38 |
|
|
39 |
class DarcyFlow(object): |
class DarcyFlow(object): |
40 |
""" |
""" |
41 |
Represents and solves the problem |
solves the problem |
42 |
|
|
43 |
M{u_i+k_{ij}*p_{,j} = g_i} |
M{u_i+k_{ij}*p_{,j} = g_i} |
|
|
|
44 |
M{u_{i,i} = f} |
M{u_{i,i} = f} |
45 |
|
|
46 |
where M{p} represents the pressure and M{u} the Darcy flux. M{k} represents |
where M{p} represents the pressure and M{u} the Darcy flux. M{k} represents the permeability, |
|
the permeability. |
|
47 |
|
|
48 |
@note: The problem is solved in a least squares formulation. |
@note: The problem is solved in a least squares formulation. |
49 |
""" |
""" |
50 |
|
|
51 |
def __init__(self, domain): |
def __init__(self, domain,useReduced=False): |
52 |
""" |
""" |
53 |
Initializes the Darcy flux problem. |
initializes the Darcy flux problem |
|
|
|
54 |
@param domain: domain of the problem |
@param domain: domain of the problem |
55 |
@type domain: L{Domain} |
@type domain: L{Domain} |
56 |
""" |
""" |
57 |
self.domain=domain |
self.domain=domain |
58 |
self.__pde_v=LinearPDESystem(domain) |
self.__pde_v=LinearPDESystem(domain) |
59 |
self.__pde_v.setValue(D=util.kronecker(domain), A=util.outer(util.kronecker(domain),util.kronecker(domain))) |
if useReduced: self.__pde_v.setReducedOrderOn() |
60 |
self.__pde_v.setSymmetryOn() |
self.__pde_v.setSymmetryOn() |
61 |
|
self.__pde_v.setValue(D=util.kronecker(domain), A=util.outer(util.kronecker(domain),util.kronecker(domain))) |
62 |
self.__pde_p=LinearSinglePDE(domain) |
self.__pde_p=LinearSinglePDE(domain) |
63 |
self.__pde_p.setSymmetryOn() |
self.__pde_p.setSymmetryOn() |
64 |
|
if useReduced: self.__pde_p.setReducedOrderOn() |
65 |
self.__f=Scalar(0,self.__pde_v.getFunctionSpaceForCoefficient("X")) |
self.__f=Scalar(0,self.__pde_v.getFunctionSpaceForCoefficient("X")) |
66 |
self.__g=Vector(0,self.__pde_v.getFunctionSpaceForCoefficient("Y")) |
self.__g=Vector(0,self.__pde_v.getFunctionSpaceForCoefficient("Y")) |
67 |
|
self.__ATOL= None |
68 |
|
|
69 |
def setValue(self,f=None, g=None, location_of_fixed_pressure=None, location_of_fixed_flux=None, permeability=None): |
def setValue(self,f=None, g=None, location_of_fixed_pressure=None, location_of_fixed_flux=None, permeability=None): |
70 |
""" |
""" |
71 |
Assigns values to model parameters. |
assigns values to model parameters |
72 |
|
|
73 |
@param f: volumetric sources/sinks |
@param f: volumetic sources/sinks |
74 |
@type f: scalar value on the domain, e.g. L{Data} |
@type f: scalar value on the domain (e.g. L{Data}) |
75 |
@param g: flux sources/sinks |
@param g: flux sources/sinks |
76 |
@type g: vector value on the domain, e.g. L{Data} |
@type g: vector values on the domain (e.g. L{Data}) |
77 |
@param location_of_fixed_pressure: mask for locations where pressure is fixed |
@param location_of_fixed_pressure: mask for locations where pressure is fixed |
78 |
@type location_of_fixed_pressure: scalar value on the domain, e.g. L{Data} |
@type location_of_fixed_pressure: scalar value on the domain (e.g. L{Data}) |
79 |
@param location_of_fixed_flux: mask for locations where flux is fixed |
@param location_of_fixed_flux: mask for locations where flux is fixed. |
80 |
@type location_of_fixed_flux: vector value on the domain (e.g. L{Data}) |
@type location_of_fixed_flux: vector values on the domain (e.g. L{Data}) |
81 |
@param permeability: permeability tensor. If scalar C{s} is given the |
@param permeability: permeability tensor. If scalar C{s} is given the tensor with |
82 |
tensor with C{s} on the main diagonal is used. If |
C{s} on the main diagonal is used. If vector C{v} is given the tensor with |
83 |
vector C{v} is given the tensor with C{v} on the |
C{v} on the main diagonal is used. |
84 |
main diagonal is used. |
@type permeability: scalar, vector or tensor values on the domain (e.g. L{Data}) |
85 |
@type permeability: scalar, vector or tensor values on the domain, e.g. |
|
86 |
L{Data} |
@note: the values of parameters which are not set by calling C{setValue} are not altered. |
87 |
|
@note: at any point on the boundary of the domain the pressure (C{location_of_fixed_pressure} >0) |
88 |
@note: the values of parameters which are not set by calling |
or the normal component of the flux (C{location_of_fixed_flux[i]>0} if direction of the normal |
89 |
C{setValue} are not altered |
is along the M{x_i} axis. |
|
@note: at any point on the boundary of the domain the pressure |
|
|
(C{location_of_fixed_pressure}) >0 or the normal component of |
|
|
the flux (C{location_of_fixed_flux[i]}) >0 if the direction of |
|
|
the normal is along the M{x_i} axis. |
|
90 |
""" |
""" |
91 |
if f !=None: |
if f !=None: |
92 |
f=util.interpolate(f, self.__pde_v.getFunctionSpaceForCoefficient("X")) |
f=util.interpolate(f, self.__pde_v.getFunctionSpaceForCoefficient("X")) |
93 |
if f.isEmpty(): |
if f.isEmpty(): |
94 |
f=Scalar(0,self.__pde_v.getFunctionSpaceForCoefficient("X")) |
f=Scalar(0,self.__pde_v.getFunctionSpaceForCoefficient("X")) |
95 |
else: |
else: |
96 |
if f.getRank()>0: raise ValueError,"illegal rank of f." |
if f.getRank()>0: raise ValueError,"illegal rank of f." |
97 |
self.f=f |
self.f=f |
98 |
if g !=None: |
if g !=None: |
99 |
g=util.interpolate(g, self.__pde_p.getFunctionSpaceForCoefficient("Y")) |
g=util.interpolate(g, self.__pde_p.getFunctionSpaceForCoefficient("Y")) |
100 |
if g.isEmpty(): |
if g.isEmpty(): |
101 |
g=Vector(0,self.__pde_v.getFunctionSpaceForCoefficient("Y")) |
g=Vector(0,self.__pde_v.getFunctionSpaceForCoefficient("Y")) |
122 |
self.__pde_p.setValue(A=util.transposed_tensor_mult(self.__permeability,self.__permeability)) |
self.__pde_p.setValue(A=util.transposed_tensor_mult(self.__permeability,self.__permeability)) |
123 |
|
|
124 |
|
|
125 |
def getFlux(self,p, fixed_flux=Data(),tol=1.e-8, show_details=False): |
def getFlux(self,p=None, fixed_flux=Data(),tol=1.e-8, show_details=False): |
126 |
""" |
""" |
127 |
Returns the flux for a given pressure C{p}. |
returns the flux for a given pressure C{p} where the flux is equal to C{fixed_flux} |
128 |
|
on locations where C{location_of_fixed_flux} is positive (see L{setValue}). |
129 |
The flux is equal to C{fixed_flux} on locations where |
Note that C{g} and C{f} are used, see L{setValue}. |
130 |
C{location_of_fixed_flux} is positive (see L{setValue}). Note that C{g} |
|
131 |
and C{f} are used. |
@param p: pressure. |
132 |
|
@type p: scalar value on the domain (e.g. L{Data}). |
133 |
@param p: pressure |
@param fixed_flux: flux on the locations of the domain marked be C{location_of_fixed_flux}. |
134 |
@type p: scalar value on the domain, e.g. L{Data} |
@type fixed_flux: vector values on the domain (e.g. L{Data}). |
135 |
@param fixed_flux: flux on the locations of the domain marked by |
@param tol: relative tolerance to be used. |
136 |
C{location_of_fixed_flux} |
@type tol: positive C{float}. |
137 |
@type fixed_flux: vector values on the domain, e.g. L{Data} |
@return: flux |
|
@param tol: relative tolerance to be used |
|
|
@type tol: positive float |
|
|
@return: flux |
|
138 |
@rtype: L{Data} |
@rtype: L{Data} |
139 |
@note: the method uses the least squares solution |
@note: the method uses the least squares solution M{u=(I+D^*D)^{-1}(D^*f-g-Qp)} where M{D} is the M{div} operator and M{(Qp)_i=k_{ij}p_{,j}} |
140 |
M{u=(I+D^*D)^{-1}(D^*f-g-Qp)} where M{D} is the M{div} operator |
for the permeability M{k_{ij}} |
|
and M{(Qp)_i=k_{ij}p_{,j}} for the permeability M{k_{ij}} |
|
141 |
""" |
""" |
142 |
self.__pde_v.setTolerance(tol) |
self.__pde_v.setTolerance(tol) |
143 |
self.__pde_v.setValue(Y=self.__g, X=self.__f*util.kronecker(self.domain), r=fixed_flux) |
g=self.__g |
144 |
|
f=self.__f |
145 |
|
self.__pde_v.setValue(X=f*util.kronecker(self.domain), r=fixed_flux) |
146 |
|
if p == None: |
147 |
|
self.__pde_v.setValue(Y=g) |
148 |
|
else: |
149 |
|
self.__pde_v.setValue(Y=g-util.tensor_mult(self.__permeability,util.grad(p))) |
150 |
return self.__pde_v.getSolution(verbose=show_details) |
return self.__pde_v.getSolution(verbose=show_details) |
151 |
|
|
152 |
def solve(self, u0, p0, atol=0, rtol=1e-8, max_iter=100, verbose=False, show_details=False, sub_rtol=1.e-8): |
def getPressure(self,v=None, fixed_pressure=Data(),tol=1.e-8, show_details=False): |
153 |
|
""" |
154 |
|
returns the pressure for a given flux C{v} where the pressure is equal to C{fixed_pressure} |
155 |
|
on locations where C{location_of_fixed_pressure} is positive (see L{setValue}). |
156 |
|
Note that C{g} is used, see L{setValue}. |
157 |
|
|
158 |
|
@param v: flux. |
159 |
|
@type v: vector-valued on the domain (e.g. L{Data}). |
160 |
|
@param fixed_pressure: pressure on the locations of the domain marked be C{location_of_fixed_pressure}. |
161 |
|
@type fixed_pressure: vector values on the domain (e.g. L{Data}). |
162 |
|
@param tol: relative tolerance to be used. |
163 |
|
@type tol: positive C{float}. |
164 |
|
@return: pressure |
165 |
|
@rtype: L{Data} |
166 |
|
@note: the method uses the least squares solution M{p=(Q^*Q)^{-1}Q^*(g-u)} where and M{(Qp)_i=k_{ij}p_{,j}} |
167 |
|
for the permeability M{k_{ij}} |
168 |
|
""" |
169 |
|
self.__pde_v.setTolerance(tol) |
170 |
|
g=self.__g |
171 |
|
self.__pde_p.setValue(r=fixed_pressure) |
172 |
|
if v == None: |
173 |
|
self.__pde_p.setValue(X=util.transposed_tensor_mult(self.__permeability,g-v)) |
174 |
|
else: |
175 |
|
self.__pde_p.setValue(X=util.transposed_tensor_mult(self.__permeability,g)) |
176 |
|
return self.__pde_p.getSolution(verbose=show_details) |
177 |
|
|
178 |
|
def setTolerance(self,atol=0,rtol=1e-8,p_ref=None,v_ref=None): |
179 |
""" |
""" |
180 |
Solves the problem. |
set the tolerance C{ATOL} used to terminate the solution process. It is used |
181 |
|
|
182 |
|
M{ATOL = atol + rtol * max( |g-v_ref|, |Qp_ref| )} |
183 |
|
|
184 |
|
where M{|f|^2 = integrate(length(f)^2)} and M{(Qp)_i=k_{ij}p_{,j}} for the permeability M{k_{ij}}. If C{v_ref} or C{p_ref} is not present zero is assumed. |
185 |
|
|
186 |
|
The iteration is terminated if for the current approximation C{p}, flux C{v=(I+D^*D)^{-1}(D^*f-g-Qp)} and their residual |
187 |
|
|
188 |
|
M{r=Q^*(g-Qp-v)} |
189 |
|
|
190 |
|
the condition |
191 |
|
|
192 |
|
M{<(Q^*Q)^{-1} r,r> <= ATOL} |
193 |
|
|
194 |
|
holds. M{D} is the M{div} operator and M{(Qp)_i=k_{ij}p_{,j}} for the permeability M{k_{ij}} |
195 |
|
|
|
The iteration is terminated if the error in the pressure is less than |
|
|
M{rtol * |q| + atol} where M{|q|} denotes the norm of the right hand |
|
|
side (see escript user's guide for details). |
|
|
|
|
|
@param u0: initial guess for the flux. At locations in the domain |
|
|
marked by C{location_of_fixed_flux} the value of C{u0} is |
|
|
kept unchanged. |
|
|
@type u0: vector value on the domain, e.g. L{Data} |
|
|
@param p0: initial guess for the pressure. At locations in the domain |
|
|
marked by C{location_of_fixed_pressure} the value of C{p0} |
|
|
is kept unchanged. |
|
|
@type p0: scalar value on the domain, e.g. L{Data} |
|
196 |
@param atol: absolute tolerance for the pressure |
@param atol: absolute tolerance for the pressure |
197 |
@type atol: non-negative C{float} |
@type atol: non-negative C{float} |
198 |
@param rtol: relative tolerance for the pressure |
@param rtol: relative tolerance for the pressure |
199 |
@type rtol: non-negative C{float} |
@type rtol: non-negative C{float} |
200 |
@param sub_rtol: tolerance to be used in the sub iteration. It is |
@param p_ref: reference pressure. If not present zero is used. You may use physical arguments to set a resonable value for C{p_ref}, use the |
201 |
recommended that M{sub_rtol<rtol*5.e-3} |
L{getPressure} method or use the value from a previous time step. |
202 |
@type sub_rtol: positive-negative C{float} |
@type p_ref: scalar value on the domain (e.g. L{Data}). |
203 |
@param verbose: if True information on iteration progress is printed |
@param v_ref: reference velocity. If not present zero is used. You may use physical arguments to set a resonable value for C{v_ref}, use the |
204 |
@type verbose: C{bool} |
L{getFlux} method or use the value from a previous time step. |
205 |
@param show_details: if True information on the sub-iteration process |
@type v_ref: vector-valued on the domain (e.g. L{Data}). |
206 |
is printed |
@return: used absolute tolerance. |
207 |
@type show_details: C{bool} |
@rtype: positive C{float} |
208 |
@return: flux and pressure |
""" |
209 |
@rtype: C{tuple} of L{Data} |
g=self.__g |
210 |
|
if not v_ref == None: |
211 |
@note: the problem is solved in a least squares formulation: |
f1=util.integrate(util.length(util.interpolate(g-v_ref,Function(self.domain)))**2) |
212 |
|
else: |
213 |
M{(I+D^*D)u+Qp=D^*f+g} |
f1=util.integrate(util.length(util.interpolate(g))**2) |
214 |
|
if not p_ref == None: |
215 |
M{Q^*u+Q^*Qp=Q^*g} |
f2=util.integrate(util.length(util.tensor_mult(self.__permeability,util.grad(p_ref)))**2) |
216 |
|
else: |
217 |
where M{D} is the M{div} operator and M{(Qp)_i=k_{ij}p_{,j}} for the |
f2=0 |
218 |
permeability M{k_{ij}}. We eliminate the flux from the problem by |
self.__ATOL= atol + rtol * util.sqrt(max(f1,f2)) |
219 |
setting |
if self.__ATOL<=0: |
220 |
|
raise ValueError,"Positive tolerance (=%e) is expected."%self.__ATOL |
221 |
M{u=(I+D^*D)^{-1}(D^*f-g-Qp)} with M{u=u0} on C{location_of_fixed_flux} |
return self.__ATOL |
222 |
|
|
223 |
from the first equation. Inserted into the second equation we get |
def getTolerance(self): |
224 |
|
""" |
225 |
M{Q^*(I-(I+D^*D)^{-1})Qp= Q^*(g-(I+D^*D)^{-1}(D^*f+g))} with M{p=p0} |
returns the current tolerance. |
226 |
on C{location_of_fixed_pressure} |
|
227 |
|
@return: used absolute tolerance. |
228 |
which is solved using the PCG method (precondition is M{Q^*Q}). |
@rtype: positive C{float} |
229 |
In each iteration step PDEs with operator M{I+D^*D} and with M{Q^*Q} |
""" |
230 |
need to be solved using a sub-iteration scheme. |
if self.__ATOL==None: |
231 |
""" |
raise ValueError,"no tolerance is defined." |
232 |
self.verbose=verbose |
return self.__ATOL |
233 |
self.show_details= show_details and self.verbose |
|
234 |
self.__pde_v.setTolerance(sub_rtol) |
def solve(self,u0,p0, max_iter=100, verbose=False, show_details=False, sub_rtol=1.e-8): |
235 |
self.__pde_p.setTolerance(sub_rtol) |
""" |
236 |
u2=u0*self.__pde_v.getCoefficient("q") |
solves the problem. |
237 |
# |
|
238 |
# first the reference velocity is calculated from |
The iteration is terminated if the residual norm is less then self.getTolerance(). |
239 |
# |
|
240 |
# (I+D^*D)u_ref=D^*f+g (including bundray conditions for u) |
@param u0: initial guess for the flux. At locations in the domain marked by C{location_of_fixed_flux} the value of C{u0} is kept unchanged. |
241 |
# |
@type u0: vector value on the domain (e.g. L{Data}). |
242 |
self.__pde_v.setValue(Y=self.__g, X=self.__f*util.kronecker(self.domain), r=u0) |
@param p0: initial guess for the pressure. At locations in the domain marked by C{location_of_fixed_pressure} the value of C{p0} is kept unchanged. |
243 |
u_ref=self.__pde_v.getSolution(verbose=show_details) |
@type p0: scalar value on the domain (e.g. L{Data}). |
244 |
if self.verbose: print "DarcyFlux: maximum reference flux = ",util.Lsup(u_ref) |
@param sub_rtol: tolerance to be used in the sub iteration. It is recommended that M{sub_rtol<rtol*5.e-3} |
245 |
self.__pde_v.setValue(r=Data()) |
@type sub_rtol: positive-negative C{float} |
246 |
# |
@param verbose: if set some information on iteration progress are printed |
247 |
# and then we calculate a reference pressure |
@type verbose: C{bool} |
248 |
# |
@param show_details: if set information on the subiteration process are printed. |
249 |
# Q^*Qp_ref=Q^*g-Q^*u_ref ((including bundray conditions for p) |
@type show_details: C{bool} |
250 |
# |
@return: flux and pressure |
251 |
self.__pde_p.setValue(X=util.transposed_tensor_mult(self.__permeability,(self.__g-u_ref)), r=p0) |
@rtype: C{tuple} of L{Data}. |
252 |
p_ref=self.__pde_p.getSolution(verbose=self.show_details) |
|
253 |
if self.verbose: print "DarcyFlux: maximum reference pressure = ",util.Lsup(p_ref) |
@note: The problem is solved as a least squares form |
254 |
self.__pde_p.setValue(r=Data()) |
|
255 |
# |
M{(I+D^*D)u+Qp=D^*f+g} |
256 |
# (I+D^*D)du + Qdp = - Qp_ref u=du+u_ref |
M{Q^*u+Q^*Qp=Q^*g} |
257 |
# Q^*du + Q^*Qdp = Q^*g-Q^*u_ref-Q^*Qp_ref=0 p=dp+pref |
|
258 |
# |
where M{D} is the M{div} operator and M{(Qp)_i=k_{ij}p_{,j}} for the permeability M{k_{ij}}. |
259 |
# du= -(I+D^*D)^(-1} Q(p_ref+dp) u = u_ref+du |
We eliminate the flux form the problem by setting |
260 |
# |
|
261 |
# => Q^*(I-(I+D^*D)^(-1})Q dp = Q^*(I+D^*D)^(-1} Qp_ref |
M{u=(I+D^*D)^{-1}(D^*f-g-Qp)} with u=u0 on location_of_fixed_flux |
262 |
# or Q^*(I-(I+D^*D)^(-1})Q p = Q^*Qp_ref |
|
263 |
# |
form the first equation. Inserted into the second equation we get |
264 |
# r= Q^*( (I+D^*D)^(-1} Qp_ref - Q dp + (I+D^*D)^(-1})Q dp) = Q^*(-du-Q dp) |
|
265 |
# with du=-(I+D^*D)^(-1} Q(p_ref+dp) |
M{Q^*(I-(I+D^*D)^{-1})Qp= Q^*(g-(I+D^*D)^{-1}(D^*f+g))} with p=p0 on location_of_fixed_pressure |
266 |
# |
|
267 |
# we use the (du,Qdp) to represent the resudual |
which is solved using the PCG method (precondition is M{Q^*Q}). In each iteration step |
268 |
# Q^*Q is a preconditioner |
PDEs with operator M{I+D^*D} and with M{Q^*Q} needs to be solved using a sub iteration scheme. |
269 |
# |
""" |
270 |
# <(Q^*Q)^{-1}r,r> -> right hand side norm is <Qp_ref,Qp_ref> |
self.verbose=verbose |
271 |
# |
self.show_details= show_details and self.verbose |
272 |
Qp_ref=util.tensor_mult(self.__permeability,util.grad(p_ref)) |
self.__pde_v.setTolerance(sub_rtol) |
273 |
norm_rhs=util.sqrt(util.integrate(util.inner(Qp_ref,Qp_ref))) |
self.__pde_p.setTolerance(sub_rtol) |
274 |
ATOL=max(norm_rhs*rtol +atol, 200. * util.EPSILON * norm_rhs) |
ATOL=self.getTolerance() |
275 |
if not ATOL>0: |
if self.verbose: print "DarcyFlux: absolute tolerance = %e"%ATOL |
276 |
raise ValueError,"Negative absolute tolerance (rtol = %e, norm right hand side = %e, atol =%e)."%(rtol, norm_rhs, atol) |
######################################################################################################################### |
277 |
if self.verbose: print "DarcyFlux: norm of right hand side = %e (absolute tolerance = %e)"%(norm_rhs,ATOL) |
# |
278 |
# |
# we solve: |
279 |
# caclulate the initial residual |
# |
280 |
# |
# Q^*(I-(I+D^*D)^{-1})Q dp = Q^* (g-u0-Qp0 - (I+D^*D)^{-1} ( D^*(f-Du0)+g-u0-Qp0) ) |
281 |
self.__pde_v.setValue(X=Data(), Y=-util.tensor_mult(self.__permeability,util.grad(p0)), r=Data()) |
# |
282 |
du=self.__pde_v.getSolution(verbose=show_details) |
# residual is |
283 |
r=ArithmeticTuple(util.tensor_mult(self.__permeability,util.grad(p0-p_ref)), du) |
# |
284 |
dp,r=PCG(r,self.__Aprod_PCG,p0,self.__Msolve_PCG,self.__inner_PCG,atol=ATOL, rtol=0.,iter_max=max_iter, verbose=self.verbose) |
# r= Q^* (g-u0-Qp0 - (I+D^*D)^{-1} ( D^*(f-Du0)+g-u0-Qp0) - Q dp +(I+D^*D)^{-1})Q dp ) = Q^* (g - Qp - v) |
285 |
util.saveVTK("d.vtu",p=dp,p_ref=p_ref) |
# |
286 |
return u_ref+r[1],dp |
# with v = (I+D^*D)^{-1} (D^*f+g-Qp) including BC |
287 |
|
# |
288 |
def __Aprod_PCG(self,p): |
# we use (g - Qp, v) to represent the residual. not that |
289 |
if self.show_details: print "DarcyFlux: Applying operator" |
# |
290 |
Qp=util.tensor_mult(self.__permeability,util.grad(p)) |
# dr(dp)=( -Q(dp), dv) with dv = - (I+D^*D)^{-1} Q(dp) |
291 |
self.__pde_v.setValue(Y=Qp,X=Data()) |
# |
292 |
w=self.__pde_v.getSolution(verbose=self.show_details) |
# while the initial residual is |
293 |
return ArithmeticTuple(-Qp,w) |
# |
294 |
|
# r0=( g - Qp0, v00) with v00=(I+D^*D)^{-1} (D^*f+g-Qp0) including BC |
295 |
|
# |
296 |
|
d0=self.__g-util.tensor_mult(self.__permeability,util.grad(p0)) |
297 |
|
self.__pde_v.setValue(Y=d0, X=self.__f*util.kronecker(self.domain), r=u0) |
298 |
|
v00=self.__pde_v.getSolution(verbose=show_details) |
299 |
|
if self.verbose: print "DarcyFlux: range of initial flux = ",util.inf(v00), util.sup(v00) |
300 |
|
self.__pde_v.setValue(r=Data()) |
301 |
|
# start CG |
302 |
|
r=ArithmeticTuple(d0, v00) |
303 |
|
p,r=PCG(r,self.__Aprod_PCG,p0,self.__Msolve_PCG,self.__inner_PCG,atol=ATOL, rtol=0.,iter_max=max_iter, verbose=self.verbose) |
304 |
|
return r[1],p |
305 |
|
|
306 |
|
def __Aprod_PCG(self,dp): |
307 |
|
if self.show_details: print "DarcyFlux: Applying operator" |
308 |
|
# -dr(dp) = (Qdp,du) where du = (I+D^*D)^{-1} (Qdp) |
309 |
|
mQdp=util.tensor_mult(self.__permeability,util.grad(dp)) |
310 |
|
self.__pde_v.setValue(Y=mQdp,X=Data(), r=Data()) |
311 |
|
du=self.__pde_v.getSolution(verbose=self.show_details) |
312 |
|
return ArithmeticTuple(mQdp,du) |
313 |
|
|
314 |
def __inner_PCG(self,p,r): |
def __inner_PCG(self,p,r): |
315 |
a=util.tensor_mult(self.__permeability,util.grad(p)) |
a=util.tensor_mult(self.__permeability,util.grad(p)) |
316 |
out=-util.integrate(util.inner(a,r[0]+r[1])) |
f0=util.integrate(util.inner(a,r[0])) |
317 |
return out |
f1=util.integrate(util.inner(a,r[1])) |
318 |
|
# print "__inner_PCG:",f0,f1,"->",f0-f1 |
319 |
|
return f0-f1 |
320 |
|
|
321 |
def __Msolve_PCG(self,r): |
def __Msolve_PCG(self,r): |
322 |
if self.show_details: print "DarcyFlux: Applying preconditioner" |
if self.show_details: print "DarcyFlux: Applying preconditioner" |
323 |
self.__pde_p.setValue(X=-util.transposed_tensor_mult(self.__permeability,r[0]+r[1])) |
self.__pde_p.setValue(X=util.transposed_tensor_mult(self.__permeability,r[0]-r[1]), r=Data()) |
324 |
return self.__pde_p.getSolution(verbose=self.show_details) |
return self.__pde_p.getSolution(verbose=self.show_details) |
325 |
|
|
326 |
class StokesProblemCartesian(HomogeneousSaddlePointProblem): |
class StokesProblemCartesian(HomogeneousSaddlePointProblem): |
327 |
""" |
""" |
328 |
Represents and solves the problem |
solves |
329 |
|
|
330 |
M{-(eta*(u_{i,j}+u_{j,i}))_j + p_i = f_i-stress_{ij,j}} |
-(eta*(u_{i,j}+u_{j,i}))_j + p_i = f_i-stress_{ij,j} |
331 |
|
u_{i,i}=0 |
332 |
|
|
333 |
M{u_{i,i}=0} and M{u=0} where C{fixed_u_mask}>0 |
u=0 where fixed_u_mask>0 |
334 |
|
eta*(u_{i,j}+u_{j,i})*n_j-p*n_i=surface_stress +stress_{ij}n_j |
335 |
|
|
336 |
M{eta*(u_{i,j}+u_{j,i})*n_j-p*n_i=surface_stress +stress_{ij}n_j} |
if surface_stress is not given 0 is assumed. |
337 |
|
|
338 |
If C{surface_stress} is not given 0 is assumed. |
typical usage: |
339 |
|
|
340 |
Typical usage:: |
sp=StokesProblemCartesian(domain) |
341 |
|
sp.setTolerance() |
342 |
sp = StokesProblemCartesian(domain) |
sp.initialize(...) |
343 |
sp.setTolerance() |
v,p=sp.solve(v0,p0) |
|
sp.initialize(...) |
|
|
v,p = sp.solve(v0,p0) |
|
344 |
""" |
""" |
345 |
def __init__(self,domain,**kwargs): |
def __init__(self,domain,**kwargs): |
346 |
""" |
""" |
347 |
Initializes the Stokes Problem. |
initialize the Stokes Problem |
348 |
|
|
349 |
@param domain: domain of the problem. The approximation order needs |
@param domain: domain of the problem. The approximation order needs to be two. |
|
to be two. |
|
350 |
@type domain: L{Domain} |
@type domain: L{Domain} |
351 |
@warning: The approximation order needs to be two otherwise you may |
@warning: The apprximation order needs to be two otherwise you may see oscilations in the pressure. |
|
see oscillations in the pressure. |
|
352 |
""" |
""" |
353 |
HomogeneousSaddlePointProblem.__init__(self,**kwargs) |
HomogeneousSaddlePointProblem.__init__(self,**kwargs) |
354 |
self.domain=domain |
self.domain=domain |
357 |
self.__pde_u.setSymmetryOn() |
self.__pde_u.setSymmetryOn() |
358 |
# self.__pde_u.setSolverMethod(self.__pde_u.DIRECT) |
# self.__pde_u.setSolverMethod(self.__pde_u.DIRECT) |
359 |
# self.__pde_u.setSolverMethod(preconditioner=LinearPDE.RILU) |
# self.__pde_u.setSolverMethod(preconditioner=LinearPDE.RILU) |
360 |
|
|
361 |
self.__pde_prec=LinearPDE(domain) |
self.__pde_prec=LinearPDE(domain) |
362 |
self.__pde_prec.setReducedOrderOn() |
self.__pde_prec.setReducedOrderOn() |
363 |
# self.__pde_prec.setSolverMethod(self.__pde_prec.LUMPING) |
# self.__pde_prec.setSolverMethod(self.__pde_prec.LUMPING) |
369 |
self.__pde_proj.setValue(D=1.) |
self.__pde_proj.setValue(D=1.) |
370 |
|
|
371 |
def initialize(self,f=Data(),fixed_u_mask=Data(),eta=1,surface_stress=Data(),stress=Data()): |
def initialize(self,f=Data(),fixed_u_mask=Data(),eta=1,surface_stress=Data(),stress=Data()): |
372 |
""" |
""" |
373 |
Assigns values to the model parameters. |
assigns values to the model parameters |
374 |
|
|
375 |
@param f: external force |
@param f: external force |
376 |
@type f: L{Vector} object in L{FunctionSpace} L{Function} or similar |
@type f: L{Vector} object in L{FunctionSpace} L{Function} or similar |
377 |
@param fixed_u_mask: mask of locations with fixed velocity |
@param fixed_u_mask: mask of locations with fixed velocity. |
378 |
@type fixed_u_mask: L{Vector} object on L{FunctionSpace}, L{Solution} |
@type fixed_u_mask: L{Vector} object on L{FunctionSpace} L{Solution} or similar |
379 |
or similar |
@param eta: viscosity |
380 |
@param eta: viscosity |
@type eta: L{Scalar} object on L{FunctionSpace} L{Function} or similar |
381 |
@type eta: L{Scalar} object on L{FunctionSpace}, L{Function} or similar |
@param surface_stress: normal surface stress |
382 |
@param surface_stress: normal surface stress |
@type eta: L{Vector} object on L{FunctionSpace} L{FunctionOnBoundary} or similar |
383 |
@type surface_stress: L{Vector} object on L{FunctionSpace}, |
@param stress: initial stress |
384 |
L{FunctionOnBoundary} or similar |
@type stress: L{Tensor} object on L{FunctionSpace} L{Function} or similar |
385 |
@param stress: initial stress |
@note: All values needs to be set. |
386 |
@type stress: L{Tensor} object on L{FunctionSpace}, L{Function} or |
|
387 |
similar |
""" |
388 |
@note: All values need to be set. |
self.eta=eta |
389 |
""" |
A =self.__pde_u.createCoefficient("A") |
390 |
self.eta=eta |
self.__pde_u.setValue(A=Data()) |
391 |
A =self.__pde_u.createCoefficient("A") |
for i in range(self.domain.getDim()): |
392 |
self.__pde_u.setValue(A=Data()) |
for j in range(self.domain.getDim()): |
393 |
for i in range(self.domain.getDim()): |
A[i,j,j,i] += 1. |
394 |
for j in range(self.domain.getDim()): |
A[i,j,i,j] += 1. |
395 |
A[i,j,j,i] += 1. |
self.__pde_prec.setValue(D=1/self.eta) |
396 |
A[i,j,i,j] += 1. |
self.__pde_u.setValue(A=A*self.eta,q=fixed_u_mask,Y=f,y=surface_stress) |
397 |
self.__pde_prec.setValue(D=1/self.eta) |
self.__stress=stress |
|
self.__pde_u.setValue(A=A*self.eta,q=fixed_u_mask,Y=f,y=surface_stress) |
|
|
self.__stress=stress |
|
398 |
|
|
399 |
def B(self,v): |
def B(self,v): |
400 |
""" |
""" |
401 |
Returns M{div(v)}. |
returns div(v) |
402 |
@return: M{div(v)} |
@rtype: equal to the type of p |
|
@rtype: equal to the type of p |
|
403 |
|
|
404 |
@note: Boundary conditions on p should be zero! |
@note: boundary conditions on p should be zero! |
405 |
""" |
""" |
406 |
if self.show_details: print "apply divergence:" |
if self.show_details: print "apply divergence:" |
407 |
self.__pde_proj.setValue(Y=-util.div(v)) |
self.__pde_proj.setValue(Y=-util.div(v)) |
408 |
self.__pde_proj.setTolerance(self.getSubProblemTolerance()) |
self.__pde_proj.setTolerance(self.getSubProblemTolerance()) |
409 |
return self.__pde_proj.getSolution(verbose=self.show_details) |
return self.__pde_proj.getSolution(verbose=self.show_details) |
410 |
|
|
411 |
def inner_pBv(self,p,Bv): |
def inner_pBv(self,p,Bv): |
412 |
""" |
""" |
413 |
Returns inner product of element p and Bv (overwrite). |
returns inner product of element p and Bv (overwrite) |
414 |
|
|
415 |
@type p: equal to the type of p |
@type p: equal to the type of p |
416 |
@type Bv: equal to the type of result of operator B |
@type Bv: equal to the type of result of operator B |
417 |
@return: inner product of p and Bv |
@rtype: C{float} |
418 |
|
|
419 |
@rtype: equal to the type of p |
@rtype: equal to the type of p |
420 |
""" |
""" |
421 |
s0=util.interpolate(p,Function(self.domain)) |
s0=util.interpolate(p,Function(self.domain)) |
424 |
|
|
425 |
def inner_p(self,p0,p1): |
def inner_p(self,p0,p1): |
426 |
""" |
""" |
427 |
Returns inner product of element p0 and p1 (overwrite). |
returns inner product of element p0 and p1 (overwrite) |
428 |
|
|
429 |
@type p0: equal to the type of p |
@type p0: equal to the type of p |
430 |
@type p1: equal to the type of p |
@type p1: equal to the type of p |
431 |
@return: inner product of p0 and p1 |
@rtype: C{float} |
432 |
|
|
433 |
@rtype: equal to the type of p |
@rtype: equal to the type of p |
434 |
""" |
""" |
435 |
s0=util.interpolate(p0/self.eta,Function(self.domain)) |
s0=util.interpolate(p0/self.eta,Function(self.domain)) |
438 |
|
|
439 |
def inner_v(self,v0,v1): |
def inner_v(self,v0,v1): |
440 |
""" |
""" |
441 |
Returns inner product of two elements v0 and v1 (overwrite). |
returns inner product of two element v0 and v1 (overwrite) |
442 |
|
|
443 |
@type v0: equal to the type of v |
@type v0: equal to the type of v |
444 |
@type v1: equal to the type of v |
@type v1: equal to the type of v |
445 |
@return: inner product of v0 and v1 |
@rtype: C{float} |
446 |
|
|
447 |
@rtype: equal to the type of v |
@rtype: equal to the type of v |
448 |
""" |
""" |
449 |
gv0=util.grad(v0) |
gv0=util.grad(v0) |
450 |
gv1=util.grad(v1) |
gv1=util.grad(v1) |
451 |
return util.integrate(util.inner(gv0,gv1)) |
return util.integrate(util.inner(gv0,gv1)) |
452 |
|
|
453 |
def solve_A(self,u,p): |
def solve_A(self,u,p): |
454 |
""" |
""" |
455 |
Solves M{Av=f-Au-B^*p} (v=0 on fixed_u_mask). |
solves Av=f-Au-B^*p (v=0 on fixed_u_mask) |
456 |
""" |
""" |
457 |
if self.show_details: print "solve for velocity:" |
if self.show_details: print "solve for velocity:" |
458 |
self.__pde_u.setTolerance(self.getSubProblemTolerance()) |
self.__pde_u.setTolerance(self.getSubProblemTolerance()) |
461 |
else: |
else: |
462 |
self.__pde_u.setValue(X=self.__stress-2*self.eta*util.symmetric(util.grad(u))+p*util.kronecker(self.domain)) |
self.__pde_u.setValue(X=self.__stress-2*self.eta*util.symmetric(util.grad(u))+p*util.kronecker(self.domain)) |
463 |
out=self.__pde_u.getSolution(verbose=self.show_details) |
out=self.__pde_u.getSolution(verbose=self.show_details) |
464 |
return out |
return out |
465 |
|
|
466 |
def solve_prec(self,p): |
def solve_prec(self,p): |
|
""" |
|
|
Applies the preconditioner. |
|
|
""" |
|
467 |
if self.show_details: print "apply preconditioner:" |
if self.show_details: print "apply preconditioner:" |
468 |
self.__pde_prec.setTolerance(self.getSubProblemTolerance()) |
self.__pde_prec.setTolerance(self.getSubProblemTolerance()) |
469 |
self.__pde_prec.setValue(Y=p) |
self.__pde_prec.setValue(Y=p) |
470 |
q=self.__pde_prec.getSolution(verbose=self.show_details) |
q=self.__pde_prec.getSolution(verbose=self.show_details) |
471 |
return q |
return q |
|
|
|