Parent Directory
|
Revision Log
scale allows now to switch on and off certain problems
1 | jgs | 102 | # $Id$ |
2 | |||
3 | jgs | 149 | # |
4 | # COPYRIGHT ACcESS 2004 - All Rights Reserved | ||
5 | jgs | 151 | # |
6 | jgs | 149 | # This software is the property of ACcESS. No part of this code |
7 | # may be copied in any form or by any means without the expressed written | ||
8 | # consent of ACcESS. Copying, use or modification of this software | ||
9 | # by any unauthorised person is illegal unless that | ||
10 | # person has a software license agreement with ACcESS. | ||
11 | # | ||
12 | """ | ||
13 | jgs | 151 | The module provides an interface to define and solve linear partial |
14 | differential equations (PDEs) within L{escript}. L{linearPDEs} does not provide any | ||
15 | solver capabilities in itself but hands the PDE over to | ||
16 | jgs | 149 | the PDE solver library defined through the L{Domain<escript.Domain>} of the PDE. |
17 | The general interface is provided through the L{LinearPDE} class. The | ||
18 | L{AdvectivePDE} which is derived from the L{LinearPDE} class | ||
19 | provides an interface to PDE dominated by its advective terms. The L{Poisson}, | ||
20 | gross | 345 | L{Helmholtz}, L{LameEquation}, L{AdvectionDiffusion} |
21 | jgs | 149 | classs which are also derived form the L{LinearPDE} class should be used |
22 | to define of solve these sepecial PDEs. | ||
23 | jgs | 102 | |
24 | jgs | 149 | @var __author__: name of author |
25 | @var __licence__: licence agreement | ||
26 | @var __url__: url entry point on documentation | ||
27 | @var __version__: version | ||
28 | @var __date__: date of the version | ||
29 | jgs | 102 | """ |
30 | |||
31 | import escript | ||
32 | import util | ||
33 | import numarray | ||
34 | |||
35 | jgs | 149 | __author__="Lutz Gross, l.gross@uq.edu.au" |
36 | __licence__="contact: esys@access.uq.edu.au" | ||
37 | __url__="http://www.iservo.edu.au/esys/escript" | ||
38 | __version__="$Revision$" | ||
39 | __date__="$Date$" | ||
40 | jgs | 102 | |
41 | jgs | 149 | |
42 | jgs | 148 | class IllegalCoefficient(ValueError): |
43 | jgs | 102 | """ |
44 | jgs | 148 | raised if an illegal coefficient of the general ar particular PDE is requested. |
45 | """ | ||
46 | jgs | 102 | |
47 | jgs | 148 | class IllegalCoefficientValue(ValueError): |
48 | jgs | 102 | """ |
49 | jgs | 148 | raised if an incorrect value for a coefficient is used. |
50 | """ | ||
51 | jgs | 122 | |
52 | jgs | 148 | class UndefinedPDEError(ValueError): |
53 | """ | ||
54 | raised if a PDE is not fully defined yet. | ||
55 | """ | ||
56 | jgs | 102 | |
57 | jgs | 151 | class PDECoefficient(object): |
58 | jgs | 102 | """ |
59 | jgs | 149 | A class for describing a PDE coefficient |
60 | |||
61 | @cvar INTERIOR: indicator that coefficient is defined on the interior of the PDE domain | ||
62 | @cvar BOUNDARY: indicator that coefficient is defined on the boundary of the PDE domain | ||
63 | @cvar CONTACT: indicator that coefficient is defined on the contact region within the PDE domain | ||
64 | @cvar SOLUTION: indicator that coefficient is defined trough a solution of the PDE | ||
65 | jgs | 150 | @cvar REDUCED: indicator that coefficient is defined trough a reduced solution of the PDE |
66 | jgs | 149 | @cvar BY_EQUATION: indicator that the dimension of the coefficient shape is defined by the number PDE equations |
67 | @cvar BY_SOLUTION: indicator that the dimension of the coefficient shape is defined by the number PDE solutions | ||
68 | @cvar BY_DIM: indicator that the dimension of the coefficient shape is defined by the spatial dimension | ||
69 | @cvar OPERATOR: indicator that the the coefficient alters the operator of the PDE | ||
70 | @cvar RIGHTHANDSIDE: indicator that the the coefficient alters the right hand side of the PDE | ||
71 | @cvar BOTH: indicator that the the coefficient alters the operator as well as the right hand side of the PDE | ||
72 | |||
73 | jgs | 102 | """ |
74 | INTERIOR=0 | ||
75 | BOUNDARY=1 | ||
76 | CONTACT=2 | ||
77 | jgs | 149 | SOLUTION=3 |
78 | jgs | 150 | REDUCED=4 |
79 | jgs | 149 | BY_EQUATION=5 |
80 | BY_SOLUTION=6 | ||
81 | BY_DIM=7 | ||
82 | OPERATOR=10 | ||
83 | RIGHTHANDSIDE=11 | ||
84 | BOTH=12 | ||
85 | |||
86 | jgs | 102 | def __init__(self,where,pattern,altering): |
87 | """ | ||
88 | jgs | 122 | Initialise a PDE Coefficient type |
89 | jgs | 151 | |
90 | jgs | 149 | @param where: describes where the coefficient lives |
91 | jgs | 150 | @type where: one of L{INTERIOR}, L{BOUNDARY}, L{CONTACT}, L{SOLUTION}, L{REDUCED} |
92 | jgs | 151 | @param pattern: describes the shape of the coefficient and how the shape is build for a given |
93 | jgs | 149 | spatial dimension and numbers of equation and solution in then PDE. For instance, |
94 | (L{BY_EQUATION},L{BY_SOLUTION},L{BY_DIM}) descrbes a rank 3 coefficient which | ||
95 | is instanciated as shape (3,2,2) in case of a three equations and two solution components | ||
96 | on a 2-dimensional domain. In the case of single equation and a single solution component | ||
97 | the shape compoments marked by L{BY_EQUATION} or L{BY_SOLUTION} are dropped. In this case | ||
98 | the example would be read as (2,). | ||
99 | @type pattern: C{tuple} of L{BY_EQUATION}, L{BY_SOLUTION}, L{BY_DIM} | ||
100 | @param altering: indicates what part of the PDE is altered if the coefficiennt is altered | ||
101 | @type altering: one of L{OPERATOR}, L{RIGHTHANDSIDE}, L{BOTH} | ||
102 | |||
103 | jgs | 102 | """ |
104 | jgs | 151 | super(PDECoefficient, self).__init__() |
105 | jgs | 102 | self.what=where |
106 | self.pattern=pattern | ||
107 | self.altering=altering | ||
108 | jgs | 108 | self.resetValue() |
109 | jgs | 102 | |
110 | jgs | 108 | def resetValue(self): |
111 | """ | ||
112 | jgs | 122 | resets coefficient value to default |
113 | jgs | 108 | """ |
114 | self.value=escript.Data() | ||
115 | |||
116 | jgs | 149 | def getFunctionSpace(self,domain,reducedEquationOrder=False,reducedSolutionOrder=False): |
117 | jgs | 102 | """ |
118 | jgs | 149 | defines the L{FunctionSpace<escript.FunctionSpace>} of the coefficient |
119 | jgs | 102 | |
120 | jgs | 149 | @param domain: domain on which the PDE uses the coefficient |
121 | @type domain: L{Domain<escript.Domain>} | ||
122 | @param reducedEquationOrder: True to indicate that reduced order is used to represent the equation | ||
123 | @type domain: C{bool} | ||
124 | @param reducedSolutionOrder: True to indicate that reduced order is used to represent the solution | ||
125 | @type domain: C{bool} | ||
126 | @return: L{FunctionSpace<escript.FunctionSpace>} of the coefficient | ||
127 | @rtype: L{FunctionSpace<escript.FunctionSpace>} | ||
128 | jgs | 102 | """ |
129 | jgs | 151 | if self.what==self.INTERIOR: |
130 | jgs | 149 | return escript.Function(domain) |
131 | jgs | 151 | elif self.what==self.BOUNDARY: |
132 | jgs | 149 | return escript.FunctionOnBoundary(domain) |
133 | jgs | 151 | elif self.what==self.CONTACT: |
134 | jgs | 149 | return escript.FunctionOnContactZero(domain) |
135 | jgs | 151 | elif self.what==self.SOLUTION: |
136 | jgs | 149 | if reducedEquationOrder and reducedSolutionOrder: |
137 | return escript.ReducedSolution(domain) | ||
138 | else: | ||
139 | return escript.Solution(domain) | ||
140 | jgs | 151 | elif self.what==self.REDUCED: |
141 | return escript.ReducedSolution(domain) | ||
142 | jgs | 102 | |
143 | jgs | 108 | def getValue(self): |
144 | """ | ||
145 | jgs | 149 | returns the value of the coefficient |
146 | |||
147 | @return: value of the coefficient | ||
148 | @rtype: L{Data<escript.Data>} | ||
149 | jgs | 108 | """ |
150 | return self.value | ||
151 | jgs | 148 | |
152 | jgs | 149 | def setValue(self,domain,numEquations=1,numSolutions=1,reducedEquationOrder=False,reducedSolutionOrder=False,newValue=None): |
153 | jgs | 108 | """ |
154 | jgs | 149 | set the value of the coefficient to a new value |
155 | |||
156 | @param domain: domain on which the PDE uses the coefficient | ||
157 | @type domain: L{Domain<escript.Domain>} | ||
158 | @param numEquations: number of equations of the PDE | ||
159 | @type numEquations: C{int} | ||
160 | @param numSolutions: number of components of the PDE solution | ||
161 | @type numSolutions: C{int} | ||
162 | @param reducedEquationOrder: True to indicate that reduced order is used to represent the equation | ||
163 | @type domain: C{bool} | ||
164 | @param reducedSolutionOrder: True to indicate that reduced order is used to represent the solution | ||
165 | @type domain: C{bool} | ||
166 | @param newValue: number of components of the PDE solution | ||
167 | @type newValue: any object that can be converted into a L{Data<escript.Data>} object with the appropriate shape and L{FunctionSpace<escript.FunctionSpace>} | ||
168 | @raise IllegalCoefficientValue: if the shape of the assigned value does not match the shape of the coefficient | ||
169 | jgs | 108 | """ |
170 | jgs | 148 | if newValue==None: |
171 | newValue=escript.Data() | ||
172 | elif isinstance(newValue,escript.Data): | ||
173 | if not newValue.isEmpty(): | ||
174 | jgs | 149 | try: |
175 | newValue=escript.Data(newValue,self.getFunctionSpace(domain,reducedEquationOrder,reducedSolutionOrder)) | ||
176 | except: | ||
177 | raise IllegalCoefficientValue,"Unable to interpolate coefficient to function space %s"%self.getFunctionSpace(domain) | ||
178 | jgs | 148 | else: |
179 | jgs | 149 | newValue=escript.Data(newValue,self.getFunctionSpace(domain,reducedEquationOrder,reducedSolutionOrder)) |
180 | jgs | 148 | if not newValue.isEmpty(): |
181 | if not self.getShape(domain,numEquations,numSolutions)==newValue.getShape(): | ||
182 | jgs | 149 | raise IllegalCoefficientValue,"Expected shape of coefficient is %s but actual shape is %s."%(self.getShape(domain,numEquations,numSolutions),newValue.getShape()) |
183 | jgs | 108 | self.value=newValue |
184 | jgs | 148 | |
185 | jgs | 102 | def isAlteringOperator(self): |
186 | """ | ||
187 | jgs | 149 | checks if the coefficient alters the operator of the PDE |
188 | |||
189 | @return: True if the operator of the PDE is changed when the coefficient is changed | ||
190 | @rtype: C{bool} | ||
191 | jgs | 102 | """ |
192 | if self.altering==self.OPERATOR or self.altering==self.BOTH: | ||
193 | return not None | ||
194 | else: | ||
195 | return None | ||
196 | |||
197 | def isAlteringRightHandSide(self): | ||
198 | """ | ||
199 | jgs | 149 | checks if the coefficeint alters the right hand side of the PDE |
200 | |||
201 | @rtype: C{bool} | ||
202 | @return: True if the right hand side of the PDE is changed when the coefficient is changed | ||
203 | jgs | 102 | """ |
204 | if self.altering==self.RIGHTHANDSIDE or self.altering==self.BOTH: | ||
205 | return not None | ||
206 | else: | ||
207 | return None | ||
208 | |||
209 | jgs | 148 | def estimateNumEquationsAndNumSolutions(self,domain,shape=()): |
210 | jgs | 102 | """ |
211 | jgs | 149 | tries to estimate the number of equations and number of solutions if the coefficient has the given shape |
212 | jgs | 102 | |
213 | jgs | 149 | @param domain: domain on which the PDE uses the coefficient |
214 | @type domain: L{Domain<escript.Domain>} | ||
215 | @param shape: suggested shape of the coefficient | ||
216 | @type shape: C{tuple} of C{int} values | ||
217 | @return: the number of equations and number of solutions of the PDE is the coefficient has shape s. | ||
218 | If no appropriate numbers could be identified, C{None} is returned | ||
219 | @rtype: C{tuple} of two C{int} values or C{None} | ||
220 | jgs | 102 | """ |
221 | jgs | 148 | dim=domain.getDim() |
222 | jgs | 102 | if len(shape)>0: |
223 | num=max(shape)+1 | ||
224 | else: | ||
225 | num=1 | ||
226 | search=[] | ||
227 | jgs | 149 | if self.definesNumEquation() and self.definesNumSolutions(): |
228 | for u in range(num): | ||
229 | for e in range(num): | ||
230 | search.append((e,u)) | ||
231 | search.sort(self.__CompTuple2) | ||
232 | for item in search: | ||
233 | jgs | 148 | s=self.getShape(domain,item[0],item[1]) |
234 | jgs | 102 | if len(s)==0 and len(shape)==0: |
235 | return (1,1) | ||
236 | else: | ||
237 | if s==shape: return item | ||
238 | jgs | 149 | elif self.definesNumEquation(): |
239 | for e in range(num,0,-1): | ||
240 | s=self.getShape(domain,e,0) | ||
241 | if len(s)==0 and len(shape)==0: | ||
242 | return (1,None) | ||
243 | else: | ||
244 | if s==shape: return (e,None) | ||
245 | |||
246 | elif self.definesNumSolutions(): | ||
247 | for u in range(num,0,-1): | ||
248 | s=self.getShape(domain,0,u) | ||
249 | if len(s)==0 and len(shape)==0: | ||
250 | return (None,1) | ||
251 | else: | ||
252 | if s==shape: return (None,u) | ||
253 | jgs | 102 | return None |
254 | jgs | 149 | def definesNumSolutions(self): |
255 | """ | ||
256 | checks if the coefficient allows to estimate the number of solution components | ||
257 | jgs | 102 | |
258 | jgs | 149 | @return: True if the coefficient allows an estimate of the number of solution components |
259 | @rtype: C{bool} | ||
260 | """ | ||
261 | for i in self.pattern: | ||
262 | if i==self.BY_SOLUTION: return True | ||
263 | return False | ||
264 | |||
265 | def definesNumEquation(self): | ||
266 | """ | ||
267 | checks if the coefficient allows to estimate the number of equations | ||
268 | |||
269 | @return: True if the coefficient allows an estimate of the number of equations | ||
270 | @rtype: C{bool} | ||
271 | """ | ||
272 | for i in self.pattern: | ||
273 | if i==self.BY_EQUATION: return True | ||
274 | return False | ||
275 | |||
276 | def __CompTuple2(self,t1,t2): | ||
277 | """ | ||
278 | Compare two tuples of possible number of equations and number of solutions | ||
279 | |||
280 | @param t1: The first tuple | ||
281 | @param t2: The second tuple | ||
282 | |||
283 | """ | ||
284 | |||
285 | dif=t1[0]+t1[1]-(t2[0]+t2[1]) | ||
286 | if dif<0: return 1 | ||
287 | elif dif>0: return -1 | ||
288 | else: return 0 | ||
289 | |||
290 | jgs | 148 | def getShape(self,domain,numEquations=1,numSolutions=1): |
291 | jgs | 149 | """ |
292 | builds the required shape of the coefficient | ||
293 | jgs | 102 | |
294 | jgs | 149 | @param domain: domain on which the PDE uses the coefficient |
295 | @type domain: L{Domain<escript.Domain>} | ||
296 | @param numEquations: number of equations of the PDE | ||
297 | @type numEquations: C{int} | ||
298 | @param numSolutions: number of components of the PDE solution | ||
299 | @type numSolutions: C{int} | ||
300 | @return: shape of the coefficient | ||
301 | @rtype: C{tuple} of C{int} values | ||
302 | """ | ||
303 | dim=domain.getDim() | ||
304 | s=() | ||
305 | for i in self.pattern: | ||
306 | if i==self.BY_EQUATION: | ||
307 | jgs | 148 | if numEquations>1: s=s+(numEquations,) |
308 | jgs | 149 | elif i==self.BY_SOLUTION: |
309 | jgs | 148 | if numSolutions>1: s=s+(numSolutions,) |
310 | jgs | 102 | else: |
311 | s=s+(dim,) | ||
312 | jgs | 149 | return s |
313 | jgs | 102 | |
314 | jgs | 151 | class LinearPDE(object): |
315 | jgs | 102 | """ |
316 | jgs | 149 | This class is used to define a general linear, steady, second order PDE |
317 | for an unknown function M{u} on a given domain defined through a L{Domain<escript.Domain>} object. | ||
318 | jgs | 102 | |
319 | jgs | 149 | For a single PDE with a solution with a single component the linear PDE is defined in the following form: |
320 | jgs | 151 | |
321 | jgs | 149 | M{-grad(A[j,l]*grad(u)[l]+B[j]u)[j]+C[l]*grad(u)[l]+D*u =-grad(X)[j,j]+Y} |
322 | jgs | 102 | |
323 | jgs | 151 | where M{grad(F)} denotes the spatial derivative of M{F}. Einstein's summation convention, |
324 | ie. summation over indexes appearing twice in a term of a sum is performed, is used. | ||
325 | The coefficients M{A}, M{B}, M{C}, M{D}, M{X} and M{Y} have to be specified through L{Data<escript.Data>} objects in the | ||
326 | L{Function<escript.Function>} on the PDE or objects that can be converted into such L{Data<escript.Data>} objects. | ||
327 | M{A} is a rank two, M{B}, M{C} and M{X} are rank one and M{D} and M{Y} are scalar. | ||
328 | jgs | 102 | |
329 | jgs | 149 | The following natural boundary conditions are considered: |
330 | jgs | 102 | |
331 | jgs | 149 | M{n[j]*(A[i,j]*grad(u)[l]+B[j]*u)+d*u=n[j]*X[j]+y} |
332 | jgs | 102 | |
333 | jgs | 149 | where M{n} is the outer normal field calculated by L{getNormal<escript.FunctionSpace.getNormal>} of L{FunctionOnBoundary<escript.FunctionOnBoundary>}. |
334 | jgs | 151 | Notice that the coefficients M{A}, M{B} and M{X} are defined in the PDE. The coefficients M{d} and M{y} are |
335 | each a scalar in the L{FunctionOnBoundary<escript.FunctionOnBoundary>}. | ||
336 | jgs | 102 | |
337 | |||
338 | jgs | 149 | Constraints for the solution prescribing the value of the solution at certain locations in the domain. They have the form |
339 | jgs | 102 | |
340 | jgs | 149 | M{u=r} where M{q>0} |
341 | |||
342 | M{r} and M{q} are each scalar where M{q} is the characteristic function defining where the constraint is applied. | ||
343 | The constraints override any other condition set by the PDE or the boundary condition. | ||
344 | jgs | 151 | |
345 | jgs | 149 | The PDE is symmetrical if |
346 | jgs | 151 | |
347 | jgs | 149 | M{A[i,j]=A[j,i]} and M{B[j]=C[j]} |
348 | |||
349 | For a system of PDEs and a solution with several components the PDE has the form | ||
350 | |||
351 | M{-grad(A[i,j,k,l]*grad(u[k])[l]+B[i,j,k]*u[k])[j]+C[i,k,l]*grad(u[k])[l]+D[i,k]*u[k] =-grad(X[i,j])[j]+Y[i] } | ||
352 | |||
353 | jgs | 151 | M{A} is a ramk four, M{B} and M{C} are each a rank three, M{D} and M{X} are each a rank two and M{Y} is a rank one. |
354 | jgs | 149 | The natural boundary conditions take the form: |
355 | |||
356 | M{n[j]*(A[i,j,k,l]*grad(u[k])[l]+B[i,j,k]*u[k])+d[i,k]*u[k]=n[j]*X[i,j]+y[i]} | ||
357 | |||
358 | |||
359 | The coefficient M{d} is a rank two and M{y} is a rank one both in the L{FunctionOnBoundary<escript.FunctionOnBoundary>}. Constraints take the form | ||
360 | |||
361 | |||
362 | M{u[i]=r[i]} where M{q[i]>0} | ||
363 | |||
364 | jgs | 151 | M{r} and M{q} are each rank one. Notice that at some locations not necessarily all components must have a constraint. |
365 | jgs | 149 | |
366 | The system of PDEs is symmetrical if | ||
367 | |||
368 | - M{A[i,j,k,l]=A[k,l,i,j]} | ||
369 | - M{B[i,j,k]=C[k,i,j]} | ||
370 | - M{D[i,k]=D[i,k]} | ||
371 | - M{d[i,k]=d[k,i]} | ||
372 | |||
373 | jgs | 151 | L{LinearPDE} also supports solution discontinuities over a contact region in the domain. To specify the conditions across the |
374 | jgs | 149 | discontinuity we are using the generalised flux M{J} which is in the case of a systems of PDEs and several components of the solution |
375 | jgs | 151 | defined as |
376 | jgs | 149 | |
377 | M{J[i,j]=A[i,j,k,l]*grad(u[k])[l]+B[i,j,k]*u[k]-X[i,j]} | ||
378 | |||
379 | For the case of single solution component and single PDE M{J} is defined | ||
380 | |||
381 | M{J_{j}=A[i,j]*grad(u)[j]+B[i]*u-X[i]} | ||
382 | |||
383 | In the context of discontinuities M{n} denotes the normal on the discontinuity pointing from side 0 towards side 1 | ||
384 | calculated from L{getNormal<escript.FunctionSpace.getNormal>} of L{FunctionOnContactZero<escript.FunctionOnContactZero>}. For a system of PDEs | ||
385 | the contact condition takes the form | ||
386 | |||
387 | M{n[j]*J0[i,j]=n[j]*J1[i,j]=y_contact[i]- d_contact[i,k]*jump(u)[k]} | ||
388 | jgs | 151 | |
389 | jgs | 149 | where M{J0} and M{J1} are the fluxes on side 0 and side 1 of the discontinuity, respectively. M{jump(u)}, which is the difference |
390 | jgs | 151 | of the solution at side 1 and at side 0, denotes the jump of M{u} across discontinuity along the normal calcualted by |
391 | jgs | 149 | L{jump<util.jump>}. |
392 | The coefficient M{d_contact} is a rank two and M{y_contact} is a rank one both in the L{FunctionOnContactZero<escript.FunctionOnContactZero>} or L{FunctionOnContactOne<escript.FunctionOnContactOne>}. | ||
393 | In case of a single PDE and a single component solution the contact condition takes the form | ||
394 | |||
395 | M{n[j]*J0_{j}=n[j]*J1_{j}=y_contact-d_contact*jump(u)} | ||
396 | |||
397 | In this case the the coefficient M{d_contact} and M{y_contact} are eaach scalar | ||
398 | both in the L{FunctionOnContactZero<escript.FunctionOnContactZero>} or L{FunctionOnContactOne<escript.FunctionOnContactOne>}. | ||
399 | |||
400 | jgs | 150 | @cvar DEFAULT: The default method used to solve the system of linear equations |
401 | jgs | 149 | @cvar DIRECT: The direct solver based on LDU factorization |
402 | @cvar CHOLEVSKY: The direct solver based on LDLt factorization (can only be applied for symmetric PDEs) | ||
403 | @cvar PCG: The preconditioned conjugate gradient method (can only be applied for symmetric PDEs) | ||
404 | jgs | 151 | @cvar CR: The conjugate residual method |
405 | jgs | 149 | @cvar CGS: The conjugate gardient square method |
406 | @cvar BICGSTAB: The stabilized BiConjugate Gradient method. | ||
407 | @cvar SSOR: The symmetric overrealaxtion method | ||
408 | @cvar ILU0: The incomplete LU factorization preconditioner with no fill in | ||
409 | @cvar ILUT: The incomplete LU factorization preconditioner with will in | ||
410 | @cvar JACOBI: The Jacobi preconditioner | ||
411 | @cvar GMRES: The Gram-Schmidt minimum residual method | ||
412 | @cvar PRES20: Special GMRES with restart after 20 steps and truncation after 5 residuals | ||
413 | @cvar LUMPING: Matrix lumping. | ||
414 | @cvar NO_REORDERING: No matrix reordering allowed | ||
415 | @cvar MINIMUM_FILL_IN: Reorder matrix to reduce fill-in during factorization | ||
416 | @cvar NESTED_DISSECTION: Reorder matrix to improve load balancing during factorization | ||
417 | jgs | 150 | @cvar PASO: PASO solver package |
418 | @cvar SCSL: SGI SCSL solver library | ||
419 | @cvar MKL: Intel's MKL solver library | ||
420 | jgs | 151 | @cvar UMFPACK: the UMFPACK library |
421 | jgs | 150 | @cvar ITERATIVE: The default iterative solver |
422 | jgs | 149 | |
423 | jgs | 102 | """ |
424 | jgs | 150 | DEFAULT= 0 |
425 | DIRECT= 1 | ||
426 | CHOLEVSKY= 2 | ||
427 | PCG= 3 | ||
428 | CR= 4 | ||
429 | CGS= 5 | ||
430 | BICGSTAB= 6 | ||
431 | SSOR= 7 | ||
432 | ILU0= 8 | ||
433 | ILUT= 9 | ||
434 | JACOBI= 10 | ||
435 | GMRES= 11 | ||
436 | PRES20= 12 | ||
437 | LUMPING= 13 | ||
438 | NO_REORDERING= 17 | ||
439 | MINIMUM_FILL_IN= 18 | ||
440 | NESTED_DISSECTION= 19 | ||
441 | SCSL= 14 | ||
442 | MKL= 15 | ||
443 | UMFPACK= 16 | ||
444 | ITERATIVE= 20 | ||
445 | PASO= 21 | ||
446 | |||
447 | jgs | 149 | __TOL=1.e-13 |
448 | jgs | 150 | __PACKAGE_KEY="package" |
449 | jgs | 149 | __METHOD_KEY="method" |
450 | __SYMMETRY_KEY="symmetric" | ||
451 | __TOLERANCE_KEY="tolerance" | ||
452 | gross | 387 | __PRECONDITIONER_KEY="preconditioner" |
453 | jgs | 102 | |
454 | jgs | 148 | |
455 | def __init__(self,domain,numEquations=None,numSolutions=None,debug=False): | ||
456 | jgs | 102 | """ |
457 | jgs | 148 | initializes a new linear PDE |
458 | jgs | 102 | |
459 | jgs | 148 | @param domain: domain of the PDE |
460 | jgs | 149 | @type domain: L{Domain<escript.Domain>} |
461 | jgs | 148 | @param numEquations: number of equations. If numEquations==None the number of equations |
462 | is exracted from the PDE coefficients. | ||
463 | @param numSolutions: number of solution components. If numSolutions==None the number of solution components | ||
464 | is exracted from the PDE coefficients. | ||
465 | @param debug: if True debug informations are printed. | ||
466 | |||
467 | jgs | 102 | """ |
468 | jgs | 151 | super(LinearPDE, self).__init__() |
469 | jgs | 148 | # |
470 | # the coefficients of the general PDE: | ||
471 | # | ||
472 | self.__COEFFICIENTS_OF_GENEARL_PDE={ | ||
473 | jgs | 149 | "A" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_DIM,PDECoefficient.BY_SOLUTION,PDECoefficient.BY_DIM),PDECoefficient.OPERATOR), |
474 | "B" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_DIM,PDECoefficient.BY_SOLUTION),PDECoefficient.OPERATOR), | ||
475 | "C" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_SOLUTION,PDECoefficient.BY_DIM),PDECoefficient.OPERATOR), | ||
476 | "D" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_SOLUTION),PDECoefficient.OPERATOR), | ||
477 | "X" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_DIM),PDECoefficient.RIGHTHANDSIDE), | ||
478 | "Y" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), | ||
479 | "d" : PDECoefficient(PDECoefficient.BOUNDARY,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_SOLUTION),PDECoefficient.OPERATOR), | ||
480 | "y" : PDECoefficient(PDECoefficient.BOUNDARY,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), | ||
481 | "d_contact" : PDECoefficient(PDECoefficient.CONTACT,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_SOLUTION),PDECoefficient.OPERATOR), | ||
482 | "y_contact" : PDECoefficient(PDECoefficient.CONTACT,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), | ||
483 | "r" : PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_SOLUTION,),PDECoefficient.RIGHTHANDSIDE), | ||
484 | "q" : PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_SOLUTION,),PDECoefficient.BOTH)} | ||
485 | jgs | 102 | |
486 | jgs | 148 | # COEFFICIENTS can be overwritten by subclasses: |
487 | self.COEFFICIENTS=self.__COEFFICIENTS_OF_GENEARL_PDE | ||
488 | jgs | 149 | self.__altered_coefficients=False |
489 | jgs | 102 | # initialize attributes |
490 | jgs | 148 | self.__debug=debug |
491 | jgs | 104 | self.__domain=domain |
492 | self.__numEquations=numEquations | ||
493 | self.__numSolutions=numSolutions | ||
494 | jgs | 148 | self.__resetSystem() |
495 | jgs | 102 | |
496 | # set some default values: | ||
497 | jgs | 149 | self.__reduce_equation_order=False |
498 | self.__reduce_solution_order=False | ||
499 | jgs | 102 | self.__tolerance=1.e-8 |
500 | jgs | 150 | self.__solver_method=self.DEFAULT |
501 | self.__solver_package=self.DEFAULT | ||
502 | gross | 387 | self.__preconditioner=self.DEFAULT |
503 | jgs | 150 | self.__matrix_type=self.__domain.getSystemMatrixTypeId(self.DEFAULT,self.DEFAULT,False) |
504 | jgs | 102 | self.__sym=False |
505 | |||
506 | jgs | 148 | self.resetCoefficients() |
507 | self.trace("PDE Coeffients are %s"%str(self.COEFFICIENTS.keys())) | ||
508 | # ============================================================================= | ||
509 | # general stuff: | ||
510 | # ============================================================================= | ||
511 | def __str__(self): | ||
512 | jgs | 149 | """ |
513 | returns string representation of the PDE | ||
514 | |||
515 | @return: a simple representation of the PDE | ||
516 | @rtype: C{str} | ||
517 | """ | ||
518 | return "<LinearPDE %d>"%id(self) | ||
519 | jgs | 148 | # ============================================================================= |
520 | # debug : | ||
521 | # ============================================================================= | ||
522 | def setDebugOn(self): | ||
523 | jgs | 149 | """ |
524 | jgs | 148 | switches on debugging |
525 | jgs | 108 | """ |
526 | jgs | 148 | self.__debug=not None |
527 | |||
528 | def setDebugOff(self): | ||
529 | jgs | 108 | """ |
530 | jgs | 148 | switches off debugging |
531 | """ | ||
532 | self.__debug=None | ||
533 | jgs | 108 | |
534 | jgs | 148 | def trace(self,text): |
535 | """ | ||
536 | jgs | 149 | print the text message if debugging is swiched on. |
537 | @param text: message | ||
538 | @type text: C{string} | ||
539 | jgs | 102 | """ |
540 | jgs | 148 | if self.__debug: print "%s: %s"%(str(self),text) |
541 | jgs | 102 | |
542 | jgs | 148 | # ============================================================================= |
543 | # some service functions: | ||
544 | # ============================================================================= | ||
545 | def getDomain(self): | ||
546 | jgs | 102 | """ |
547 | jgs | 148 | returns the domain of the PDE |
548 | jgs | 102 | |
549 | jgs | 149 | @return: the domain of the PDE |
550 | @rtype: L{Domain<escript.Domain>} | ||
551 | jgs | 108 | """ |
552 | jgs | 148 | return self.__domain |
553 | jgs | 122 | |
554 | jgs | 148 | def getDim(self): |
555 | jgs | 108 | """ |
556 | jgs | 148 | returns the spatial dimension of the PDE |
557 | jgs | 108 | |
558 | jgs | 149 | @return: the spatial dimension of the PDE domain |
559 | @rtype: C{int} | ||
560 | jgs | 148 | """ |
561 | return self.getDomain().getDim() | ||
562 | jgs | 102 | |
563 | jgs | 148 | def getNumEquations(self): |
564 | """ | ||
565 | returns the number of equations | ||
566 | jgs | 102 | |
567 | jgs | 149 | @return: the number of equations |
568 | @rtype: C{int} | ||
569 | jgs | 148 | @raise UndefinedPDEError: if the number of equations is not be specified yet. |
570 | """ | ||
571 | if self.__numEquations==None: | ||
572 | raise UndefinedPDEError,"Number of equations is undefined. Please specify argument numEquations." | ||
573 | else: | ||
574 | return self.__numEquations | ||
575 | jgs | 147 | |
576 | jgs | 148 | def getNumSolutions(self): |
577 | """ | ||
578 | returns the number of unknowns | ||
579 | jgs | 147 | |
580 | jgs | 149 | @return: the number of unknowns |
581 | @rtype: C{int} | ||
582 | jgs | 148 | @raise UndefinedPDEError: if the number of unknowns is not be specified yet. |
583 | """ | ||
584 | if self.__numSolutions==None: | ||
585 | raise UndefinedPDEError,"Number of solution is undefined. Please specify argument numSolutions." | ||
586 | else: | ||
587 | return self.__numSolutions | ||
588 | |||
589 | jgs | 149 | def reduceEquationOrder(self): |
590 | """ | ||
591 | return status for order reduction for equation | ||
592 | |||
593 | @return: return True is reduced interpolation order is used for the represenation of the equation | ||
594 | @rtype: L{bool} | ||
595 | """ | ||
596 | return self.__reduce_equation_order | ||
597 | |||
598 | def reduceSolutionOrder(self): | ||
599 | """ | ||
600 | return status for order reduction for the solution | ||
601 | |||
602 | @return: return True is reduced interpolation order is used for the represenation of the solution | ||
603 | @rtype: L{bool} | ||
604 | """ | ||
605 | return self.__reduce_solution_order | ||
606 | jgs | 151 | |
607 | jgs | 108 | def getFunctionSpaceForEquation(self): |
608 | """ | ||
609 | jgs | 149 | returns the L{FunctionSpace<escript.FunctionSpace>} used to discretize the equation |
610 | jgs | 148 | |
611 | jgs | 149 | @return: representation space of equation |
612 | @rtype: L{FunctionSpace<escript.FunctionSpace>} | ||
613 | jgs | 108 | """ |
614 | jgs | 149 | if self.reduceEquationOrder(): |
615 | return escript.ReducedSolution(self.getDomain()) | ||
616 | else: | ||
617 | return escript.Solution(self.getDomain()) | ||
618 | jgs | 108 | |
619 | def getFunctionSpaceForSolution(self): | ||
620 | """ | ||
621 | jgs | 149 | returns the L{FunctionSpace<escript.FunctionSpace>} used to represent the solution |
622 | jgs | 148 | |
623 | jgs | 149 | @return: representation space of solution |
624 | @rtype: L{FunctionSpace<escript.FunctionSpace>} | ||
625 | jgs | 108 | """ |
626 | jgs | 149 | if self.reduceSolutionOrder(): |
627 | return escript.ReducedSolution(self.getDomain()) | ||
628 | else: | ||
629 | return escript.Solution(self.getDomain()) | ||
630 | jgs | 108 | |
631 | jgs | 102 | |
632 | jgs | 148 | def getOperator(self): |
633 | jgs | 102 | """ |
634 | jgs | 148 | provides access to the operator of the PDE |
635 | jgs | 102 | |
636 | jgs | 149 | @return: the operator of the PDE |
637 | @rtype: L{Operator<escript.Operator>} | ||
638 | jgs | 108 | """ |
639 | jgs | 148 | m=self.getSystem()[0] |
640 | if self.isUsingLumping(): | ||
641 | return self.copyConstraint(1./m) | ||
642 | jgs | 147 | else: |
643 | jgs | 148 | return m |
644 | jgs | 147 | |
645 | jgs | 148 | def getRightHandSide(self): |
646 | jgs | 147 | """ |
647 | jgs | 148 | provides access to the right hand side of the PDE |
648 | jgs | 149 | @return: the right hand side of the PDE |
649 | @rtype: L{Data<escript.Data>} | ||
650 | jgs | 147 | """ |
651 | jgs | 148 | r=self.getSystem()[1] |
652 | if self.isUsingLumping(): | ||
653 | return self.copyConstraint(r) | ||
654 | jgs | 147 | else: |
655 | jgs | 148 | return r |
656 | jgs | 147 | |
657 | jgs | 148 | def applyOperator(self,u=None): |
658 | jgs | 102 | """ |
659 | jgs | 148 | applies the operator of the PDE to a given u or the solution of PDE if u is not present. |
660 | jgs | 102 | |
661 | jgs | 148 | @param u: argument of the operator. It must be representable in C{elf.getFunctionSpaceForSolution()}. If u is not present or equals L{None} |
662 | the current solution is used. | ||
663 | jgs | 149 | @type u: L{Data<escript.Data>} or None |
664 | @return: image of u | ||
665 | @rtype: L{Data<escript.Data>} | ||
666 | jgs | 102 | """ |
667 | jgs | 149 | if u==None: |
668 | jgs | 148 | return self.getOperator()*self.getSolution() |
669 | jgs | 102 | else: |
670 | jgs | 148 | self.getOperator()*escript.Data(u,self.getFunctionSpaceForSolution()) |
671 | jgs | 102 | |
672 | jgs | 148 | def getResidual(self,u=None): |
673 | jgs | 102 | """ |
674 | jgs | 148 | return the residual of u or the current solution if u is not present. |
675 | jgs | 102 | |
676 | jgs | 148 | @param u: argument in the residual calculation. It must be representable in C{elf.getFunctionSpaceForSolution()}. If u is not present or equals L{None} |
677 | the current solution is used. | ||
678 | jgs | 149 | @type u: L{Data<escript.Data>} or None |
679 | @return: residual of u | ||
680 | @rtype: L{Data<escript.Data>} | ||
681 | jgs | 102 | """ |
682 | jgs | 148 | return self.applyOperator(u)-self.getRightHandSide() |
683 | jgs | 102 | |
684 | jgs | 148 | def checkSymmetry(self,verbose=True): |
685 | """ | ||
686 | test the PDE for symmetry. | ||
687 | jgs | 102 | |
688 | jgs | 149 | @param verbose: if equal to True or not present a report on coefficients which are breaking the symmetry is printed. |
689 | @type verbose: C{bool} | ||
690 | @return: True if the PDE is symmetric. | ||
691 | @rtype: L{Data<escript.Data>} | ||
692 | jgs | 148 | @note: This is a very expensive operation. It should be used for degugging only! The symmetry flag is not altered. |
693 | """ | ||
694 | jgs | 149 | verbose=verbose or self.__debug |
695 | jgs | 148 | out=True |
696 | if self.getNumSolutions()!=self.getNumEquations(): | ||
697 | if verbose: print "non-symmetric PDE because of different number of equations and solutions" | ||
698 | out=False | ||
699 | else: | ||
700 | A=self.getCoefficientOfGeneralPDE("A") | ||
701 | if not A.isEmpty(): | ||
702 | jgs | 149 | tol=util.Lsup(A)*self.__TOL |
703 | jgs | 148 | if self.getNumSolutions()>1: |
704 | for i in range(self.getNumEquations()): | ||
705 | for j in range(self.getDim()): | ||
706 | for k in range(self.getNumSolutions()): | ||
707 | for l in range(self.getDim()): | ||
708 | if util.Lsup(A[i,j,k,l]-A[k,l,i,j])>tol: | ||
709 | if verbose: print "non-symmetric PDE because A[%d,%d,%d,%d]!=A[%d,%d,%d,%d]"%(i,j,k,l,k,l,i,j) | ||
710 | out=False | ||
711 | else: | ||
712 | for j in range(self.getDim()): | ||
713 | for l in range(self.getDim()): | ||
714 | if util.Lsup(A[j,l]-A[l,j])>tol: | ||
715 | if verbose: print "non-symmetric PDE because A[%d,%d]!=A[%d,%d]"%(j,l,l,j) | ||
716 | out=False | ||
717 | B=self.getCoefficientOfGeneralPDE("B") | ||
718 | C=self.getCoefficientOfGeneralPDE("C") | ||
719 | if B.isEmpty() and not C.isEmpty(): | ||
720 | if verbose: print "non-symmetric PDE because B is not present but C is" | ||
721 | out=False | ||
722 | elif not B.isEmpty() and C.isEmpty(): | ||
723 | if verbose: print "non-symmetric PDE because C is not present but B is" | ||
724 | out=False | ||
725 | elif not B.isEmpty() and not C.isEmpty(): | ||
726 | jgs | 149 | tol=(util.Lsup(B)+util.Lsup(C))*self.__TOL/2. |
727 | jgs | 148 | if self.getNumSolutions()>1: |
728 | for i in range(self.getNumEquations()): | ||
729 | for j in range(self.getDim()): | ||
730 | for k in range(self.getNumSolutions()): | ||
731 | if util.Lsup(B[i,j,k]-C[k,i,j])>tol: | ||
732 | if verbose: print "non-symmetric PDE because B[%d,%d,%d]!=C[%d,%d,%d]"%(i,j,k,k,i,j) | ||
733 | out=False | ||
734 | else: | ||
735 | for j in range(self.getDim()): | ||
736 | if util.Lsup(B[j]-C[j])>tol: | ||
737 | if verbose: print "non-symmetric PDE because B[%d]!=C[%d]"%(j,j) | ||
738 | out=False | ||
739 | if self.getNumSolutions()>1: | ||
740 | D=self.getCoefficientOfGeneralPDE("D") | ||
741 | if not D.isEmpty(): | ||
742 | jgs | 149 | tol=util.Lsup(D)*self.__TOL |
743 | jgs | 148 | for i in range(self.getNumEquations()): |
744 | for k in range(self.getNumSolutions()): | ||
745 | if util.Lsup(D[i,k]-D[k,i])>tol: | ||
746 | if verbose: print "non-symmetric PDE because D[%d,%d]!=D[%d,%d]"%(i,k,k,i) | ||
747 | out=False | ||
748 | jgs | 149 | d=self.getCoefficientOfGeneralPDE("d") |
749 | if not d.isEmpty(): | ||
750 | tol=util.Lsup(d)*self.__TOL | ||
751 | for i in range(self.getNumEquations()): | ||
752 | for k in range(self.getNumSolutions()): | ||
753 | if util.Lsup(d[i,k]-d[k,i])>tol: | ||
754 | if verbose: print "non-symmetric PDE because d[%d,%d]!=d[%d,%d]"%(i,k,k,i) | ||
755 | out=False | ||
756 | d_contact=self.getCoefficientOfGeneralPDE("d_contact") | ||
757 | if not d_contact.isEmpty(): | ||
758 | tol=util.Lsup(d_contact)*self.__TOL | ||
759 | for i in range(self.getNumEquations()): | ||
760 | for k in range(self.getNumSolutions()): | ||
761 | if util.Lsup(d_contact[i,k]-d_contact[k,i])>tol: | ||
762 | if verbose: print "non-symmetric PDE because d_contact[%d,%d]!=d_contact[%d,%d]"%(i,k,k,i) | ||
763 | out=False | ||
764 | jgs | 148 | return out |
765 | |||
766 | def getSolution(self,**options): | ||
767 | jgs | 102 | """ |
768 | jgs | 149 | returns the solution of the PDE. If the solution is not valid the PDE is solved. |
769 | jgs | 102 | |
770 | jgs | 148 | @return: the solution |
771 | jgs | 149 | @rtype: L{Data<escript.Data>} |
772 | jgs | 148 | @param options: solver options |
773 | jgs | 149 | @keyword verbose: True to get some information during PDE solution |
774 | @type verbose: C{bool} | ||
775 | @keyword reordering: reordering scheme to be used during elimination. Allowed values are | ||
776 | L{NO_REORDERING}, L{MINIMUM_FILL_IN}, L{NESTED_DISSECTION} | ||
777 | jgs | 148 | @keyword iter_max: maximum number of iteration steps allowed. |
778 | jgs | 149 | @keyword drop_tolerance: threshold for drupping in L{ILUT} |
779 | @keyword drop_storage: maximum of allowed memory in L{ILUT} | ||
780 | @keyword truncation: maximum number of residuals in L{GMRES} | ||
781 | @keyword restart: restart cycle length in L{GMRES} | ||
782 | jgs | 102 | """ |
783 | jgs | 148 | if not self.__solution_isValid: |
784 | mat,f=self.getSystem() | ||
785 | if self.isUsingLumping(): | ||
786 | self.__solution=self.copyConstraint(f*mat) | ||
787 | else: | ||
788 | jgs | 149 | options[self.__TOLERANCE_KEY]=self.getTolerance() |
789 | gross | 387 | options[self.__METHOD_KEY]=self.getSolverMethod()[0] |
790 | options[self.__PRECONDITIONER_KEY]=self.getSolverMethod()[1] | ||
791 | jgs | 150 | options[self.__PACKAGE_KEY]=self.getSolverPackage() |
792 | jgs | 149 | options[self.__SYMMETRY_KEY]=self.isSymmetric() |
793 | jgs | 148 | self.trace("PDE is resolved.") |
794 | self.trace("solver options: %s"%str(options)) | ||
795 | self.__solution=mat.solve(f,options) | ||
796 | self.__solution_isValid=True | ||
797 | return self.__solution | ||
798 | jgs | 102 | |
799 | jgs | 148 | def getFlux(self,u=None): |
800 | """ | ||
801 | jgs | 149 | returns the flux M{J} for a given M{u} |
802 | jgs | 102 | |
803 | jgs | 149 | M{J[i,j]=A[i,j,k,l]*grad(u[k])[l]+B[i,j,k]u[k]-X[i,j]} |
804 | jgs | 102 | |
805 | jgs | 151 | or |
806 | jgs | 149 | |
807 | M{J[j]=A[i,j]*grad(u)[l]+B[j]u-X[j]} | ||
808 | |||
809 | jgs | 148 | @param u: argument in the flux. If u is not present or equals L{None} the current solution is used. |
810 | jgs | 149 | @type u: L{Data<escript.Data>} or None |
811 | @return: flux | ||
812 | @rtype: L{Data<escript.Data>} | ||
813 | jgs | 148 | """ |
814 | if u==None: u=self.getSolution() | ||
815 | return util.tensormult(self.getCoefficientOfGeneralPDE("A"),util.grad(u))+util.matrixmult(self.getCoefficientOfGeneralPDE("B"),u)-util.self.getCoefficientOfGeneralPDE("X") | ||
816 | # ============================================================================= | ||
817 | # solver settings: | ||
818 | # ============================================================================= | ||
819 | gross | 387 | def setSolverMethod(self,solver=None,preconditioner=None): |
820 | jgs | 102 | """ |
821 | jgs | 122 | sets a new solver |
822 | jgs | 148 | |
823 | jgs | 149 | @param solver: sets a new solver method. |
824 | jgs | 150 | @type solver: one of L{DEFAULT}, L{ITERATIVE} L{DIRECT}, L{CHOLEVSKY}, L{PCG}, L{CR}, L{CGS}, L{BICGSTAB}, L{SSOR}, L{GMRES}, L{PRES20}, L{LUMPING}. |
825 | gross | 387 | @param preconditioner: sets a new solver method. |
826 | @type solver: one of L{DEFAULT}, L{JACOBI} L{ILU0}, L{ILUT},L{SSOR} | ||
827 | jgs | 102 | """ |
828 | jgs | 150 | if solver==None: solve=self.DEFAULT |
829 | gross | 387 | if preconditioner==None: preconditioner=self.DEFAULT |
830 | if not (solver,preconditioner)==self.getSolverMethod(): | ||
831 | jgs | 102 | self.__solver_method=solver |
832 | gross | 387 | self.__preconditioner=preconditioner |
833 | jgs | 102 | self.__checkMatrixType() |
834 | jgs | 148 | self.trace("New solver is %s"%self.getSolverMethodName()) |
835 | jgs | 102 | |
836 | jgs | 148 | def getSolverMethodName(self): |
837 | """ | ||
838 | returns the name of the solver currently used | ||
839 | |||
840 | jgs | 149 | @return: the name of the solver currently used. |
841 | jgs | 148 | @rtype: C{string} |
842 | """ | ||
843 | |||
844 | m=self.getSolverMethod() | ||
845 | jgs | 150 | p=self.getSolverPackage() |
846 | gross | 387 | if m[0]==self.DEFAULT: method="DEFAULT" |
847 | elif m[0]==self.DIRECT: method= "DIRECT" | ||
848 | elif m[0]==self.ITERATIVE: method= "ITERATIVE" | ||
849 | elif m[0]==self.CHOLEVSKY: method= "CHOLEVSKY" | ||
850 | elif m[0]==self.PCG: method= "PCG" | ||
851 | elif m[0]==self.CR: method= "CR" | ||
852 | elif m[0]==self.CGS: method= "CGS" | ||
853 | elif m[0]==self.BICGSTAB: method= "BICGSTAB" | ||
854 | elif m[0]==self.SSOR: method= "SSOR" | ||
855 | elif m[0]==self.GMRES: method= "GMRES" | ||
856 | elif m[0]==self.PRES20: method= "PRES20" | ||
857 | elif m[0]==self.LUMPING: method= "LUMPING" | ||
858 | jgs | 150 | else : method="unknown" |
859 | gross | 387 | if m[1]==self.DEFAULT: method+="DEFAULT" |
860 | elif m[1]==self.JACOBI: method+= "JACOBI" | ||
861 | elif m[1]==self.ILU0: method+= "ILU0" | ||
862 | elif m[1]==self.ILUT: method+= "ILUT" | ||
863 | elif m[1]==self.SSOR: method+= "SSOR" | ||
864 | else : method+="unknown" | ||
865 | jgs | 150 | if p==self.DEFAULT: package="DEFAULT" |
866 | elif p==self.PASO: package= "PASO" | ||
867 | elif p==self.MKL: package= "MKL" | ||
868 | elif p==self.SCSL: package= "SCSL" | ||
869 | elif p==self.UMFPACK: package= "UMFPACK" | ||
870 | else : method="unknown" | ||
871 | return "%s solver of %s package"%(method,package) | ||
872 | jgs | 148 | |
873 | jgs | 149 | |
874 | jgs | 102 | def getSolverMethod(self): |
875 | """ | ||
876 | jgs | 122 | returns the solver method |
877 | jgs | 149 | |
878 | jgs | 151 | @return: the solver method currently be used. |
879 | jgs | 149 | @rtype: C{int} |
880 | jgs | 102 | """ |
881 | gross | 387 | return self.__solver_method,self.__preconditioner |
882 | jgs | 102 | |
883 | jgs | 150 | def setSolverPackage(self,package=None): |
884 | """ | ||
885 | sets a new solver package | ||
886 | |||
887 | @param solver: sets a new solver method. | ||
888 | @type solver: one of L{DEFAULT}, L{PASO} L{SCSL}, L{MKL}, L{UMLPACK} | ||
889 | """ | ||
890 | if package==None: package=self.DEFAULT | ||
891 | if not package==self.getSolverPackage(): | ||
892 | self.__solver_method=solver | ||
893 | self.__checkMatrixType() | ||
894 | self.trace("New solver is %s"%self.getSolverMethodName()) | ||
895 | |||
896 | def getSolverPackage(self): | ||
897 | """ | ||
898 | returns the package of the solver | ||
899 | |||
900 | jgs | 151 | @return: the solver package currently being used. |
901 | jgs | 150 | @rtype: C{int} |
902 | """ | ||
903 | return self.__solver_package | ||
904 | |||
905 | jgs | 148 | def isUsingLumping(self): |
906 | """ | ||
907 | checks if matrix lumping is used a solver method | ||
908 | |||
909 | jgs | 149 | @return: True is lumping is currently used a solver method. |
910 | jgs | 148 | @rtype: C{bool} |
911 | """ | ||
912 | gross | 387 | return self.getSolverMethod()[0]==self.LUMPING |
913 | jgs | 148 | |
914 | jgs | 102 | def setTolerance(self,tol=1.e-8): |
915 | """ | ||
916 | jgs | 149 | resets the tolerance for the solver method to tol where for an appropriate norm M{|.|} |
917 | jgs | 148 | |
918 | jgs | 149 | M{|L{getResidual}()|<tol*|L{getRightHandSide}()|} |
919 | jgs | 148 | |
920 | jgs | 149 | defines the stopping criterion. |
921 | jgs | 148 | |
922 | @param tol: new tolerance for the solver. If the tol is lower then the current tolerence | ||
923 | the system will be resolved. | ||
924 | jgs | 149 | @type tol: positive C{float} |
925 | jgs | 148 | @raise ValueException: if tolerance is not positive. |
926 | jgs | 102 | """ |
927 | if not tol>0: | ||
928 | raise ValueException,"Tolerance as to be positive" | ||
929 | jgs | 148 | if tol<self.getTolerance(): self.__invalidateSolution() |
930 | self.trace("New tolerance %e"%tol) | ||
931 | jgs | 102 | self.__tolerance=tol |
932 | return | ||
933 | jgs | 148 | |
934 | jgs | 102 | def getTolerance(self): |
935 | """ | ||
936 | jgs | 122 | returns the tolerance set for the solution |
937 | jgs | 148 | |
938 | @return: tolerance currently used. | ||
939 | @rtype: C{float} | ||
940 | jgs | 102 | """ |
941 | return self.__tolerance | ||
942 | |||
943 | jgs | 148 | # ============================================================================= |
944 | # symmetry flag: | ||
945 | # ============================================================================= | ||
946 | jgs | 102 | def isSymmetric(self): |
947 | """ | ||
948 | jgs | 148 | checks if symmetry is indicated. |
949 | jgs | 149 | |
950 | @return: True is a symmetric PDE is indicated, otherwise False is returned | ||
951 | @rtype: C{bool} | ||
952 | jgs | 102 | """ |
953 | return self.__sym | ||
954 | |||
955 | def setSymmetryOn(self): | ||
956 | """ | ||
957 | jgs | 148 | sets the symmetry flag. |
958 | jgs | 102 | """ |
959 | if not self.isSymmetric(): | ||
960 | jgs | 148 | self.trace("PDE is set to be symmetric") |
961 | jgs | 102 | self.__sym=True |
962 | self.__checkMatrixType() | ||
963 | |||
964 | def setSymmetryOff(self): | ||
965 | """ | ||
966 | jgs | 148 | removes the symmetry flag. |
967 | jgs | 102 | """ |
968 | if self.isSymmetric(): | ||
969 | jgs | 148 | self.trace("PDE is set to be unsymmetric") |
970 | jgs | 102 | self.__sym=False |
971 | self.__checkMatrixType() | ||
972 | |||
973 | def setSymmetryTo(self,flag=False): | ||
974 | jgs | 148 | """ |
975 | sets the symmetry flag to flag | ||
976 | jgs | 149 | |
977 | jgs | 148 | @param flag: If flag, the symmetry flag is set otherwise the symmetry flag is released. |
978 | @type flag: C{bool} | ||
979 | """ | ||
980 | if flag: | ||
981 | self.setSymmetryOn() | ||
982 | else: | ||
983 | self.setSymmetryOff() | ||
984 | jgs | 102 | |
985 | jgs | 148 | # ============================================================================= |
986 | # function space handling for the equation as well as the solution | ||
987 | # ============================================================================= | ||
988 | jgs | 102 | def setReducedOrderOn(self): |
989 | """ | ||
990 | jgs | 148 | switches on reduced order for solution and equation representation |
991 | jgs | 149 | |
992 | @raise RuntimeError: if order reduction is altered after a coefficient has been set. | ||
993 | jgs | 102 | """ |
994 | self.setReducedOrderForSolutionOn() | ||
995 | self.setReducedOrderForEquationOn() | ||
996 | |||
997 | def setReducedOrderOff(self): | ||
998 | """ | ||
999 | jgs | 148 | switches off reduced order for solution and equation representation |
1000 | jgs | 149 | |
1001 | @raise RuntimeError: if order reduction is altered after a coefficient has been set. | ||
1002 | jgs | 102 | """ |
1003 | self.setReducedOrderForSolutionOff() | ||
1004 | self.setReducedOrderForEquationOff() | ||
1005 | |||
1006 | def setReducedOrderTo(self,flag=False): | ||
1007 | """ | ||
1008 | jgs | 149 | sets order reduction for both solution and equation representation according to flag. |
1009 | @param flag: if flag is True, the order reduction is switched on for both solution and equation representation, otherwise or | ||
1010 | jgs | 148 | if flag is not present order reduction is switched off |
1011 | @type flag: C{bool} | ||
1012 | jgs | 149 | @raise RuntimeError: if order reduction is altered after a coefficient has been set. |
1013 | jgs | 102 | """ |
1014 | self.setReducedOrderForSolutionTo(flag) | ||
1015 | self.setReducedOrderForEquationTo(flag) | ||
1016 | |||
1017 | jgs | 148 | |
1018 | jgs | 102 | def setReducedOrderForSolutionOn(self): |
1019 | """ | ||
1020 | jgs | 148 | switches on reduced order for solution representation |
1021 | jgs | 149 | |
1022 | @raise RuntimeError: if order reduction is altered after a coefficient has been set. | ||
1023 | jgs | 102 | """ |
1024 | jgs | 149 | if not self.__reduce_solution_order: |
1025 | if self.__altered_coefficients: | ||
1026 | raise RuntimeError,"order cannot be altered after coefficients have been defined." | ||
1027 | jgs | 148 | self.trace("Reduced order is used to solution representation.") |
1028 | jgs | 149 | self.__reduce_solution_order=True |
1029 | jgs | 148 | self.__resetSystem() |
1030 | jgs | 102 | |
1031 | def setReducedOrderForSolutionOff(self): | ||
1032 | """ | ||
1033 | jgs | 148 | switches off reduced order for solution representation |
1034 | jgs | 149 | |
1035 | @raise RuntimeError: if order reduction is altered after a coefficient has been set. | ||
1036 | jgs | 102 | """ |
1037 | jgs | 149 | if self.__reduce_solution_order: |
1038 | if self.__altered_coefficients: | ||
1039 | raise RuntimeError,"order cannot be altered after coefficients have been defined." | ||
1040 | jgs | 148 | self.trace("Full order is used to interpolate solution.") |
1041 | jgs | 149 | self.__reduce_solution_order=False |
1042 | jgs | 148 | self.__resetSystem() |
1043 | jgs | 102 | |
1044 | def setReducedOrderForSolutionTo(self,flag=False): | ||
1045 | """ | ||
1046 | jgs | 122 | sets order for test functions according to flag |
1047 | jgs | 102 | |
1048 | jgs | 149 | @param flag: if flag is True, the order reduction is switched on for solution representation, otherwise or |
1049 | jgs | 148 | if flag is not present order reduction is switched off |
1050 | @type flag: C{bool} | ||
1051 | jgs | 149 | @raise RuntimeError: if order reduction is altered after a coefficient has been set. |
1052 | jgs | 102 | """ |
1053 | if flag: | ||
1054 | self.setReducedOrderForSolutionOn() | ||
1055 | else: | ||
1056 | self.setReducedOrderForSolutionOff() | ||
1057 | jgs | 148 | |
1058 | jgs | 102 | def setReducedOrderForEquationOn(self): |
1059 | """ | ||
1060 | jgs | 148 | switches on reduced order for equation representation |
1061 | jgs | 149 | |
1062 | @raise RuntimeError: if order reduction is altered after a coefficient has been set. | ||
1063 | jgs | 102 | """ |
1064 | jgs | 149 | if not self.__reduce_equation_order: |
1065 | if self.__altered_coefficients: | ||
1066 | raise RuntimeError,"order cannot be altered after coefficients have been defined." | ||
1067 | jgs | 148 | self.trace("Reduced order is used for test functions.") |
1068 | jgs | 149 | self.__reduce_equation_order=True |
1069 | jgs | 148 | self.__resetSystem() |
1070 | jgs | 102 | |
1071 | def setReducedOrderForEquationOff(self): | ||
1072 | """ | ||
1073 | jgs | 148 | switches off reduced order for equation representation |
1074 | jgs | 149 | |
1075 | @raise RuntimeError: if order reduction is altered after a coefficient has been set. | ||
1076 | jgs | 102 | """ |
1077 | jgs | 149 | if self.__reduce_equation_order: |
1078 | if self.__altered_coefficients: | ||
1079 | raise RuntimeError,"order cannot be altered after coefficients have been defined." | ||
1080 | jgs | 148 | self.trace("Full order is used for test functions.") |
1081 | jgs | 149 | self.__reduce_equation_order=False |
1082 | jgs | 148 | self.__resetSystem() |
1083 | jgs | 102 | |
1084 | def setReducedOrderForEquationTo(self,flag=False): | ||
1085 | """ | ||
1086 | jgs | 122 | sets order for test functions according to flag |
1087 | jgs | 102 | |
1088 | jgs | 149 | @param flag: if flag is True, the order reduction is switched on for equation representation, otherwise or |
1089 | jgs | 148 | if flag is not present order reduction is switched off |
1090 | @type flag: C{bool} | ||
1091 | jgs | 149 | @raise RuntimeError: if order reduction is altered after a coefficient has been set. |
1092 | jgs | 102 | """ |
1093 | if flag: | ||
1094 | self.setReducedOrderForEquationOn() | ||
1095 | else: | ||
1096 | self.setReducedOrderForEquationOff() | ||
1097 | jgs | 148 | |
1098 | # ============================================================================= | ||
1099 | # private method: | ||
1100 | # ============================================================================= | ||
1101 | def __checkMatrixType(self): | ||
1102 | """ | ||
1103 | reassess the matrix type and, if a new matrix is needed, resets the system. | ||
1104 | """ | ||
1105 | gross | 387 | new_matrix_type=self.getDomain().getSystemMatrixTypeId(self.getSolverMethod()[0],self.getSolverPackage(),self.isSymmetric()) |
1106 | jgs | 148 | if not new_matrix_type==self.__matrix_type: |
1107 | self.trace("Matrix type is now %d."%new_matrix_type) | ||
1108 | self.__matrix_type=new_matrix_type | ||
1109 | self.__resetSystem() | ||
1110 | jgs | 149 | # |
1111 | jgs | 148 | # rebuild switches : |
1112 | jgs | 149 | # |
1113 | jgs | 148 | def __invalidateSolution(self): |
1114 | """ | ||
1115 | indicates the PDE has to be resolved if the solution is requested | ||
1116 | """ | ||
1117 | if self.__solution_isValid: self.trace("PDE has to be resolved.") | ||
1118 | self.__solution_isValid=False | ||
1119 | |||
1120 | def __invalidateOperator(self): | ||
1121 | """ | ||
1122 | indicates the operator has to be rebuilt next time it is used | ||
1123 | """ | ||
1124 | jgs | 149 | if self.__operator_is_Valid: self.trace("Operator has to be rebuilt.") |
1125 | jgs | 148 | self.__invalidateSolution() |
1126 | jgs | 149 | self.__operator_is_Valid=False |
1127 | jgs | 148 | |
1128 | def __invalidateRightHandSide(self): | ||
1129 | """ | ||
1130 | indicates the right hand side has to be rebuild next time it is used | ||
1131 | """ | ||
1132 | if self.__righthandside_isValid: self.trace("Right hand side has to be rebuilt.") | ||
1133 | self.__invalidateSolution() | ||
1134 | self.__righthandside_isValid=False | ||
1135 | |||
1136 | def __invalidateSystem(self): | ||
1137 | """ | ||
1138 | annonced that everthing has to be rebuild: | ||
1139 | """ | ||
1140 | if self.__righthandside_isValid: self.trace("System has to be rebuilt.") | ||
1141 | self.__invalidateSolution() | ||
1142 | self.__invalidateOperator() | ||
1143 | self.__invalidateRightHandSide() | ||
1144 | |||
1145 | def __resetSystem(self): | ||
1146 | """ | ||
1147 | annonced that everthing has to be rebuild: | ||
1148 | """ | ||
1149 | self.trace("New System is built from scratch.") | ||
1150 | self.__operator=escript.Operator() | ||
1151 | jgs | 149 | self.__operator_is_Valid=False |
1152 | jgs | 148 | self.__righthandside=escript.Data() |
1153 | self.__righthandside_isValid=False | ||
1154 | self.__solution=escript.Data() | ||
1155 | self.__solution_isValid=False | ||
1156 | jgs | 149 | # |
1157 | jgs | 148 | # system initialization: |
1158 | jgs | 149 | # |
1159 | jgs | 121 | def __getNewOperator(self): |
1160 | jgs | 102 | """ |
1161 | jgs | 148 | returns an instance of a new operator |
1162 | jgs | 102 | """ |
1163 | jgs | 148 | self.trace("New operator is allocated.") |
1164 | jgs | 102 | return self.getDomain().newOperator( \ |
1165 | self.getNumEquations(), \ | ||
1166 | self.getFunctionSpaceForEquation(), \ | ||
1167 | self.getNumSolutions(), \ | ||
1168 | self.getFunctionSpaceForSolution(), \ | ||
1169 | self.__matrix_type) | ||
1170 | |||
1171 | jgs | 148 | def __getNewRightHandSide(self): |
1172 | jgs | 102 | """ |
1173 | jgs | 148 | returns an instance of a new right hand side |
1174 | jgs | 102 | """ |
1175 | jgs | 148 | self.trace("New right hand side is allocated.") |
1176 | jgs | 121 | if self.getNumEquations()>1: |
1177 | jgs | 148 | return escript.Data(0.,(self.getNumEquations(),),self.getFunctionSpaceForEquation(),True) |
1178 | jgs | 121 | else: |
1179 | jgs | 148 | return escript.Data(0.,(),self.getFunctionSpaceForEquation(),True) |
1180 | jgs | 102 | |
1181 | jgs | 121 | def __getNewSolution(self): |
1182 | jgs | 102 | """ |
1183 | jgs | 148 | returns an instance of a new solution |
1184 | jgs | 102 | """ |
1185 | jgs | 148 | self.trace("New solution is allocated.") |
1186 | jgs | 121 | if self.getNumSolutions()>1: |
1187 | return escript.Data(0.,(self.getNumSolutions(),),self.getFunctionSpaceForSolution(),True) | ||
1188 | else: | ||
1189 | return escript.Data(0.,(),self.getFunctionSpaceForSolution(),True) | ||
1190 | jgs | 102 | |
1191 | jgs | 148 | def __makeFreshSolution(self): |
1192 | """ | ||
1193 | makes sure that the solution is instantiated and returns it initialized by zeros | ||
1194 | """ | ||
1195 | if self.__solution.isEmpty(): | ||
1196 | self.__solution=self.__getNewSolution() | ||
1197 | else: | ||
1198 | self.__solution*=0 | ||
1199 | self.trace("Solution is reset to zero.") | ||
1200 | return self.__solution | ||
1201 | |||
1202 | def __makeFreshRightHandSide(self): | ||
1203 | """ | ||
1204 | makes sure that the right hand side is instantiated and returns it initialized by zeros | ||
1205 | """ | ||
1206 | if self.__righthandside.isEmpty(): | ||
1207 | self.__righthandside=self.__getNewRightHandSide() | ||
1208 | else: | ||
1209 | self.__righthandside*=0 | ||
1210 | self.trace("Right hand side is reset to zero.") | ||
1211 | return self.__righthandside | ||
1212 | |||
1213 | jgs | 121 | def __makeFreshOperator(self): |
1214 | jgs | 102 | """ |
1215 | jgs | 148 | makes sure that the operator is instantiated and returns it initialized by zeros |
1216 | jgs | 102 | """ |
1217 | if self.__operator.isEmpty(): | ||
1218 | jgs | 121 | self.__operator=self.__getNewOperator() |
1219 | jgs | 102 | else: |
1220 | jgs | 149 | self.__operator.resetValues() |
1221 | jgs | 148 | self.trace("Operator reset to zero") |
1222 | jgs | 102 | return self.__operator |
1223 | |||
1224 | jgs | 148 | def __applyConstraint(self): |
1225 | """ | ||
1226 | applies the constraints defined by q and r to the system | ||
1227 | """ | ||
1228 | if not self.isUsingLumping(): | ||
1229 | q=self.getCoefficientOfGeneralPDE("q") | ||
1230 | r=self.getCoefficientOfGeneralPDE("r") | ||
1231 | if not q.isEmpty() and not self.__operator.isEmpty(): | ||
1232 | # q is the row and column mask to indicate where constraints are set: | ||
1233 | row_q=escript.Data(q,self.getFunctionSpaceForEquation()) | ||
1234 | col_q=escript.Data(q,self.getFunctionSpaceForSolution()) | ||
1235 | u=self.__getNewSolution() | ||
1236 | if r.isEmpty(): | ||
1237 | r_s=self.__getNewSolution() | ||
1238 | else: | ||
1239 | r_s=escript.Data(r,self.getFunctionSpaceForSolution()) | ||
1240 | u.copyWithMask(r_s,col_q) | ||
1241 | jgs | 149 | if not self.__righthandside.isEmpty(): |
1242 | jgs | 148 | self.__righthandside-=self.__operator*u |
1243 | self.__righthandside=self.copyConstraint(self.__righthandside) | ||
1244 | self.__operator.nullifyRowsAndCols(row_q,col_q,1.) | ||
1245 | # ============================================================================= | ||
1246 | # function giving access to coefficients of the general PDE: | ||
1247 | # ============================================================================= | ||
1248 | def getCoefficientOfGeneralPDE(self,name): | ||
1249 | jgs | 108 | """ |
1250 | jgs | 148 | return the value of the coefficient name of the general PDE. |
1251 | |||
1252 | jgs | 149 | @note: This method is called by the assembling routine it can be overwritten |
1253 | jgs | 148 | to map coefficients of a particular PDE to the general PDE. |
1254 | jgs | 149 | @param name: name of the coefficient requested. |
1255 | jgs | 148 | @type name: C{string} |
1256 | jgs | 149 | @return: the value of the coefficient name |
1257 | @rtype: L{Data<escript.Data>} | ||
1258 | jgs | 148 | @raise IllegalCoefficient: if name is not one of coefficients |
1259 | jgs | 149 | M{A}, M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. |
1260 | jgs | 108 | """ |
1261 | jgs | 148 | if self.hasCoefficientOfGeneralPDE(name): |
1262 | return self.getCoefficient(name) | ||
1263 | else: | ||
1264 | raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name | ||
1265 | jgs | 108 | |
1266 | jgs | 148 | def hasCoefficientOfGeneralPDE(self,name): |
1267 | jgs | 108 | """ |
1268 | jgs | 148 | checks if name is a the name of a coefficient of the general PDE. |
1269 | jgs | 149 | |
1270 | jgs | 148 | @param name: name of the coefficient enquired. |
1271 | @type name: C{string} | ||
1272 | jgs | 149 | @return: True if name is the name of a coefficient of the general PDE. Otherwise False. |
1273 | @rtype: C{bool} | ||
1274 | |||
1275 | jgs | 108 | """ |
1276 | jgs | 148 | return self.__COEFFICIENTS_OF_GENEARL_PDE.has_key(name) |
1277 | jgs | 108 | |
1278 | jgs | 148 | def createCoefficientOfGeneralPDE(self,name): |
1279 | jgs | 108 | """ |
1280 | jgs | 148 | returns a new instance of a coefficient for coefficient name of the general PDE |
1281 | |||
1282 | @param name: name of the coefficient requested. | ||
1283 | @type name: C{string} | ||
1284 | jgs | 149 | @return: a coefficient name initialized to 0. |
1285 | @rtype: L{Data<escript.Data>} | ||
1286 | jgs | 148 | @raise IllegalCoefficient: if name is not one of coefficients |
1287 | jgs | 149 | M{A}, M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. |
1288 | jgs | 108 | """ |
1289 | jgs | 148 | if self.hasCoefficientOfGeneralPDE(name): |
1290 | return escript.Data(0,self.getShapeOfCoefficientOfGeneralPDE(name),self.getFunctionSpaceForCoefficientOfGeneralPDE(name)) | ||
1291 | jgs | 108 | else: |
1292 | jgs | 148 | raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name |
1293 | jgs | 108 | |
1294 | jgs | 148 | def getFunctionSpaceForCoefficientOfGeneralPDE(self,name): |
1295 | jgs | 108 | """ |
1296 | jgs | 149 | return the L{FunctionSpace<escript.FunctionSpace>} to be used for coefficient name of the general PDE |
1297 | jgs | 148 | |
1298 | @param name: name of the coefficient enquired. | ||
1299 | @type name: C{string} | ||
1300 | jgs | 149 | @return: the function space to be used for coefficient name |
1301 | @rtype: L{FunctionSpace<escript.FunctionSpace>} | ||
1302 | jgs | 148 | @raise IllegalCoefficient: if name is not one of coefficients |
1303 | jgs | 149 | M{A}, M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. |
1304 | jgs | 108 | """ |
1305 | jgs | 148 | if self.hasCoefficientOfGeneralPDE(name): |
1306 | return self.__COEFFICIENTS_OF_GENEARL_PDE[name].getFunctionSpace(self.getDomain()) | ||
1307 | jgs | 108 | else: |
1308 | jgs | 148 | raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name |
1309 | jgs | 108 | |
1310 | jgs | 148 | def getShapeOfCoefficientOfGeneralPDE(self,name): |
1311 | """ | ||
1312 | return the shape of the coefficient name of the general PDE | ||
1313 | jgs | 108 | |
1314 | jgs | 148 | @param name: name of the coefficient enquired. |
1315 | @type name: C{string} | ||
1316 | jgs | 149 | @return: the shape of the coefficient name |
1317 | @rtype: C{tuple} of C{int} | ||
1318 | jgs | 148 | @raise IllegalCoefficient: if name is not one of coefficients |
1319 | jgs | 149 | M{A}, M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. |
1320 | jgs | 148 | """ |
1321 | if self.hasCoefficientOfGeneralPDE(name): | ||
1322 | return self.__COEFFICIENTS_OF_GENEARL_PDE[name].getShape(self.getDomain(),self.getNumEquations(),self.getNumSolutions()) | ||
1323 | else: | ||
1324 | raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name | ||
1325 | jgs | 108 | |
1326 | jgs | 148 | # ============================================================================= |
1327 | # functions giving access to coefficients of a particular PDE implementation: | ||
1328 | # ============================================================================= | ||
1329 | def getCoefficient(self,name): | ||
1330 | """ | ||
1331 | returns the value of the coefficient name | ||
1332 | jgs | 108 | |
1333 | jgs | 149 | @param name: name of the coefficient requested. |
1334 | jgs | 148 | @type name: C{string} |
1335 | jgs | 149 | @return: the value of the coefficient name |
1336 | @rtype: L{Data<escript.Data>} | ||
1337 | jgs | 148 | @raise IllegalCoefficient: if name is not a coefficient of the PDE. |
1338 | """ | ||
1339 | if self.hasCoefficient(name): | ||
1340 | return self.COEFFICIENTS[name].getValue() | ||
1341 | else: | ||
1342 | raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name | ||
1343 | jgs | 108 | |
1344 | jgs | 148 | def hasCoefficient(self,name): |
1345 | """ | ||
1346 | return True if name is the name of a coefficient | ||
1347 | jgs | 108 | |
1348 | jgs | 148 | @param name: name of the coefficient enquired. |
1349 | @type name: C{string} | ||
1350 | jgs | 149 | @return: True if name is the name of a coefficient of the general PDE. Otherwise False. |
1351 | @rtype: C{bool} | ||
1352 | jgs | 148 | """ |
1353 | return self.COEFFICIENTS.has_key(name) | ||
1354 | jgs | 108 | |
1355 | jgs | 148 | def createCoefficient(self, name): |
1356 | """ | ||
1357 | jgs | 149 | create a L{Data<escript.Data>} object corresponding to coefficient name |
1358 | jgs | 108 | |
1359 | jgs | 149 | @return: a coefficient name initialized to 0. |
1360 | @rtype: L{Data<escript.Data>} | ||
1361 | jgs | 148 | @raise IllegalCoefficient: if name is not a coefficient of the PDE. |
1362 | """ | ||
1363 | if self.hasCoefficient(name): | ||
1364 | return escript.Data(0.,self.getShapeOfCoefficient(name),self.getFunctionSpaceForCoefficient(name)) | ||
1365 | else: | ||
1366 | raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name | ||
1367 | |||
1368 | def getFunctionSpaceForCoefficient(self,name): | ||
1369 | """ | ||
1370 | jgs | 149 | return the L{FunctionSpace<escript.FunctionSpace>} to be used for coefficient name |
1371 | jgs | 148 | |
1372 | @param name: name of the coefficient enquired. | ||
1373 | @type name: C{string} | ||
1374 | jgs | 149 | @return: the function space to be used for coefficient name |
1375 | @rtype: L{FunctionSpace<escript.FunctionSpace>} | ||
1376 | jgs | 148 | @raise IllegalCoefficient: if name is not a coefficient of the PDE. |
1377 | """ | ||
1378 | if self.hasCoefficient(name): | ||
1379 | return self.COEFFICIENTS[name].getFunctionSpace(self.getDomain()) | ||
1380 | else: | ||
1381 | raise ValueError,"unknown coefficient %s requested"%name | ||
1382 | def getShapeOfCoefficient(self,name): | ||
1383 | """ | ||
1384 | jgs | 149 | return the shape of the coefficient name |
1385 | jgs | 148 | |
1386 | @param name: name of the coefficient enquired. | ||
1387 | @type name: C{string} | ||
1388 | jgs | 149 | @return: the shape of the coefficient name |
1389 | @rtype: C{tuple} of C{int} | ||
1390 | jgs | 148 | @raise IllegalCoefficient: if name is not a coefficient of the PDE. |
1391 | """ | ||
1392 | if self.hasCoefficient(name): | ||
1393 | return self.COEFFICIENTS[name].getShape(self.getDomain(),self.getNumEquations(),self.getNumSolutions()) | ||
1394 | else: | ||
1395 | raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name | ||
1396 | |||
1397 | def resetCoefficients(self): | ||
1398 | """ | ||
1399 | resets all coefficients to there default values. | ||
1400 | """ | ||
1401 | for i in self.COEFFICIENTS.iterkeys(): | ||
1402 | self.COEFFICIENTS[i].resetValue() | ||
1403 | |||
1404 | def alteredCoefficient(self,name): | ||
1405 | """ | ||
1406 | announce that coefficient name has been changed | ||
1407 | |||
1408 | @param name: name of the coefficient enquired. | ||
1409 | @type name: C{string} | ||
1410 | @raise IllegalCoefficient: if name is not a coefficient of the PDE. | ||
1411 | jgs | 149 | @note: if name is q or r, the method will not trigger a rebuilt of the system as constraints are applied to the solved system. |
1412 | jgs | 148 | """ |
1413 | if self.hasCoefficient(name): | ||
1414 | self.trace("Coefficient %s has been altered."%name) | ||
1415 | jgs | 149 | if not ((name=="q" or name=="r") and self.isUsingLumping()): |
1416 | if self.COEFFICIENTS[name].isAlteringOperator(): self.__invalidateOperator() | ||
1417 | if self.COEFFICIENTS[name].isAlteringRightHandSide(): self.__invalidateRightHandSide() | ||
1418 | jgs | 148 | else: |
1419 | raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name | ||
1420 | |||
1421 | def copyConstraint(self,u): | ||
1422 | jgs | 108 | """ |
1423 | jgs | 149 | copies the constraint into u and returns u. |
1424 | |||
1425 | jgs | 148 | @param u: a function of rank 0 is a single PDE is solved and of shape (numSolution,) for a system of PDEs |
1426 | jgs | 149 | @type u: L{Data<escript.Data>} |
1427 | @return: the input u modified by the constraints. | ||
1428 | @rtype: L{Data<escript.Data>} | ||
1429 | @warning: u is altered if it has the appropriate L{FunctionSpace<escript.FunctionSpace>} | ||
1430 | jgs | 108 | """ |
1431 | jgs | 148 | q=self.getCoefficientOfGeneralPDE("q") |
1432 | r=self.getCoefficientOfGeneralPDE("r") | ||
1433 | if not q.isEmpty(): | ||
1434 | if u.isEmpty(): u=escript.Data(0.,q.getShape(),q.getFunctionSpace()) | ||
1435 | if r.isEmpty(): | ||
1436 | r=escript.Data(0,u.getShape(),u.getFunctionSpace()) | ||
1437 | else: | ||
1438 | r=escript.Data(r,u.getFunctionSpace()) | ||
1439 | u.copyWithMask(r,escript.Data(q,u.getFunctionSpace())) | ||
1440 | return u | ||
1441 | |||
1442 | def setValue(self,**coefficients): | ||
1443 | """ | ||
1444 | sets new values to coefficients | ||
1445 | |||
1446 | jgs | 149 | @param coefficients: new values assigned to coefficients |
1447 | @keyword A: value for coefficient A. | ||
1448 | @type A: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. | ||
1449 | jgs | 148 | @keyword B: value for coefficient B |
1450 | jgs | 149 | @type B: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1451 | jgs | 148 | @keyword C: value for coefficient C |
1452 | jgs | 149 | @type C: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1453 | jgs | 148 | @keyword D: value for coefficient D |
1454 | jgs | 149 | @type D: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1455 | jgs | 148 | @keyword X: value for coefficient X |
1456 | jgs | 149 | @type X: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1457 | jgs | 148 | @keyword Y: value for coefficient Y |
1458 | jgs | 149 | @type Y: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1459 | jgs | 148 | @keyword d: value for coefficient d |
1460 | jgs | 149 | @type d: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>}. |
1461 | jgs | 148 | @keyword y: value for coefficient y |
1462 | jgs | 149 | @type y: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>}. |
1463 | jgs | 148 | @keyword d_contact: value for coefficient d_contact |
1464 | jgs | 149 | @type d_contact: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnContactOne<escript.FunctionOnContactOne>}. |
1465 | or L{FunctionOnContactZero<escript.FunctionOnContactZero>}. | ||
1466 | jgs | 148 | @keyword y_contact: value for coefficient y_contact |
1467 | jgs | 149 | @type y_contact: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnContactOne<escript.FunctionOnContactOne>}. |
1468 | or L{FunctionOnContactZero<escript.FunctionOnContactZero>}. | ||
1469 | jgs | 148 | @keyword r: values prescribed to the solution at the locations of constraints |
1470 | jgs | 149 | @type r: any type that can be casted to L{Data<escript.Data>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} |
1471 | jgs | 148 | depending of reduced order is used for the solution. |
1472 | @keyword q: mask for location of constraints | ||
1473 | jgs | 149 | @type q: any type that can be casted to L{Data<escript.Data>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} |
1474 | jgs | 148 | depending of reduced order is used for the representation of the equation. |
1475 | @raise IllegalCoefficient: if an unknown coefficient keyword is used. | ||
1476 | """ | ||
1477 | jgs | 108 | # check if the coefficients are legal: |
1478 | for i in coefficients.iterkeys(): | ||
1479 | if not self.hasCoefficient(i): | ||
1480 | jgs | 148 | raise IllegalCoefficient,"Attempt to set unknown coefficient %s"%i |
1481 | jgs | 108 | # if the number of unknowns or equations is still unknown we try to estimate them: |
1482 | jgs | 148 | if self.__numEquations==None or self.__numSolutions==None: |
1483 | jgs | 108 | for i,d in coefficients.iteritems(): |
1484 | if hasattr(d,"shape"): | ||
1485 | s=d.shape | ||
1486 | elif hasattr(d,"getShape"): | ||
1487 | s=d.getShape() | ||
1488 | else: | ||
1489 | s=numarray.array(d).shape | ||
1490 | if s!=None: | ||
1491 | # get number of equations and number of unknowns: | ||
1492 | jgs | 148 | res=self.COEFFICIENTS[i].estimateNumEquationsAndNumSolutions(self.getDomain(),s) |
1493 | jgs | 108 | if res==None: |
1494 | jgs | 148 | raise IllegalCoefficientValue,"Illegal shape %s of coefficient %s"%(s,i) |
1495 | jgs | 108 | else: |
1496 | jgs | 148 | if self.__numEquations==None: self.__numEquations=res[0] |
1497 | if self.__numSolutions==None: self.__numSolutions=res[1] | ||
1498 | if self.__numEquations==None: raise UndefinedPDEError,"unidententified number of equations" | ||
1499 | if self.__numSolutions==None: raise UndefinedPDEError,"unidententified number of solutions" | ||
1500 | jgs | 108 | # now we check the shape of the coefficient if numEquations and numSolutions are set: |
1501 | for i,d in coefficients.iteritems(): | ||
1502 | jgs | 148 | try: |
1503 | jgs | 149 | self.COEFFICIENTS[i].setValue(self.getDomain(),self.getNumEquations(),self.getNumSolutions(),self.reduceEquationOrder(),self.reduceSolutionOrder(),d) |
1504 | jgs | 148 | except IllegalCoefficientValue,m: |
1505 | raise IllegalCoefficientValue("Coefficient %s:%s"%(i,m)) | ||
1506 | jgs | 108 | self.alteredCoefficient(i) |
1507 | |||
1508 | jgs | 149 | self.__altered_coefficients=True |
1509 | jgs | 148 | # check if the systrem is inhomogeneous: |
1510 | if len(coefficients)>0 and not self.isUsingLumping(): | ||
1511 | q=self.getCoefficientOfGeneralPDE("q") | ||
1512 | r=self.getCoefficientOfGeneralPDE("r") | ||
1513 | homogeneous_constraint=True | ||
1514 | if not q.isEmpty() and not r.isEmpty(): | ||
1515 | jgs | 149 | if util.Lsup(q*r)>=1.e-13*util.Lsup(r): |
1516 | jgs | 148 | self.trace("Inhomogeneous constraint detected.") |
1517 | self.__invalidateSystem() | ||
1518 | jgs | 108 | |
1519 | def getSystem(self): | ||
1520 | """ | ||
1521 | jgs | 122 | return the operator and right hand side of the PDE |
1522 | jgs | 149 | |
1523 | @return: the discrete version of the PDE | ||
1524 | @rtype: C{tuple} of L{Operator,<escript.Operator>} and L{Data<escript.Data>}. | ||
1525 | jgs | 108 | """ |
1526 | jgs | 149 | if not self.__operator_is_Valid or not self.__righthandside_isValid: |
1527 | jgs | 108 | if self.isUsingLumping(): |
1528 | jgs | 149 | if not self.__operator_is_Valid: |
1529 | jgs | 148 | if not self.getFunctionSpaceForEquation()==self.getFunctionSpaceForSolution(): raise TypeError,"Lumped matrix requires same order for equations and unknowns" |
1530 | jgs | 149 | if not self.getCoefficientOfGeneralPDE("A").isEmpty(): raise Warning,"Using coefficient A in lumped matrix can produce wrong results" |
1531 | if not self.getCoefficientOfGeneralPDE("B").isEmpty(): raise Warning,"Using coefficient B in lumped matrix can produce wrong results" | ||
1532 | if not self.getCoefficientOfGeneralPDE("C").isEmpty(): raise Warning,"Using coefficient C in lumped matrix can produce wrong results" | ||
1533 | jgs | 121 | mat=self.__getNewOperator() |
1534 | jgs | 108 | self.getDomain().addPDEToSystem(mat,escript.Data(), \ |
1535 | jgs | 148 | self.getCoefficientOfGeneralPDE("A"), \ |
1536 | self.getCoefficientOfGeneralPDE("B"), \ | ||
1537 | self.getCoefficientOfGeneralPDE("C"), \ | ||
1538 | self.getCoefficientOfGeneralPDE("D"), \ | ||
1539 | jgs | 108 | escript.Data(), \ |
1540 | escript.Data(), \ | ||
1541 | jgs | 148 | self.getCoefficientOfGeneralPDE("d"), \ |
1542 | jgs | 108 | escript.Data(),\ |
1543 | jgs | 148 | self.getCoefficientOfGeneralPDE("d_contact"), \ |
1544 | jgs | 108 | escript.Data()) |
1545 | jgs | 148 | self.__operator=1./(mat*escript.Data(1,(self.getNumSolutions(),),self.getFunctionSpaceForSolution(),True)) |
1546 | del mat | ||
1547 | self.trace("New lumped operator has been built.") | ||
1548 | jgs | 149 | self.__operator_is_Valid=True |
1549 | jgs | 108 | if not self.__righthandside_isValid: |
1550 | jgs | 121 | self.getDomain().addPDEToRHS(self.__makeFreshRightHandSide(), \ |
1551 | jgs | 148 | self.getCoefficientOfGeneralPDE("X"), \ |
1552 | self.getCoefficientOfGeneralPDE("Y"),\ | ||
1553 | self.getCoefficientOfGeneralPDE("y"),\ | ||
1554 | self.getCoefficientOfGeneralPDE("y_contact")) | ||
1555 | self.trace("New right hand side as been built.") | ||
1556 | jgs | 108 | self.__righthandside_isValid=True |
1557 | else: | ||
1558 | jgs | 149 | if not self.__operator_is_Valid and not self.__righthandside_isValid: |
1559 | jgs | 121 | self.getDomain().addPDEToSystem(self.__makeFreshOperator(),self.__makeFreshRightHandSide(), \ |
1560 | jgs | 148 | self.getCoefficientOfGeneralPDE("A"), \ |
1561 | self.getCoefficientOfGeneralPDE("B"), \ | ||
1562 | self.getCoefficientOfGeneralPDE("C"), \ | ||
1563 | self.getCoefficientOfGeneralPDE("D"), \ | ||
1564 | self.getCoefficientOfGeneralPDE("X"), \ | ||
1565 | self.getCoefficientOfGeneralPDE("Y"), \ | ||
1566 | self.getCoefficientOfGeneralPDE("d"), \ | ||
1567 | self.getCoefficientOfGeneralPDE("y"), \ | ||
1568 | self.getCoefficientOfGeneralPDE("d_contact"), \ | ||
1569 | self.getCoefficientOfGeneralPDE("y_contact")) | ||
1570 | jgs | 108 | self.__applyConstraint() |
1571 | jgs | 148 | self.__righthandside=self.copyConstraint(self.__righthandside) |
1572 | self.trace("New system has been built.") | ||
1573 | jgs | 149 | self.__operator_is_Valid=True |
1574 | jgs | 108 | self.__righthandside_isValid=True |
1575 | elif not self.__righthandside_isValid: | ||
1576 | jgs | 121 | self.getDomain().addPDEToRHS(self.__makeFreshRightHandSide(), \ |
1577 | jgs | 148 | self.getCoefficientOfGeneralPDE("X"), \ |
1578 | self.getCoefficientOfGeneralPDE("Y"),\ | ||
1579 | self.getCoefficientOfGeneralPDE("y"),\ | ||
1580 | self.getCoefficientOfGeneralPDE("y_contact")) | ||
1581 | self.__righthandside=self.copyConstraint(self.__righthandside) | ||
1582 | self.trace("New right hand side has been built.") | ||
1583 | jgs | 108 | self.__righthandside_isValid=True |
1584 | jgs | 149 | elif not self.__operator_is_Valid: |
1585 | jgs | 121 | self.getDomain().addPDEToSystem(self.__makeFreshOperator(),escript.Data(), \ |
1586 | jgs | 148 | self.getCoefficientOfGeneralPDE("A"), \ |
1587 | self.getCoefficientOfGeneralPDE("B"), \ | ||
1588 | self.getCoefficientOfGeneralPDE("C"), \ | ||
1589 | self.getCoefficientOfGeneralPDE("D"), \ | ||
1590 | jgs | 108 | escript.Data(), \ |
1591 | escript.Data(), \ | ||
1592 | jgs | 148 | self.getCoefficientOfGeneralPDE("d"), \ |
1593 | jgs | 108 | escript.Data(),\ |
1594 | jgs | 148 | self.getCoefficientOfGeneralPDE("d_contact"), \ |
1595 | jgs | 108 | escript.Data()) |
1596 | self.__applyConstraint() | ||
1597 | jgs | 148 | self.trace("New operator has been built.") |
1598 | jgs | 149 | self.__operator_is_Valid=True |
1599 | jgs | 108 | return (self.__operator,self.__righthandside) |
1600 | jgs | 102 | |
1601 | |||
1602 | jgs | 149 | class Poisson(LinearPDE): |
1603 | """ | ||
1604 | Class to define a Poisson equation problem, which is genear L{LinearPDE} of the form | ||
1605 | jgs | 102 | |
1606 | jgs | 149 | M{-grad(grad(u)[j])[j] = f} |
1607 | jgs | 102 | |
1608 | jgs | 149 | with natural boundary conditons |
1609 | |||
1610 | M{n[j]*grad(u)[j] = 0 } | ||
1611 | |||
1612 | and constraints: | ||
1613 | |||
1614 | M{u=0} where M{q>0} | ||
1615 | |||
1616 | jgs | 108 | """ |
1617 | jgs | 148 | |
1618 | gross | 328 | def __init__(self,domain,debug=False): |
1619 | jgs | 149 | """ |
1620 | initializes a new Poisson equation | ||
1621 | jgs | 104 | |
1622 | jgs | 149 | @param domain: domain of the PDE |
1623 | @type domain: L{Domain<escript.Domain>} | ||
1624 | @param debug: if True debug informations are printed. | ||
1625 | jgs | 102 | |
1626 | jgs | 149 | """ |
1627 | jgs | 151 | super(Poisson, self).__init__(domain,1,1,debug) |
1628 | jgs | 149 | self.COEFFICIENTS={"f": PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), |
1629 | "q": PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_EQUATION,),PDECoefficient.BOTH)} | ||
1630 | self.setSymmetryOn() | ||
1631 | jgs | 102 | |
1632 | jgs | 149 | def setValue(self,**coefficients): |
1633 | """ | ||
1634 | sets new values to coefficients | ||
1635 | jgs | 102 | |
1636 | jgs | 149 | @param coefficients: new values assigned to coefficients |
1637 | @keyword f: value for right hand side M{f} | ||
1638 | @type f: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Function<escript.Function>}. | ||
1639 | @keyword q: mask for location of constraints | ||
1640 | @type q: any type that can be casted to rank zeo L{Data<escript.Data>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} | ||
1641 | depending of reduced order is used for the representation of the equation. | ||
1642 | @raise IllegalCoefficient: if an unknown coefficient keyword is used. | ||
1643 | """ | ||
1644 | jgs | 151 | super(Poisson, self).setValue(**coefficients) |
1645 | jgs | 102 | |
1646 | jgs | 149 | def getCoefficientOfGeneralPDE(self,name): |
1647 | """ | ||
1648 | return the value of the coefficient name of the general PDE | ||
1649 | @param name: name of the coefficient requested. | ||
1650 | @type name: C{string} | ||
1651 | @return: the value of the coefficient name | ||
1652 | @rtype: L{Data<escript.Data>} | ||
1653 | @raise IllegalCoefficient: if name is not one of coefficients | ||
1654 | M{A}, M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. | ||
1655 | @note: This method is called by the assembling routine to map the Possion equation onto the general PDE. | ||
1656 | """ | ||
1657 | if name == "A" : | ||
1658 | gross | 328 | return escript.Data(util.kronecker(self.getDim()),escript.Function(self.getDomain())) |
1659 | jgs | 149 | elif name == "B" : |
1660 | return escript.Data() | ||
1661 | elif name == "C" : | ||
1662 | return escript.Data() | ||
1663 | elif name == "D" : | ||
1664 | return escript.Data() | ||
1665 | elif name == "X" : | ||
1666 | return escript.Data() | ||
1667 | elif name == "Y" : | ||
1668 | return self.getCoefficient("f") | ||
1669 | elif name == "d" : | ||
1670 | return escript.Data() | ||
1671 | elif name == "y" : | ||
1672 | return escript.Data() | ||
1673 | elif name == "d_contact" : | ||
1674 | return escript.Data() | ||
1675 | elif name == "y_contact" : | ||
1676 | return escript.Data() | ||
1677 | elif name == "r" : | ||
1678 | return escript.Data() | ||
1679 | elif name == "q" : | ||
1680 | return self.getCoefficient("q") | ||
1681 | else: | ||
1682 | raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name | ||
1683 | jgs | 102 | |
1684 | jgs | 149 | class Helmholtz(LinearPDE): |
1685 | """ | ||
1686 | Class to define a Helmhotz equation problem, which is genear L{LinearPDE} of the form | ||
1687 | |||
1688 | M{S{omega}*u - grad(k*grad(u)[j])[j] = f} | ||
1689 | |||
1690 | with natural boundary conditons | ||
1691 | |||
1692 | M{k*n[j]*grad(u)[j] = g- S{alpha}u } | ||
1693 | |||
1694 | jgs | 122 | and constraints: |
1695 | jgs | 102 | |
1696 | jgs | 149 | M{u=r} where M{q>0} |
1697 | |||
1698 | jgs | 110 | """ |
1699 | jgs | 149 | |
1700 | def __init__(self,domain,debug=False): | ||
1701 | """ | ||
1702 | initializes a new Poisson equation | ||
1703 | |||
1704 | @param domain: domain of the PDE | ||
1705 | @type domain: L{Domain<escript.Domain>} | ||
1706 | @param debug: if True debug informations are printed. | ||
1707 | |||
1708 | """ | ||
1709 | jgs | 151 | super(Helmholtz, self).__init__(domain,1,1,debug) |
1710 | jgs | 149 | self.COEFFICIENTS={"omega": PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,),PDECoefficient.OPERATOR), |
1711 | "k": PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,),PDECoefficient.OPERATOR), | ||
1712 | "f": PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), | ||
1713 | "alpha": PDECoefficient(PDECoefficient.BOUNDARY,(PDECoefficient.BY_EQUATION,),PDECoefficient.OPERATOR), | ||
1714 | "g": PDECoefficient(PDECoefficient.BOUNDARY,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), | ||
1715 | "r": PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_EQUATION,),PDECoefficient.BOTH), | ||
1716 | "q": PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_EQUATION,),PDECoefficient.BOTH)} | ||
1717 | self.setSymmetryOn() | ||
1718 | |||
1719 | def setValue(self,**coefficients): | ||
1720 | """ | ||
1721 | sets new values to coefficients | ||
1722 | |||
1723 | @param coefficients: new values assigned to coefficients | ||
1724 | @keyword omega: value for coefficient M{S{omega}} | ||
1725 | @type omega: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Function<escript.Function>}. | ||
1726 | @keyword k: value for coefficeint M{k} | ||
1727 | @type k: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Function<escript.Function>}. | ||
1728 | @keyword f: value for right hand side M{f} | ||
1729 | @type f: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Function<escript.Function>}. | ||
1730 | @keyword alpha: value for right hand side M{S{alpha}} | ||
1731 | @type alpha: any type that can be casted to L{Scalar<escript.Scalar>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>}. | ||
1732 | @keyword g: value for right hand side M{g} | ||
1733 | @type g: any type that can be casted to L{Scalar<escript.Scalar>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>}. | ||
1734 | @keyword r: prescribed values M{r} for the solution in constraints. | ||
1735 | @type r: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} | ||
1736 | depending of reduced order is used for the representation of the equation. | ||
1737 | @keyword q: mask for location of constraints | ||
1738 | @type q: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} | ||
1739 | depending of reduced order is used for the representation of the equation. | ||
1740 | @raise IllegalCoefficient: if an unknown coefficient keyword is used. | ||
1741 | """ | ||
1742 | jgs | 151 | super(Helmholtz, self).setValue(**coefficients) |
1743 | jgs | 149 | |
1744 | def getCoefficientOfGeneralPDE(self,name): | ||
1745 | """ | ||
1746 | return the value of the coefficient name of the general PDE | ||
1747 | |||
1748 | @param name: name of the coefficient requested. | ||
1749 | @type name: C{string} | ||
1750 | @return: the value of the coefficient name | ||
1751 | @rtype: L{Data<escript.Data>} | ||
1752 | @raise IllegalCoefficient: if name is not one of coefficients | ||
1753 | "A", M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. | ||
1754 | @note: This method is called by the assembling routine to map the Possion equation onto the general PDE. | ||
1755 | """ | ||
1756 | if name == "A" : | ||
1757 | return escript.Data(numarray.identity(self.getDim()),escript.Function(self.getDomain()))*self.getCoefficient("k") | ||
1758 | elif name == "B" : | ||
1759 | return escript.Data() | ||
1760 | elif name == "C" : | ||
1761 | return escript.Data() | ||
1762 | elif name == "D" : | ||
1763 | return self.getCoefficient("omega") | ||
1764 | elif name == "X" : | ||
1765 | return escript.Data() | ||
1766 | elif name == "Y" : | ||
1767 | return self.getCoefficient("f") | ||
1768 | elif name == "d" : | ||
1769 | return self.getCoefficient("alpha") | ||
1770 | elif name == "y" : | ||
1771 | return self.getCoefficient("g") | ||
1772 | elif name == "d_contact" : | ||
1773 | return escript.Data() | ||
1774 | elif name == "y_contact" : | ||
1775 | return escript.Data() | ||
1776 | elif name == "r" : | ||
1777 | return self.getCoefficient("r") | ||
1778 | elif name == "q" : | ||
1779 | return self.getCoefficient("q") | ||
1780 | else: | ||
1781 | raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name | ||
1782 | |||
1783 | class LameEquation(LinearPDE): | ||
1784 | """ | ||
1785 | Class to define a Lame equation problem: | ||
1786 | |||
1787 | M{-grad(S{mu}*(grad(u[i])[j]+grad(u[j])[i]))[j] - grad(S{lambda}*grad(u[j])[i])[j] = F_i -grad(S{sigma}[i,j])[j] } | ||
1788 | |||
1789 | with natural boundary conditons: | ||
1790 | |||
1791 | M{n[j]*(S{mu}*(grad(u[i])[j]+grad(u[j])[i]) - S{lambda}*grad(u[j])[i]) = f_i -n[j]*S{sigma}[i,j] } | ||
1792 | |||
1793 | and constraints: | ||
1794 | |||
1795 | M{u[i]=r[i]} where M{q[i]>0} | ||
1796 | |||
1797 | """ | ||
1798 | |||
1799 | def __init__(self,domain,debug=False): | ||
1800 | jgs | 151 | super(LameEquation, self).__init__(domain,\ |
1801 | domain.getDim(),domain.getDim(),debug) | ||
1802 | self.COEFFICIENTS={ "lame_lambda" : PDECoefficient(PDECoefficient.INTERIOR,(),PDECoefficient.OPERATOR), | ||
1803 | jgs | 149 | "lame_mu" : PDECoefficient(PDECoefficient.INTERIOR,(),PDECoefficient.OPERATOR), |
1804 | "F" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), | ||
1805 | "sigma" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_DIM),PDECoefficient.RIGHTHANDSIDE), | ||
1806 | "f" : PDECoefficient(PDECoefficient.BOUNDARY,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), | ||
1807 | "r" : PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_EQUATION,),PDECoefficient.BOTH), | ||
1808 | "q" : PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_EQUATION,),PDECoefficient.BOTH)} | ||
1809 | jgs | 151 | self.setSymmetryOn() |
1810 | jgs | 149 | |
1811 | def setValue(self,**coefficients): | ||
1812 | """ | ||
1813 | sets new values to coefficients | ||
1814 | |||
1815 | @param coefficients: new values assigned to coefficients | ||
1816 | @keyword lame_mu: value for coefficient M{S{mu}} | ||
1817 | @type lame_mu: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Function<escript.Function>}. | ||
1818 | @keyword lame_lambda: value for coefficient M{S{lambda}} | ||
1819 | @type lame_lambda: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Function<escript.Function>}. | ||
1820 | @keyword F: value for internal force M{F} | ||
1821 | @type F: any type that can be casted to L{Vector<escript.Vector>} object on L{Function<escript.Function>} | ||
1822 | @keyword sigma: value for initial stress M{S{sigma}} | ||
1823 | @type sigma: any type that can be casted to L{Tensor<escript.Tensor>} object on L{Function<escript.Function>} | ||
1824 | @keyword f: value for extrenal force M{f} | ||
1825 | @type f: any type that can be casted to L{Vector<escript.Vector>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>} | ||
1826 | @keyword r: prescribed values M{r} for the solution in constraints. | ||
1827 | @type r: any type that can be casted to L{Vector<escript.Vector>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} | ||
1828 | depending of reduced order is used for the representation of the equation. | ||
1829 | @keyword q: mask for location of constraints | ||
1830 | @type q: any type that can be casted to L{Vector<escript.Vector>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} | ||
1831 | depending of reduced order is used for the representation of the equation. | ||
1832 | @raise IllegalCoefficient: if an unknown coefficient keyword is used. | ||
1833 | """ | ||
1834 | jgs | 151 | super(LameEquation, self).setValue(**coefficients) |
1835 | jgs | 149 | |
1836 | def getCoefficientOfGeneralPDE(self,name): | ||
1837 | """ | ||
1838 | return the value of the coefficient name of the general PDE | ||
1839 | |||
1840 | @param name: name of the coefficient requested. | ||
1841 | @type name: C{string} | ||
1842 | @return: the value of the coefficient name | ||
1843 | @rtype: L{Data<escript.Data>} | ||
1844 | @raise IllegalCoefficient: if name is not one of coefficients | ||
1845 | "A", M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. | ||
1846 | @note: This method is called by the assembling routine to map the Possion equation onto the general PDE. | ||
1847 | """ | ||
1848 | if name == "A" : | ||
1849 | out =self.createCoefficientOfGeneralPDE("A") | ||
1850 | for i in range(self.getDim()): | ||
1851 | for j in range(self.getDim()): | ||
1852 | out[i,i,j,j] += self.getCoefficient("lame_lambda") | ||
1853 | out[i,j,j,i] += self.getCoefficient("lame_mu") | ||
1854 | out[i,j,i,j] += self.getCoefficient("lame_mu") | ||
1855 | return out | ||
1856 | elif name == "B" : | ||
1857 | return escript.Data() | ||
1858 | elif name == "C" : | ||
1859 | return escript.Data() | ||
1860 | elif name == "D" : | ||
1861 | return escript.Data() | ||
1862 | elif name == "X" : | ||
1863 | return self.getCoefficient("sigma") | ||
1864 | elif name == "Y" : | ||
1865 | return self.getCoefficient("F") | ||
1866 | elif name == "d" : | ||
1867 | return escript.Data() | ||
1868 | elif name == "y" : | ||
1869 | return self.getCoefficient("f") | ||
1870 | elif name == "d_contact" : | ||
1871 | return escript.Data() | ||
1872 | elif name == "y_contact" : | ||
1873 | return escript.Data() | ||
1874 | elif name == "r" : | ||
1875 | return self.getCoefficient("r") | ||
1876 | elif name == "q" : | ||
1877 | return self.getCoefficient("q") | ||
1878 | else: | ||
1879 | raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name | ||
1880 | |||
1881 | class AdvectivePDE(LinearPDE): | ||
1882 | """ | ||
1883 | In cases of PDEs dominated by the advection terms M{B} and M{C} against the adevctive terms M{A} | ||
1884 | up-winding has been used. The L{AdvectivePDE} class applies SUPG upwinding to the advective terms. | ||
1885 | |||
1886 | In the following we set | ||
1887 | |||
1888 | M{Z[j]=C[j]-B[j]} | ||
1889 | |||
1890 | jgs | 151 | or |
1891 | jgs | 149 | |
1892 | M{Z[i,k,l]=C[i,k,l]-B[i,l,k]} | ||
1893 | |||
1894 | jgs | 151 | To measure the dominance of the advective terms over the diffusive term M{A} the |
1895 | jgs | 149 | X{Pelclet number} M{P} is used. It is defined as |
1896 | jgs | 151 | |
1897 | jgs | 149 | M{P=h|Z|/(2|A|)} |
1898 | |||
1899 | jgs | 151 | where M{|.|} denotes the L{length<util.length>} of the arument and M{h} is the local cell size |
1900 | jgs | 149 | from L{getSize<escript.Domain.getSize>}. Where M{|A|==0} M{P} is M{S{infinity}}. |
1901 | |||
1902 | From the X{Pelclet number} the stabilization parameters M{S{Xi}} and M{S{Xi}} are calculated: | ||
1903 | |||
1904 | M{S{Xi}=S{xi}(P) h/|Z|} | ||
1905 | |||
1906 | where M{S{xi}} is a suitable function of the Peclet number. | ||
1907 | |||
1908 | In the case of a single PDE the coefficient are up-dated in the following way: | ||
1909 | - M{A[i,j] S{<-} A[i,j] + S{Xi} * Z[j] * Z[l]} | ||
1910 | - M{B[j] S{<-} B[j] + S{Xi} * C[j] * D} | ||
1911 | - M{C[j] S{<-} C[j] + S{Xi} * B[j] * D} | ||
1912 | - M{X[j] S{<-} X[j] + S{Xi} * Z[j] * Y} | ||
1913 | |||
1914 | Similar for the case of a systems of PDEs: | ||
1915 | - M{A[i,j,k,l] S{<-} A[i,j,k,l]+ S{delta}[p,m] * S{Xi} * Z[p,i,j] * Z[m,k,l]} | ||
1916 | - M{B[i,j,k] S{<-} B[i,j,k] + S{delta}[p,m] * S{Xi} * D[p,k] * C[m,i,j]} | ||
1917 | - M{C[i,k,l] S{<-} C[i,k,l] + S{delta}[p,m] * S{Xi} * D[p,k] * B[m,l,i]} | ||
1918 | - M{X[i,j] S{<-} X[i,j] + S{delta}[p,m] * S{Xi} * Y[p] * Z[m,i,j]} | ||
1919 | |||
1920 | where M{S{delta}} is L{kronecker}. | ||
1921 | Using upwinding in this form, introduces an additonal error which is proprtional to the cell size M{h} | ||
1922 | but with the intension to stabilize the solution. | ||
1923 | |||
1924 | """ | ||
1925 | def __init__(self,domain,numEquations=None,numSolutions=None,xi=None,debug=False): | ||
1926 | """ | ||
1927 | jgs | 151 | creates a linear, steady, second order PDE on a L{Domain<escript.Domain>} |
1928 | jgs | 149 | |
1929 | @param domain: domain of the PDE | ||
1930 | @type domain: L{Domain<escript.Domain>} | ||
1931 | @param numEquations: number of equations. If numEquations==None the number of equations | ||
1932 | is exracted from the PDE coefficients. | ||
1933 | @param numSolutions: number of solution components. If numSolutions==None the number of solution components | ||
1934 | is exracted from the PDE coefficients. | ||
1935 | jgs | 151 | @param xi: defines a function which returns for any given Preclet number as L{Scalar<escript.Scalar>} object the |
1936 | jgs | 149 | M{S{xi}}-value used to define the stabilization parameters. If equal to None, L{ELMAN_RAMAGE} is used. |
1937 | @type xi: callable object which returns a L{Scalar<escript.Scalar>} object. | ||
1938 | @param debug: if True debug informations are printed. | ||
1939 | """ | ||
1940 | jgs | 151 | super(AdvectivePDE, self).__init__(domain,\ |
1941 | numEquations,numSolutions,debug) | ||
1942 | jgs | 148 | if xi==None: |
1943 | self.__xi=AdvectivePDE.ELMAN_RAMAGE | ||
1944 | else: | ||
1945 | self.__xi=xi | ||
1946 | jgs | 110 | self.__Xi=escript.Data() |
1947 | jgs | 102 | |
1948 | jgs | 151 | def setValue(**coefficients): |
1949 | jgs | 149 | """ |
1950 | sets new values to coefficients | ||
1951 | jgs | 102 | |
1952 | jgs | 149 | @param coefficients: new values assigned to coefficients |
1953 | @keyword A: value for coefficient A. | ||
1954 | @type A: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. | ||
1955 | @keyword B: value for coefficient B | ||
1956 | @type B: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. | ||
1957 | @keyword C: value for coefficient C | ||
1958 | @type C: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. | ||
1959 | @keyword D: value for coefficient D | ||
1960 | @type D: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. | ||
1961 | @keyword X: value for coefficient X | ||
1962 | @type X: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. | ||
1963 | @keyword Y: value for coefficient Y | ||
1964 | @type Y: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. | ||
1965 | @keyword d: value for coefficient d | ||
1966 | @type d: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>}. | ||
1967 | @keyword y: value for coefficient y | ||
1968 | @type y: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>}. | ||
1969 | @keyword d_contact: value for coefficient d_contact | ||
1970 | @type d_contact: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnContactOne<escript.FunctionOnContactOne>}. | ||
1971 | or L{FunctionOnContactZero<escript.FunctionOnContactZero>}. | ||
1972 | @keyword y_contact: value for coefficient y_contact | ||
1973 | @type y_contact: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnContactOne<escript.FunctionOnContactOne>}. | ||
1974 | or L{FunctionOnContactZero<escript.FunctionOnContactZero>}. | ||
1975 | @keyword r: values prescribed to the solution at the locations of constraints | ||
1976 | @type r: any type that can be casted to L{Data<escript.Data>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} | ||
1977 | depending of reduced order is used for the solution. | ||
1978 | @keyword q: mask for location of constraints | ||
1979 | @type q: any type that can be casted to L{Data<escript.Data>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} | ||
1980 | depending of reduced order is used for the representation of the equation. | ||
1981 | @raise IllegalCoefficient: if an unknown coefficient keyword is used. | ||
1982 | jgs | 148 | |
1983 | jgs | 149 | """ |
1984 | if "A" in coefficients.keys() or "B" in coefficients.keys() or "C" in coefficients.keys(): self.__Xi=escript.Data() | ||
1985 | jgs | 151 | super(AdvectivePDE, self).setValue(**coefficients) |
1986 | jgs | 149 | |
1987 | def ELMAN_RAMAGE(self,P): | ||
1988 | jgs | 151 | """ |
1989 | Predefined function to set a values for M{S{xi}} from a Preclet number M{P}. | ||
1990 | jgs | 149 | This function uses the method suggested by H.C. Elman and A. Ramage, I{SIAM J. Numer. Anal.}, B{40} (2002) |
1991 | - M{S{xi}(P)=0} for M{P<1} | ||
1992 | - M{S{xi}(P)=(1-1/P)/2} otherwise | ||
1993 | |||
1994 | jgs | 151 | @param P: Preclet number |
1995 | jgs | 149 | @type P: L{Scalar<escript.Scalar>} |
1996 | @return: up-wind weightimg factor | ||
1997 | @rtype: L{Scalar<escript.Scalar>} | ||
1998 | jgs | 151 | """ |
1999 | gross | 304 | return util.wherePositive(P-1.)*0.5*(1.-1./(P+1.e-15)) |
2000 | jgs | 149 | |
2001 | def SIMPLIFIED_BROOK_HUGHES(self,P): | ||
2002 | jgs | 151 | """ |
2003 | Predefined function to set a values for M{S{xi}} from a Preclet number M{P}. | ||
2004 | jgs | 149 | The original methods is |
2005 | jgs | 151 | |
2006 | jgs | 149 | M{S{xi}(P)=coth(P)-1/P} |
2007 | |||
2008 | As the evaluation of M{coth} is expensive we are using the approximation: | ||
2009 | jgs | 151 | |
2010 | jgs | 149 | - M{S{xi}(P)=P/3} where M{P<3} |
2011 | - M{S{xi}(P)=1/2} otherwise | ||
2012 | |||
2013 | jgs | 151 | @param P: Preclet number |
2014 | jgs | 149 | @type P: L{Scalar<escript.Scalar>} |
2015 | @return: up-wind weightimg factor | ||
2016 | @rtype: L{Scalar<escript.Scalar>} | ||
2017 | jgs | 151 | """ |
2018 | gross | 304 | c=util.whereNegative(P-3.) |
2019 | jgs | 148 | return P/6.*c+1./2.*(1.-c) |
2020 | |||
2021 | jgs | 149 | def HALF(self,P): |
2022 | jgs | 151 | """ |
2023 | Predefined function to set value M{1/2} for M{S{xi}} | ||
2024 | |||
2025 | @param P: Preclet number | ||
2026 | jgs | 149 | @type P: L{Scalar<escript.Scalar>} |
2027 | @return: up-wind weightimg factor | ||
2028 | @rtype: L{Scalar<escript.Scalar>} | ||
2029 | jgs | 151 | """ |
2030 | jgs | 149 | return escript.Scalar(0.5,P.getFunctionSpace()) |
2031 | jgs | 148 | |
2032 | gross | 328 | def __calculateXi(self,peclet_factor,flux,h): |
2033 | flux=util.Lsup(flux) | ||
2034 | if flux_max>0.: | ||
2035 | return h*self.__xi(flux*peclet_factor)/(flux+flux_max*self.__TOL) | ||
2036 | jgs | 149 | else: |
2037 | return 0. | ||
2038 | |||
2039 | def __getXi(self): | ||
2040 | jgs | 110 | if self.__Xi.isEmpty(): |
2041 | B=self.getCoefficient("B") | ||
2042 | C=self.getCoefficient("C") | ||
2043 | A=self.getCoefficient("A") | ||
2044 | h=self.getDomain().getSize() | ||
2045 | self.__Xi=escript.Scalar(0.,self.getFunctionSpaceForCoefficient("A")) | ||
2046 | if not C.isEmpty() or not B.isEmpty(): | ||
2047 | if not C.isEmpty() and not B.isEmpty(): | ||
2048 | gross | 328 | flux2=escript.Scalar(0,self.getFunctionSpaceForCoefficient("A")) |
2049 | jgs | 110 | if self.getNumEquations()>1: |
2050 | if self.getNumSolutions()>1: | ||
2051 | for i in range(self.getNumEquations()): | ||
2052 | for k in range(self.getNumSolutions()): | ||
2053 | gross | 328 | for l in range(self.getDim()): flux2+=(C[i,k,l]-B[i,l,k])**2 |
2054 | # flux=C-util.reorderComponents(B,[0,2,1]) | ||
2055 | jgs | 110 | else: |
2056 | for i in range(self.getNumEquations()): | ||
2057 | gross | 328 | for l in range(self.getDim()): flux2+=(C[i,l]-B[i,l])**2 |
2058 | # flux=C-B | ||
2059 | jgs | 110 | else: |
2060 | if self.getNumSolutions()>1: | ||
2061 | for k in range(self.getNumSolutions()): | ||
2062 | gross | 328 | for l in range(self.getDim()): flux2+=(C[k,l]-B[l,k])**2 |
2063 | # flux=C-util.reorderComponents(B,[1,0]) | ||
2064 | jgs | 110 | else: |
2065 | gross | 328 | for l in range(self.getDim()): flux2+=(C[l]-B[l])**2 |
2066 | #flux=C-B | ||
2067 | length_of_flux=util.sqrt(flux2) | ||
2068 | jgs | 110 | elif C.isEmpty(): |
2069 | gross | 328 | length_of_flux=util.length(B) |
2070 | #flux=B | ||
2071 | jgs | 110 | else: |
2072 | gross | 328 | length_of_flux=util.length(C) |
2073 | #flux=C | ||
2074 | jgs | 102 | |
2075 | gross | 328 | #length_of_flux=util.length(flux) |
2076 | flux_max=util.Lsup(length_of_flux) | ||
2077 | if flux_max>0.: | ||
2078 | # length_of_A=util.inner(flux,util.tensormutiply(A,flux)) | ||
2079 | jgs | 110 | length_of_A=util.length(A) |
2080 | A_max=util.Lsup(length_of_A) | ||
2081 | if A_max>0: | ||
2082 | jgs | 149 | inv_A=1./(length_of_A+A_max*self.__TOL) |
2083 | jgs | 110 | else: |
2084 | jgs | 149 | inv_A=1./self.__TOL |
2085 | gross | 328 | peclet_number=length_of_flux*h/2*inv_A |
2086 | jgs | 110 | xi=self.__xi(peclet_number) |
2087 | gross | 328 | self.__Xi=h*xi/(length_of_flux+flux_max*self.__TOL) |
2088 | jgs | 149 | self.trace("preclet number = %e"%util.Lsup(peclet_number)) |
2089 | jgs | 110 | return self.__Xi |
2090 | jgs | 102 | |
2091 | jgs | 148 | |
2092 | def getCoefficientOfGeneralPDE(self,name): | ||
2093 | jgs | 108 | """ |
2094 | jgs | 122 | return the value of the coefficient name of the general PDE |
2095 | |||
2096 | jgs | 149 | @param name: name of the coefficient requested. |
2097 | @type name: C{string} | ||
2098 | @return: the value of the coefficient name | ||
2099 | @rtype: L{Data<escript.Data>} | ||
2100 | @raise IllegalCoefficient: if name is not one of coefficients | ||
2101 | M{A}, M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. | ||
2102 | @note: This method is called by the assembling routine to map the Possion equation onto the general PDE. | ||
2103 | jgs | 108 | """ |
2104 | jgs | 110 | if not self.getNumEquations() == self.getNumSolutions(): |
2105 | raise ValueError,"AdvectivePDE expects the number of solution componets and the number of equations to be equal." | ||
2106 | |||
2107 | jgs | 148 | if name == "A" : |
2108 | jgs | 108 | A=self.getCoefficient("A") |
2109 | B=self.getCoefficient("B") | ||
2110 | C=self.getCoefficient("C") | ||
2111 | jgs | 110 | if B.isEmpty() and C.isEmpty(): |
2112 | Aout=A | ||
2113 | else: | ||
2114 | jgs | 148 | if A.isEmpty(): |
2115 | jgs | 110 | Aout=self.createNewCoefficient("A") |
2116 | else: | ||
2117 | Aout=A[:] | ||
2118 | jgs | 149 | Xi=self.__getXi() |
2119 | jgs | 110 | if self.getNumEquations()>1: |
2120 | for i in range(self.getNumEquations()): | ||
2121 | for j in range(self.getDim()): | ||
2122 | jgs | 108 | for k in range(self.getNumSolutions()): |
2123 | jgs | 110 | for l in range(self.getDim()): |
2124 | if not C.isEmpty() and not B.isEmpty(): | ||
2125 | gross | 328 | # tmp=C-util.reorderComponents(B,[0,2,1]) |
2126 | # Aout=Aout+Xi*util.generalTensorProduct(util.reorder(tmp,[1,2,0]),tmp,offset=1) | ||
2127 | jgs | 110 | for p in range(self.getNumEquations()): Aout[i,j,k,l]+=Xi*(C[p,i,j]-B[p,j,i])*(C[p,k,l]-B[p,l,k]) |
2128 | elif C.isEmpty(): | ||
2129 | for p in range(self.getNumEquations()): Aout[i,j,k,l]+=Xi*B[p,j,i]*B[p,l,k] | ||
2130 | gross | 328 | # Aout=Aout+Xi*util.generalTensorProduct(util.reorder(B,[2,1,0]),util.reorder(B,[0,2,1]),offset=1) |
2131 | jgs | 110 | else: |
2132 | for p in range(self.getNumEquations()): Aout[i,j,k,l]+=Xi*C[p,i,j]*C[p,k,l] | ||
2133 | gross | 328 | # Aout=Aout+Xi*util.generalTensorProduct(util.reorder(C,[1,2,0]),C,offset=1) |
2134 | jgs | 110 | else: |
2135 | for j in range(self.getDim()): | ||
2136 | for l in range(self.getDim()): | ||
2137 | if not C.isEmpty() and not B.isEmpty(): | ||
2138 | Aout[j,l]+=Xi*(C[j]-B[j])*(C[l]-B[l]) | ||
2139 | elif C.isEmpty(): | ||
2140 | Aout[j,l]+=Xi*B[j]*B[l] | ||
2141 | else: | ||
2142 | Aout[j,l]+=Xi*C[j]*C[l] | ||
2143 | gross | 328 | # if not C.isEmpty() and not B.isEmpty(): |
2144 | # tmp=C-B | ||
2145 | # Aout=Aout+Xi*util.outer(tmp,tmp) | ||
2146 | # elif C.isEmpty(): | ||
2147 | # Aout=Aout+Xi*util.outer(B,B) | ||
2148 | # else: | ||
2149 | # Aout=Aout+Xi*util.outer(C,C) | ||
2150 | jgs | 110 | return Aout |
2151 | jgs | 148 | elif name == "B" : |
2152 | jgs | 110 | B=self.getCoefficient("B") |
2153 | C=self.getCoefficient("C") | ||
2154 | D=self.getCoefficient("D") | ||
2155 | if C.isEmpty() or D.isEmpty(): | ||
2156 | Bout=B | ||
2157 | else: | ||
2158 | jgs | 149 | Xi=self.__getXi() |
2159 | jgs | 148 | if B.isEmpty(): |
2160 | jgs | 110 | Bout=self.createNewCoefficient("B") |
2161 | else: | ||
2162 | Bout=B[:] | ||
2163 | if self.getNumEquations()>1: | ||
2164 | for k in range(self.getNumSolutions()): | ||
2165 | jgs | 148 | for p in range(self.getNumEquations()): |
2166 | jgs | 110 | tmp=Xi*D[p,k] |
2167 | for i in range(self.getNumEquations()): | ||
2168 | for j in range(self.getDim()): | ||
2169 | Bout[i,j,k]+=tmp*C[p,i,j] | ||
2170 | gross | 328 | # Bout=Bout+Xi*util.generalTensorProduct(util.reorder(C,[1,2,0]),D,offset=1) |
2171 | jgs | 110 | else: |
2172 | tmp=Xi*D | ||
2173 | for j in range(self.getDim()): Bout[j]+=tmp*C[j] | ||
2174 | gross | 328 | # Bout=Bout+Xi*D*C |
2175 | jgs | 110 | return Bout |
2176 | jgs | 148 | elif name == "C" : |
2177 | jgs | 110 | B=self.getCoefficient("B") |
2178 | C=self.getCoefficient("C") | ||
2179 | D=self.getCoefficient("D") | ||
2180 | if B.isEmpty() or D.isEmpty(): | ||
2181 | Cout=C | ||
2182 | else: | ||
2183 | jgs | 149 | Xi=self.__getXi() |
2184 | jgs | 148 | if C.isEmpty(): |
2185 | jgs | 110 | Cout=self.createNewCoefficient("C") |
2186 | else: | ||
2187 | Cout=C[:] | ||
2188 | if self.getNumEquations()>1: | ||
2189 | for k in range(self.getNumSolutions()): | ||
2190 | for p in range(self.getNumEquations()): | ||
2191 | tmp=Xi*D[p,k] | ||
2192 | for i in range(self.getNumEquations()): | ||
2193 | for l in range(self.getDim()): | ||
2194 | Cout[i,k,l]+=tmp*B[p,l,i] | ||
2195 | gross | 328 | # Cout=Cout+Xi*B[p,l,i]*D[p,k] |
2196 | jgs | 110 | else: |
2197 | tmp=Xi*D | ||
2198 | for j in range(self.getDim()): Cout[j]+=tmp*B[j] | ||
2199 | gross | 328 | # Cout=Cout+tmp*D*B |
2200 | jgs | 110 | return Cout |
2201 | jgs | 148 | elif name == "D" : |
2202 | jgs | 108 | return self.getCoefficient("D") |
2203 | jgs | 148 | elif name == "X" : |
2204 | jgs | 110 | X=self.getCoefficient("X") |
2205 | Y=self.getCoefficient("Y") | ||
2206 | B=self.getCoefficient("B") | ||
2207 | C=self.getCoefficient("C") | ||
2208 | if Y.isEmpty() or (B.isEmpty() and C.isEmpty()): | ||
2209 | Xout=X | ||
2210 | else: | ||
2211 | if X.isEmpty(): | ||
2212 | Xout=self.createNewCoefficient("X") | ||
2213 | else: | ||
2214 | Xout=X[:] | ||
2215 | jgs | 149 | Xi=self.__getXi() |
2216 | jgs | 110 | if self.getNumEquations()>1: |
2217 | jgs | 148 | for p in range(self.getNumEquations()): |
2218 | jgs | 110 | tmp=Xi*Y[p] |
2219 | for i in range(self.getNumEquations()): | ||
2220 | for j in range(self.getDim()): | ||
2221 | if not C.isEmpty() and not B.isEmpty(): | ||
2222 | Xout[i,j]+=tmp*(C[p,i,j]-B[p,j,i]) | ||
2223 | gross | 328 | # Xout=X_out+Xi*util.inner(Y,C-util.reorderComponents(B,[0,2,1]),offset=1) |
2224 | jgs | 110 | elif C.isEmpty(): |
2225 | Xout[i,j]-=tmp*B[p,j,i] | ||
2226 | gross | 328 | # Xout=X_out-Xi*util.inner(Y,util.reorderComponents(B,[0,2,1]),offset=1) |
2227 | jgs | 110 | else: |
2228 | Xout[i,j]+=tmp*C[p,i,j] | ||
2229 | gross | 328 | # Xout=X_out+Xi*util.inner(Y,C,offset=1) |
2230 | jgs | 110 | else: |
2231 | tmp=Xi*Y | ||
2232 | for j in range(self.getDim()): | ||
2233 | if not C.isEmpty() and not B.isEmpty(): | ||
2234 | Xout[j]+=tmp*(C[j]-B[j]) | ||
2235 | gross | 328 | # Xout=Xout+Xi*Y*(C-B) |
2236 | jgs | 110 | elif C.isEmpty(): |
2237 | Xout[j]-=tmp*B[j] | ||
2238 | gross | 328 | # Xout=Xout-Xi*Y*B |
2239 | jgs | 110 | else: |
2240 | Xout[j]+=tmp*C[j] | ||
2241 | gross | 328 | # Xout=Xout+Xi*Y*C |
2242 | jgs | 110 | return Xout |
2243 | jgs | 148 | elif name == "Y" : |
2244 | jgs | 108 | return self.getCoefficient("Y") |
2245 | jgs | 148 | elif name == "d" : |
2246 | jgs | 108 | return self.getCoefficient("d") |
2247 | jgs | 148 | elif name == "y" : |
2248 | jgs | 108 | return self.getCoefficient("y") |
2249 | jgs | 148 | elif name == "d_contact" : |
2250 | jgs | 108 | return self.getCoefficient("d_contact") |
2251 | elif name == "y_contact" : | ||
2252 | return self.getCoefficient("y_contact") | ||
2253 | jgs | 148 | elif name == "r" : |
2254 | jgs | 108 | return self.getCoefficient("r") |
2255 | jgs | 148 | elif name == "q" : |
2256 | jgs | 108 | return self.getCoefficient("q") |
2257 | else: | ||
2258 | jgs | 149 | raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name |
2259 | jgs | 108 | |
2260 | gross | 345 | class AdvectionDiffusion(LinearPDE): |
2261 | """ | ||
2262 | Class to define PDE equation of the unisotropic advection-diffusion problem, which is genear L{LinearPDE} of the form | ||
2263 | jgs | 108 | |
2264 | gross | 348 | M{S{omega}*u + inner(v,grad(u))- grad(matrixmult(k_bar,grad(u))[j])[j] = f} |
2265 | gross | 345 | |
2266 | with natural boundary conditons | ||
2267 | |||
2268 | M{n[j]*matrixmult(k,grad(u))[j] = g- S{alpha}u } | ||
2269 | |||
2270 | and constraints: | ||
2271 | |||
2272 | M{u=r} where M{q>0} | ||
2273 | |||
2274 | gross | 348 | and |
2275 | gross | 345 | |
2276 | gross | 348 | M{k_bar[i,j]=k[i,j]+upwind[i]*upwind[j]} |
2277 | |||
2278 | gross | 345 | """ |
2279 | |||
2280 | def __init__(self,domain,debug=False): | ||
2281 | """ | ||
2282 | initializes a new Poisson equation | ||
2283 | |||
2284 | @param domain: domain of the PDE | ||
2285 | @type domain: L{Domain<escript.Domain>} | ||
2286 | @param debug: if True debug informations are printed. | ||
2287 | |||
2288 | """ | ||
2289 | gross | 349 | super(AdvectionDiffusion, self).__init__(domain,1,1,debug) |
2290 | gross | 345 | self.COEFFICIENTS={"omega": PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,),PDECoefficient.OPERATOR), |
2291 | "k": PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_DIM,PDECoefficient.BY_DIM),PDECoefficient.OPERATOR), | ||
2292 | "f": PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), | ||
2293 | "v": PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_DIM,),PDECoefficient.OPERATOR), | ||
2294 | gross | 348 | "upwind": PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_DIM,),PDECoefficient.OPERATOR), |
2295 | gross | 345 | "alpha": PDECoefficient(PDECoefficient.BOUNDARY,(PDECoefficient.BY_EQUATION,),PDECoefficient.OPERATOR), |
2296 | "g": PDECoefficient(PDECoefficient.BOUNDARY,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), | ||
2297 | "r": PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_EQUATION,),PDECoefficient.BOTH), | ||
2298 | "q": PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_EQUATION,),PDECoefficient.BOTH)} | ||
2299 | |||
2300 | def setValue(self,**coefficients): | ||
2301 | """ | ||
2302 | sets new values to coefficients | ||
2303 | |||
2304 | @param coefficients: new values assigned to coefficients | ||
2305 | @keyword omega: value for coefficient M{S{omega}} | ||
2306 | @type omega: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Function<escript.Function>}. | ||
2307 | @keyword k: value for coefficient M{k} | ||
2308 | @type k: any type that can be casted to L{Tensor<escript.Tensor>} object on L{Function<escript.Function>}. | ||
2309 | @keyword v: value for coefficient M{v} | ||
2310 | @type v: any type that can be casted to L{Vector<escript.Vector>} object on L{Function<escript.Function>}. | ||
2311 | gross | 348 | @keyword upwind: value for upwind term M{upwind} |
2312 | @type upwind: any type that can be casted to L{Vector<escript.Vector>} object on L{Function<escript.Function>}. | ||
2313 | gross | 345 | @keyword f: value for right hand side M{f} |
2314 | @type f: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Function<escript.Function>}. | ||
2315 | @keyword alpha: value for right hand side M{S{alpha}} | ||
2316 | @type alpha: any type that can be casted to L{Scalar<escript.Scalar>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>}. | ||
2317 | @keyword g: value for right hand side M{g} | ||
2318 | @type g: any type that can be casted to L{Scalar<escript.Scalar>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>}. | ||
2319 | @keyword r: prescribed values M{r} for the solution in constraints. | ||
2320 | @type r: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} | ||
2321 | depending of reduced order is used for the representation of the equation. | ||
2322 | @keyword q: mask for location of constraints | ||
2323 | @type q: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} | ||
2324 | depending of reduced order is used for the representation of the equation. | ||
2325 | @raise IllegalCoefficient: if an unknown coefficient keyword is used. | ||
2326 | """ | ||
2327 | gross | 349 | super(AdvectionDiffusion, self).setValue(**coefficients) |
2328 | gross | 345 | |
2329 | def getCoefficientOfGeneralPDE(self,name): | ||
2330 | """ | ||
2331 | return the value of the coefficient name of the general PDE | ||
2332 | |||
2333 | @param name: name of the coefficient requested. | ||
2334 | @type name: C{string} | ||
2335 | @return: the value of the coefficient name | ||
2336 | @rtype: L{Data<escript.Data>} | ||
2337 | @raise IllegalCoefficient: if name is not one of coefficients | ||
2338 | "A", M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. | ||
2339 | @note: This method is called by the assembling routine to map the Possion equation onto the general PDE. | ||
2340 | """ | ||
2341 | if name == "A" : | ||
2342 | gross | 348 | return self.getCoefficient("k")+outer(self.getCoefficient("upwind"),self.getCoefficient("upwind")) |
2343 | gross | 345 | elif name == "B" : |
2344 | return escript.Data() | ||
2345 | elif name == "C" : | ||
2346 | return escript.getCoefficient("v") | ||
2347 | elif name == "D" : | ||
2348 | return self.getCoefficient("omega") | ||
2349 | elif name == "X" : | ||
2350 | return escript.Data() | ||
2351 | elif name == "Y" : | ||
2352 | return self.getCoefficient("f") | ||
2353 | elif name == "d" : | ||
2354 | return self.getCoefficient("alpha") | ||
2355 | elif name == "y" : | ||
2356 | return self.getCoefficient("g") | ||
2357 | elif name == "d_contact" : | ||
2358 | return escript |