed_u_mask: L{Vector} object on L{FunctionSpace} L{Solution} or similar
310            @param eta: viscosity
311            @type eta: L{Scalar} object on L{FunctionSpace} L{Function} or similar
312            @param surface_stress: normal surface stress
313            @type eta: L{Vector} object on L{FunctionSpace} L{FunctionOnBoundary} or similar
314            @param stress: initial stress
315        @type stress: L{Tensor} object on L{FunctionSpace} L{Function} or similar
316            @note: All values needs to be set.
317
318            """
319          self.eta=eta          self.eta=eta
320          A =self.__pde_u.createCoefficientOfGeneralPDE("A")          A =self.__pde_u.createCoefficient("A")
321      self.__pde_u.setValue(A=Data())      self.__pde_u.setValue(A=Data())
322          for i in range(self.domain.getDim()):          for i in range(self.domain.getDim()):
323          for j in range(self.domain.getDim()):          for j in range(self.domain.getDim()):
# Line 184  class StokesProblemCartesian(Homogeneous Line 325  class StokesProblemCartesian(Homogeneous
325              A[i,j,i,j] += 1.              A[i,j,i,j] += 1.
326      self.__pde_prec.setValue(D=1/self.eta)      self.__pde_prec.setValue(D=1/self.eta)
328            self.__stress=stress
329
330          def B(self,v):
331            """
332            returns div(v)
333            @rtype: equal to the type of p
334
335            @note: boundary conditions on p should be zero!
336            """
337            if self.show_details: print "apply divergence:"
338            self.__pde_proj.setValue(Y=-util.div(v))
339            self.__pde_proj.setTolerance(self.getSubProblemTolerance())
340            return self.__pde_proj.getSolution(verbose=self.show_details)
341
342          def inner_pBv(self,p,Bv):
343             """
344             returns inner product of element p and Bv  (overwrite)
345
346             @type p: equal to the type of p
347             @type Bv: equal to the type of result of operator B
348             @rtype: C{float}
349
350        def B(self,arg):           @rtype: equal to the type of p
351           d=util.div(arg)           """
352           self.__pde_proj.setValue(Y=d)           s0=util.interpolate(p,Function(self.domain))
353           self.__pde_proj.setTolerance(self.getSubProblemTolerance())           s1=util.interpolate(Bv,Function(self.domain))
return self.__pde_proj.getSolution(verbose=self.show_details)

def inner(self,p0,p1):
s0=util.interpolate(p0,Function(self.domain))
s1=util.interpolate(p1,Function(self.domain))
354           return util.integrate(s0*s1)           return util.integrate(s0*s1)
355
356        def inner_a(self,a0,a1):        def inner_p(self,p0,p1):
357           p0=util.interpolate(a0[1],Function(self.domain))           """
358           p1=util.interpolate(a1[1],Function(self.domain))           returns inner product of element p0 and p1  (overwrite)
359           alfa=(1/self.vol)*util.integrate(p0)
360           beta=(1/self.vol)*util.integrate(p1)           @type p0: equal to the type of p
361       v0=util.grad(a0[0])           @type p1: equal to the type of p
return util.integrate((p0-alfa)*(p1-beta)+((1/self.eta)**2)*util.inner(v0,v1))
363
364             @rtype: equal to the type of p
365             """
366             s0=util.interpolate(p0/self.eta,Function(self.domain))
367             s1=util.interpolate(p1/self.eta,Function(self.domain))
368             return util.integrate(s0*s1)
369
370        def getStress(self,u):        def inner_v(self,v0,v1):
372           return 2.*self.eta*util.symmetric(mg)           returns inner product of two element v0 and v1  (overwrite)
373        def getEtaEffective(self):
374           return self.eta           @type v0: equal to the type of v
375             @type v1: equal to the type of v
376             @rtype: C{float}
377
378             @rtype: equal to the type of v
379             """
382             return util.integrate(util.inner(gv0,gv1))
383
384        def solve_A(self,u,p):        def solve_A(self,u,p):
385           """           """
387           """           """
388             if self.show_details: print "solve for velocity:"
389           self.__pde_u.setTolerance(self.getSubProblemTolerance())           self.__pde_u.setTolerance(self.getSubProblemTolerance())
390           self.__pde_u.setValue(X=-self.getStress(u)-p*util.kronecker(self.domain))           if self.__stress.isEmpty():
392             else:
394             out=self.__pde_u.getSolution(verbose=self.show_details)
395             return  out
396
397        def solve_prec(self,p):        def solve_prec(self,p):
398       #proj=Projector(domain=self.domain, reduce = True, fast=False)           if self.show_details: print "apply preconditioner:"
399           self.__pde_prec.setTolerance(self.getSubProblemTolerance())           self.__pde_prec.setTolerance(self.getSubProblemTolerance())
400           self.__pde_prec.setValue(Y=p)           self.__pde_prec.setValue(Y=p)
401           q=self.__pde_prec.getSolution(verbose=self.show_details)           q=self.__pde_prec.getSolution(verbose=self.show_details)
402           return q           return q

def solve_prec1(self,p):
#proj=Projector(domain=self.domain, reduce = True, fast=False)
self.__pde_prec.setTolerance(self.getSubProblemTolerance())
self.__pde_prec.setValue(Y=p)
q=self.__pde_prec.getSolution(verbose=self.show_details)
q0=util.interpolate(q,Function(self.domain))
print util.inf(q*q0),util.sup(q*q0)
q-=(1/self.vol)*util.integrate(q0)
print util.inf(q*q0),util.sup(q*q0)
return q

def stoppingcriterium(self,Bv,v,p):
n_r=util.sqrt(self.inner(Bv,Bv))
if self.verbose: print "PCG step %s: L2(div(v)) = %s, L2(grad(v))=%s"%(self.iter,n_r,n_v)
if self.iter == 0: self.__n_v=n_v;
self.__n_v, n_v_old =n_v, self.__n_v
self.iter+=1
if self.iter>1 and n_r <= n_v*self.getTolerance() and abs(n_v_old-self.__n_v) <= n_v * self.getTolerance():
if self.verbose: print "PCG terminated after %s steps."%self.iter
return True
else:
return False
def stoppingcriterium2(self,norm_r,norm_b,solver='GMRES',TOL=None):
if TOL==None:
TOL=self.getTolerance()
if self.verbose: print "%s step %s: L2(r) = %s, L2(b)*TOL=%s"%(solver,self.iter,norm_r,norm_b*TOL)
self.iter+=1

if norm_r <= norm_b*TOL:
if self.verbose: print "%s terminated after %s steps."%(solver,self.iter)
return True
else:
return False

Legend:
 Removed from v.1673 changed lines Added in v.2156