1 |
# $Id:$ |
2 |
# |
3 |
####################################################### |
4 |
# |
5 |
# Copyright 2008 by University of Queensland |
6 |
# |
7 |
# http://esscc.uq.edu.au |
8 |
# Primary Business: Queensland, Australia |
9 |
# Licensed under the Open Software License version 3.0 |
10 |
# http://www.opensource.org/licenses/osl-3.0.php |
11 |
# |
12 |
####################################################### |
13 |
# |
14 |
|
15 |
""" |
16 |
Some models for flow |
17 |
|
18 |
@var __author__: name of author |
19 |
@var __copyright__: copyrights |
20 |
@var __license__: licence agreement |
21 |
@var __url__: url entry point on documentation |
22 |
@var __version__: version |
23 |
@var __date__: date of the version |
24 |
""" |
25 |
|
26 |
__author__="Lutz Gross, l.gross@uq.edu.au" |
27 |
__copyright__=""" Copyright (c) 2008 by ACcESS MNRF |
28 |
http://www.access.edu.au |
29 |
Primary Business: Queensland, Australia""" |
30 |
__license__="""Licensed under the Open Software License version 3.0 |
31 |
http://www.opensource.org/licenses/osl-3.0.php""" |
32 |
__url__="http://www.iservo.edu.au/esys" |
33 |
__version__="$Revision:$" |
34 |
__date__="$Date:$" |
35 |
|
36 |
from escript import * |
37 |
import util |
38 |
from linearPDEs import LinearPDE |
39 |
from pdetools import HomogeneousSaddlePointProblem |
40 |
|
41 |
class StokesProblemCartesian(HomogeneousSaddlePointProblem): |
42 |
""" |
43 |
solves |
44 |
|
45 |
-(eta*(u_{i,j}+u_{j,i}))_j - p_i = f_i |
46 |
u_{i,i}=0 |
47 |
|
48 |
u=0 where fixed_u_mask>0 |
49 |
eta*(u_{i,j}+u_{j,i})*n_j=surface_stress |
50 |
|
51 |
if surface_stress is not give 0 is assumed. |
52 |
|
53 |
typical usage: |
54 |
|
55 |
sp=StokesProblemCartesian(domain) |
56 |
sp.setTolerance() |
57 |
sp.initialize(...) |
58 |
v,p=sp.solve(v0,p0) |
59 |
""" |
60 |
def __init__(self,domain,**kwargs): |
61 |
HomogeneousSaddlePointProblem.__init__(self,**kwargs) |
62 |
self.domain=domain |
63 |
self.vol=util.integrate(1.,Function(self.domain)) |
64 |
self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim()) |
65 |
self.__pde_u.setSymmetryOn() |
66 |
self.__pde_u.setSolverMethod(preconditioner=LinearPDE.ILU0) |
67 |
|
68 |
self.__pde_prec=LinearPDE(domain) |
69 |
self.__pde_prec.setReducedOrderOn() |
70 |
self.__pde_prec.setSymmetryOn() |
71 |
|
72 |
self.__pde_proj=LinearPDE(domain) |
73 |
self.__pde_proj.setReducedOrderOn() |
74 |
self.__pde_proj.setSymmetryOn() |
75 |
self.__pde_proj.setValue(D=1.) |
76 |
|
77 |
def initialize(self,f=Data(),fixed_u_mask=Data(),eta=1,surface_stress=Data()): |
78 |
self.eta=eta |
79 |
A =self.__pde_u.createCoefficientOfGeneralPDE("A") |
80 |
self.__pde_u.setValue(A=Data()) |
81 |
for i in range(self.domain.getDim()): |
82 |
for j in range(self.domain.getDim()): |
83 |
A[i,j,j,i] += 1. |
84 |
A[i,j,i,j] += 1. |
85 |
self.__pde_prec.setValue(D=1./self.eta) |
86 |
self.__pde_u.setValue(A=A*self.eta,q=fixed_u_mask,Y=f,y=surface_stress) |
87 |
|
88 |
def B(self,arg): |
89 |
d=util.div(arg) |
90 |
self.__pde_proj.setValue(Y=d) |
91 |
self.__pde_proj.setTolerance(self.getSubProblemTolerance()) |
92 |
return self.__pde_proj.getSolution(verbose=self.show_details) |
93 |
|
94 |
def inner(self,p0,p1): |
95 |
s0=util.interpolate(p0,Function(self.domain)) |
96 |
s1=util.interpolate(p1,Function(self.domain)) |
97 |
return util.integrate(s0*s1) |
98 |
|
99 |
def getStress(self,u): |
100 |
mg=util.grad(u) |
101 |
return 2.*self.eta*util.symmetric(mg) |
102 |
|
103 |
def solve_A(self,u,p): |
104 |
""" |
105 |
solves Av=f-Au-B^*p (v=0 on fixed_u_mask) |
106 |
""" |
107 |
self.__pde_u.setTolerance(self.getSubProblemTolerance()) |
108 |
self.__pde_u.setValue(X=-self.getStress(u)-p*util.kronecker(self.domain)) |
109 |
return self.__pde_u.getSolution(verbose=self.show_details) |
110 |
|
111 |
def solve_prec(self,p): |
112 |
self.__pde_prec.setTolerance(self.getSubProblemTolerance()) |
113 |
self.__pde_prec.setValue(Y=p) |
114 |
q=self.__pde_prec.getSolution(verbose=self.show_details) |
115 |
return q |
116 |
def stoppingcriterium(self,Bv,v,p): |
117 |
n_r=util.sqrt(self.inner(Bv,Bv)) |
118 |
n_v=util.Lsup(v) |
119 |
if self.verbose: print "PCG step %s: L2(div(v)) = %s, Lsup(v)=%s"%(self.iter,n_r,n_v) |
120 |
self.iter+=1 |
121 |
if n_r <= self.vol**(1./2.-1./self.domain.getDim())*n_v*self.getTolerance(): |
122 |
if self.verbose: print "PCG terminated after %s steps."%self.iter |
123 |
return True |
124 |
else: |
125 |
return False |
126 |
def stoppingcriterium_GMRES(self,norm_r,norm_b): |
127 |
if self.verbose: print "GMRES step %s: L2(r) = %s, L2(b)*TOL=%s"%(self.iter,norm_r,norm_b*self.getTolerance()) |
128 |
self.iter+=1 |
129 |
if norm_r <= norm_b*self.getTolerance(): |
130 |
if self.verbose: print "GMRES terminated after %s steps."%self.iter |
131 |
return True |
132 |
else: |
133 |
return False |