1 |
# $Id$ |
2 |
|
3 |
# |
4 |
# COPYRIGHT ACcESS 2004 - All Rights Reserved |
5 |
# |
6 |
# This software is the property of ACcESS. No part of this code |
7 |
# may be copied in any form or by any means without the expressed written |
8 |
# consent of ACcESS. Copying, use or modification of this software |
9 |
# by any unauthorised person is illegal unless that |
10 |
# person has a software license agreement with ACcESS. |
11 |
# |
12 |
""" |
13 |
The module provides an interface to define and solve linear partial |
14 |
differential equations (PDEs) within L{escript}. L{linearPDEs} does not provide any |
15 |
solver capabilities in itself but hands the PDE over to |
16 |
the PDE solver library defined through the L{Domain<escript.Domain>} of the PDE. |
17 |
The general interface is provided through the L{LinearPDE} class. The |
18 |
L{AdvectivePDE} which is derived from the L{LinearPDE} class |
19 |
provides an interface to PDE dominated by its advective terms. The L{Poisson}, |
20 |
L{Helmholtz}, L{LameEquation}, L{AdvectionDiffusion} |
21 |
classs which are also derived form the L{LinearPDE} class should be used |
22 |
to define of solve these sepecial PDEs. |
23 |
|
24 |
@var __author__: name of author |
25 |
@var __licence__: licence agreement |
26 |
@var __url__: url entry point on documentation |
27 |
@var __version__: version |
28 |
@var __date__: date of the version |
29 |
""" |
30 |
|
31 |
import escript |
32 |
import util |
33 |
import numarray |
34 |
|
35 |
__author__="Lutz Gross, l.gross@uq.edu.au" |
36 |
__licence__="contact: esys@access.uq.edu.au" |
37 |
__url__="http://www.iservo.edu.au/esys/escript" |
38 |
__version__="$Revision$" |
39 |
__date__="$Date$" |
40 |
|
41 |
|
42 |
class IllegalCoefficient(ValueError): |
43 |
""" |
44 |
raised if an illegal coefficient of the general ar particular PDE is requested. |
45 |
""" |
46 |
|
47 |
class IllegalCoefficientValue(ValueError): |
48 |
""" |
49 |
raised if an incorrect value for a coefficient is used. |
50 |
""" |
51 |
|
52 |
class UndefinedPDEError(ValueError): |
53 |
""" |
54 |
raised if a PDE is not fully defined yet. |
55 |
""" |
56 |
|
57 |
class PDECoefficient(object): |
58 |
""" |
59 |
A class for describing a PDE coefficient |
60 |
|
61 |
@cvar INTERIOR: indicator that coefficient is defined on the interior of the PDE domain |
62 |
@cvar BOUNDARY: indicator that coefficient is defined on the boundary of the PDE domain |
63 |
@cvar CONTACT: indicator that coefficient is defined on the contact region within the PDE domain |
64 |
@cvar SOLUTION: indicator that coefficient is defined trough a solution of the PDE |
65 |
@cvar REDUCED: indicator that coefficient is defined trough a reduced solution of the PDE |
66 |
@cvar BY_EQUATION: indicator that the dimension of the coefficient shape is defined by the number PDE equations |
67 |
@cvar BY_SOLUTION: indicator that the dimension of the coefficient shape is defined by the number PDE solutions |
68 |
@cvar BY_DIM: indicator that the dimension of the coefficient shape is defined by the spatial dimension |
69 |
@cvar OPERATOR: indicator that the the coefficient alters the operator of the PDE |
70 |
@cvar RIGHTHANDSIDE: indicator that the the coefficient alters the right hand side of the PDE |
71 |
@cvar BOTH: indicator that the the coefficient alters the operator as well as the right hand side of the PDE |
72 |
|
73 |
""" |
74 |
INTERIOR=0 |
75 |
BOUNDARY=1 |
76 |
CONTACT=2 |
77 |
SOLUTION=3 |
78 |
REDUCED=4 |
79 |
BY_EQUATION=5 |
80 |
BY_SOLUTION=6 |
81 |
BY_DIM=7 |
82 |
OPERATOR=10 |
83 |
RIGHTHANDSIDE=11 |
84 |
BOTH=12 |
85 |
|
86 |
def __init__(self,where,pattern,altering): |
87 |
""" |
88 |
Initialise a PDE Coefficient type |
89 |
|
90 |
@param where: describes where the coefficient lives |
91 |
@type where: one of L{INTERIOR}, L{BOUNDARY}, L{CONTACT}, L{SOLUTION}, L{REDUCED} |
92 |
@param pattern: describes the shape of the coefficient and how the shape is build for a given |
93 |
spatial dimension and numbers of equation and solution in then PDE. For instance, |
94 |
(L{BY_EQUATION},L{BY_SOLUTION},L{BY_DIM}) descrbes a rank 3 coefficient which |
95 |
is instanciated as shape (3,2,2) in case of a three equations and two solution components |
96 |
on a 2-dimensional domain. In the case of single equation and a single solution component |
97 |
the shape compoments marked by L{BY_EQUATION} or L{BY_SOLUTION} are dropped. In this case |
98 |
the example would be read as (2,). |
99 |
@type pattern: C{tuple} of L{BY_EQUATION}, L{BY_SOLUTION}, L{BY_DIM} |
100 |
@param altering: indicates what part of the PDE is altered if the coefficiennt is altered |
101 |
@type altering: one of L{OPERATOR}, L{RIGHTHANDSIDE}, L{BOTH} |
102 |
|
103 |
""" |
104 |
super(PDECoefficient, self).__init__() |
105 |
self.what=where |
106 |
self.pattern=pattern |
107 |
self.altering=altering |
108 |
self.resetValue() |
109 |
|
110 |
def resetValue(self): |
111 |
""" |
112 |
resets coefficient value to default |
113 |
""" |
114 |
self.value=escript.Data() |
115 |
|
116 |
def getFunctionSpace(self,domain,reducedEquationOrder=False,reducedSolutionOrder=False): |
117 |
""" |
118 |
defines the L{FunctionSpace<escript.FunctionSpace>} of the coefficient |
119 |
|
120 |
@param domain: domain on which the PDE uses the coefficient |
121 |
@type domain: L{Domain<escript.Domain>} |
122 |
@param reducedEquationOrder: True to indicate that reduced order is used to represent the equation |
123 |
@type domain: C{bool} |
124 |
@param reducedSolutionOrder: True to indicate that reduced order is used to represent the solution |
125 |
@type domain: C{bool} |
126 |
@return: L{FunctionSpace<escript.FunctionSpace>} of the coefficient |
127 |
@rtype: L{FunctionSpace<escript.FunctionSpace>} |
128 |
""" |
129 |
if self.what==self.INTERIOR: |
130 |
return escript.Function(domain) |
131 |
elif self.what==self.BOUNDARY: |
132 |
return escript.FunctionOnBoundary(domain) |
133 |
elif self.what==self.CONTACT: |
134 |
return escript.FunctionOnContactZero(domain) |
135 |
elif self.what==self.SOLUTION: |
136 |
if reducedEquationOrder and reducedSolutionOrder: |
137 |
return escript.ReducedSolution(domain) |
138 |
else: |
139 |
return escript.Solution(domain) |
140 |
elif self.what==self.REDUCED: |
141 |
return escript.ReducedSolution(domain) |
142 |
|
143 |
def getValue(self): |
144 |
""" |
145 |
returns the value of the coefficient |
146 |
|
147 |
@return: value of the coefficient |
148 |
@rtype: L{Data<escript.Data>} |
149 |
""" |
150 |
return self.value |
151 |
|
152 |
def setValue(self,domain,numEquations=1,numSolutions=1,reducedEquationOrder=False,reducedSolutionOrder=False,newValue=None): |
153 |
""" |
154 |
set the value of the coefficient to a new value |
155 |
|
156 |
@param domain: domain on which the PDE uses the coefficient |
157 |
@type domain: L{Domain<escript.Domain>} |
158 |
@param numEquations: number of equations of the PDE |
159 |
@type numEquations: C{int} |
160 |
@param numSolutions: number of components of the PDE solution |
161 |
@type numSolutions: C{int} |
162 |
@param reducedEquationOrder: True to indicate that reduced order is used to represent the equation |
163 |
@type domain: C{bool} |
164 |
@param reducedSolutionOrder: True to indicate that reduced order is used to represent the solution |
165 |
@type domain: C{bool} |
166 |
@param newValue: number of components of the PDE solution |
167 |
@type newValue: any object that can be converted into a L{Data<escript.Data>} object with the appropriate shape and L{FunctionSpace<escript.FunctionSpace>} |
168 |
@raise IllegalCoefficientValue: if the shape of the assigned value does not match the shape of the coefficient |
169 |
""" |
170 |
if newValue==None: |
171 |
newValue=escript.Data() |
172 |
elif isinstance(newValue,escript.Data): |
173 |
if not newValue.isEmpty(): |
174 |
try: |
175 |
newValue=escript.Data(newValue,self.getFunctionSpace(domain,reducedEquationOrder,reducedSolutionOrder)) |
176 |
except: |
177 |
raise IllegalCoefficientValue,"Unable to interpolate coefficient to function space %s"%self.getFunctionSpace(domain) |
178 |
else: |
179 |
newValue=escript.Data(newValue,self.getFunctionSpace(domain,reducedEquationOrder,reducedSolutionOrder)) |
180 |
if not newValue.isEmpty(): |
181 |
if not self.getShape(domain,numEquations,numSolutions)==newValue.getShape(): |
182 |
raise IllegalCoefficientValue,"Expected shape of coefficient is %s but actual shape is %s."%(self.getShape(domain,numEquations,numSolutions),newValue.getShape()) |
183 |
self.value=newValue |
184 |
|
185 |
def isAlteringOperator(self): |
186 |
""" |
187 |
checks if the coefficient alters the operator of the PDE |
188 |
|
189 |
@return: True if the operator of the PDE is changed when the coefficient is changed |
190 |
@rtype: C{bool} |
191 |
""" |
192 |
if self.altering==self.OPERATOR or self.altering==self.BOTH: |
193 |
return not None |
194 |
else: |
195 |
return None |
196 |
|
197 |
def isAlteringRightHandSide(self): |
198 |
""" |
199 |
checks if the coefficeint alters the right hand side of the PDE |
200 |
|
201 |
@rtype: C{bool} |
202 |
@return: True if the right hand side of the PDE is changed when the coefficient is changed |
203 |
""" |
204 |
if self.altering==self.RIGHTHANDSIDE or self.altering==self.BOTH: |
205 |
return not None |
206 |
else: |
207 |
return None |
208 |
|
209 |
def estimateNumEquationsAndNumSolutions(self,domain,shape=()): |
210 |
""" |
211 |
tries to estimate the number of equations and number of solutions if the coefficient has the given shape |
212 |
|
213 |
@param domain: domain on which the PDE uses the coefficient |
214 |
@type domain: L{Domain<escript.Domain>} |
215 |
@param shape: suggested shape of the coefficient |
216 |
@type shape: C{tuple} of C{int} values |
217 |
@return: the number of equations and number of solutions of the PDE is the coefficient has shape s. |
218 |
If no appropriate numbers could be identified, C{None} is returned |
219 |
@rtype: C{tuple} of two C{int} values or C{None} |
220 |
""" |
221 |
dim=domain.getDim() |
222 |
if len(shape)>0: |
223 |
num=max(shape)+1 |
224 |
else: |
225 |
num=1 |
226 |
search=[] |
227 |
if self.definesNumEquation() and self.definesNumSolutions(): |
228 |
for u in range(num): |
229 |
for e in range(num): |
230 |
search.append((e,u)) |
231 |
search.sort(self.__CompTuple2) |
232 |
for item in search: |
233 |
s=self.getShape(domain,item[0],item[1]) |
234 |
if len(s)==0 and len(shape)==0: |
235 |
return (1,1) |
236 |
else: |
237 |
if s==shape: return item |
238 |
elif self.definesNumEquation(): |
239 |
for e in range(num,0,-1): |
240 |
s=self.getShape(domain,e,0) |
241 |
if len(s)==0 and len(shape)==0: |
242 |
return (1,None) |
243 |
else: |
244 |
if s==shape: return (e,None) |
245 |
|
246 |
elif self.definesNumSolutions(): |
247 |
for u in range(num,0,-1): |
248 |
s=self.getShape(domain,0,u) |
249 |
if len(s)==0 and len(shape)==0: |
250 |
return (None,1) |
251 |
else: |
252 |
if s==shape: return (None,u) |
253 |
return None |
254 |
def definesNumSolutions(self): |
255 |
""" |
256 |
checks if the coefficient allows to estimate the number of solution components |
257 |
|
258 |
@return: True if the coefficient allows an estimate of the number of solution components |
259 |
@rtype: C{bool} |
260 |
""" |
261 |
for i in self.pattern: |
262 |
if i==self.BY_SOLUTION: return True |
263 |
return False |
264 |
|
265 |
def definesNumEquation(self): |
266 |
""" |
267 |
checks if the coefficient allows to estimate the number of equations |
268 |
|
269 |
@return: True if the coefficient allows an estimate of the number of equations |
270 |
@rtype: C{bool} |
271 |
""" |
272 |
for i in self.pattern: |
273 |
if i==self.BY_EQUATION: return True |
274 |
return False |
275 |
|
276 |
def __CompTuple2(self,t1,t2): |
277 |
""" |
278 |
Compare two tuples of possible number of equations and number of solutions |
279 |
|
280 |
@param t1: The first tuple |
281 |
@param t2: The second tuple |
282 |
|
283 |
""" |
284 |
|
285 |
dif=t1[0]+t1[1]-(t2[0]+t2[1]) |
286 |
if dif<0: return 1 |
287 |
elif dif>0: return -1 |
288 |
else: return 0 |
289 |
|
290 |
def getShape(self,domain,numEquations=1,numSolutions=1): |
291 |
""" |
292 |
builds the required shape of the coefficient |
293 |
|
294 |
@param domain: domain on which the PDE uses the coefficient |
295 |
@type domain: L{Domain<escript.Domain>} |
296 |
@param numEquations: number of equations of the PDE |
297 |
@type numEquations: C{int} |
298 |
@param numSolutions: number of components of the PDE solution |
299 |
@type numSolutions: C{int} |
300 |
@return: shape of the coefficient |
301 |
@rtype: C{tuple} of C{int} values |
302 |
""" |
303 |
dim=domain.getDim() |
304 |
s=() |
305 |
for i in self.pattern: |
306 |
if i==self.BY_EQUATION: |
307 |
if numEquations>1: s=s+(numEquations,) |
308 |
elif i==self.BY_SOLUTION: |
309 |
if numSolutions>1: s=s+(numSolutions,) |
310 |
else: |
311 |
s=s+(dim,) |
312 |
return s |
313 |
|
314 |
class LinearPDE(object): |
315 |
""" |
316 |
This class is used to define a general linear, steady, second order PDE |
317 |
for an unknown function M{u} on a given domain defined through a L{Domain<escript.Domain>} object. |
318 |
|
319 |
For a single PDE with a solution with a single component the linear PDE is defined in the following form: |
320 |
|
321 |
M{-grad(A[j,l]*grad(u)[l]+B[j]u)[j]+C[l]*grad(u)[l]+D*u =-grad(X)[j,j]+Y} |
322 |
|
323 |
where M{grad(F)} denotes the spatial derivative of M{F}. Einstein's summation convention, |
324 |
ie. summation over indexes appearing twice in a term of a sum is performed, is used. |
325 |
The coefficients M{A}, M{B}, M{C}, M{D}, M{X} and M{Y} have to be specified through L{Data<escript.Data>} objects in the |
326 |
L{Function<escript.Function>} on the PDE or objects that can be converted into such L{Data<escript.Data>} objects. |
327 |
M{A} is a rank two, M{B}, M{C} and M{X} are rank one and M{D} and M{Y} are scalar. |
328 |
|
329 |
The following natural boundary conditions are considered: |
330 |
|
331 |
M{n[j]*(A[i,j]*grad(u)[l]+B[j]*u)+d*u=n[j]*X[j]+y} |
332 |
|
333 |
where M{n} is the outer normal field calculated by L{getNormal<escript.FunctionSpace.getNormal>} of L{FunctionOnBoundary<escript.FunctionOnBoundary>}. |
334 |
Notice that the coefficients M{A}, M{B} and M{X} are defined in the PDE. The coefficients M{d} and M{y} are |
335 |
each a scalar in the L{FunctionOnBoundary<escript.FunctionOnBoundary>}. |
336 |
|
337 |
|
338 |
Constraints for the solution prescribing the value of the solution at certain locations in the domain. They have the form |
339 |
|
340 |
M{u=r} where M{q>0} |
341 |
|
342 |
M{r} and M{q} are each scalar where M{q} is the characteristic function defining where the constraint is applied. |
343 |
The constraints override any other condition set by the PDE or the boundary condition. |
344 |
|
345 |
The PDE is symmetrical if |
346 |
|
347 |
M{A[i,j]=A[j,i]} and M{B[j]=C[j]} |
348 |
|
349 |
For a system of PDEs and a solution with several components the PDE has the form |
350 |
|
351 |
M{-grad(A[i,j,k,l]*grad(u[k])[l]+B[i,j,k]*u[k])[j]+C[i,k,l]*grad(u[k])[l]+D[i,k]*u[k] =-grad(X[i,j])[j]+Y[i] } |
352 |
|
353 |
M{A} is a ramk four, M{B} and M{C} are each a rank three, M{D} and M{X} are each a rank two and M{Y} is a rank one. |
354 |
The natural boundary conditions take the form: |
355 |
|
356 |
M{n[j]*(A[i,j,k,l]*grad(u[k])[l]+B[i,j,k]*u[k])+d[i,k]*u[k]=n[j]*X[i,j]+y[i]} |
357 |
|
358 |
|
359 |
The coefficient M{d} is a rank two and M{y} is a rank one both in the L{FunctionOnBoundary<escript.FunctionOnBoundary>}. Constraints take the form |
360 |
|
361 |
|
362 |
M{u[i]=r[i]} where M{q[i]>0} |
363 |
|
364 |
M{r} and M{q} are each rank one. Notice that at some locations not necessarily all components must have a constraint. |
365 |
|
366 |
The system of PDEs is symmetrical if |
367 |
|
368 |
- M{A[i,j,k,l]=A[k,l,i,j]} |
369 |
- M{B[i,j,k]=C[k,i,j]} |
370 |
- M{D[i,k]=D[i,k]} |
371 |
- M{d[i,k]=d[k,i]} |
372 |
|
373 |
L{LinearPDE} also supports solution discontinuities over a contact region in the domain. To specify the conditions across the |
374 |
discontinuity we are using the generalised flux M{J} which is in the case of a systems of PDEs and several components of the solution |
375 |
defined as |
376 |
|
377 |
M{J[i,j]=A[i,j,k,l]*grad(u[k])[l]+B[i,j,k]*u[k]-X[i,j]} |
378 |
|
379 |
For the case of single solution component and single PDE M{J} is defined |
380 |
|
381 |
M{J_{j}=A[i,j]*grad(u)[j]+B[i]*u-X[i]} |
382 |
|
383 |
In the context of discontinuities M{n} denotes the normal on the discontinuity pointing from side 0 towards side 1 |
384 |
calculated from L{getNormal<escript.FunctionSpace.getNormal>} of L{FunctionOnContactZero<escript.FunctionOnContactZero>}. For a system of PDEs |
385 |
the contact condition takes the form |
386 |
|
387 |
M{n[j]*J0[i,j]=n[j]*J1[i,j]=y_contact[i]- d_contact[i,k]*jump(u)[k]} |
388 |
|
389 |
where M{J0} and M{J1} are the fluxes on side 0 and side 1 of the discontinuity, respectively. M{jump(u)}, which is the difference |
390 |
of the solution at side 1 and at side 0, denotes the jump of M{u} across discontinuity along the normal calcualted by |
391 |
L{jump<util.jump>}. |
392 |
The coefficient M{d_contact} is a rank two and M{y_contact} is a rank one both in the L{FunctionOnContactZero<escript.FunctionOnContactZero>} or L{FunctionOnContactOne<escript.FunctionOnContactOne>}. |
393 |
In case of a single PDE and a single component solution the contact condition takes the form |
394 |
|
395 |
M{n[j]*J0_{j}=n[j]*J1_{j}=y_contact-d_contact*jump(u)} |
396 |
|
397 |
In this case the the coefficient M{d_contact} and M{y_contact} are eaach scalar |
398 |
both in the L{FunctionOnContactZero<escript.FunctionOnContactZero>} or L{FunctionOnContactOne<escript.FunctionOnContactOne>}. |
399 |
|
400 |
@cvar DEFAULT: The default method used to solve the system of linear equations |
401 |
@cvar DIRECT: The direct solver based on LDU factorization |
402 |
@cvar CHOLEVSKY: The direct solver based on LDLt factorization (can only be applied for symmetric PDEs) |
403 |
@cvar PCG: The preconditioned conjugate gradient method (can only be applied for symmetric PDEs) |
404 |
@cvar CR: The conjugate residual method |
405 |
@cvar CGS: The conjugate gardient square method |
406 |
@cvar BICGSTAB: The stabilized BiConjugate Gradient method. |
407 |
@cvar SSOR: The symmetric overrealaxtion method |
408 |
@cvar ILU0: The incomplete LU factorization preconditioner with no fill in |
409 |
@cvar ILUT: The incomplete LU factorization preconditioner with will in |
410 |
@cvar JACOBI: The Jacobi preconditioner |
411 |
@cvar GMRES: The Gram-Schmidt minimum residual method |
412 |
@cvar PRES20: Special GMRES with restart after 20 steps and truncation after 5 residuals |
413 |
@cvar LUMPING: Matrix lumping. |
414 |
@cvar NO_REORDERING: No matrix reordering allowed |
415 |
@cvar MINIMUM_FILL_IN: Reorder matrix to reduce fill-in during factorization |
416 |
@cvar NESTED_DISSECTION: Reorder matrix to improve load balancing during factorization |
417 |
@cvar PASO: PASO solver package |
418 |
@cvar SCSL: SGI SCSL solver library |
419 |
@cvar MKL: Intel's MKL solver library |
420 |
@cvar UMFPACK: the UMFPACK library |
421 |
@cvar ITERATIVE: The default iterative solver |
422 |
@cvar AMG: algebraic multi grid |
423 |
@cvar RILU: recursive ILU |
424 |
|
425 |
""" |
426 |
DEFAULT= 0 |
427 |
DIRECT= 1 |
428 |
CHOLEVSKY= 2 |
429 |
PCG= 3 |
430 |
CR= 4 |
431 |
CGS= 5 |
432 |
BICGSTAB= 6 |
433 |
SSOR= 7 |
434 |
ILU0= 8 |
435 |
ILUT= 9 |
436 |
JACOBI= 10 |
437 |
GMRES= 11 |
438 |
PRES20= 12 |
439 |
LUMPING= 13 |
440 |
NO_REORDERING= 17 |
441 |
MINIMUM_FILL_IN= 18 |
442 |
NESTED_DISSECTION= 19 |
443 |
SCSL= 14 |
444 |
MKL= 15 |
445 |
UMFPACK= 16 |
446 |
ITERATIVE= 20 |
447 |
PASO= 21 |
448 |
AMG= 22 |
449 |
RILU = 23 |
450 |
|
451 |
SMALL_TOLERANCE=1.e-13 |
452 |
__PACKAGE_KEY="package" |
453 |
__METHOD_KEY="method" |
454 |
__SYMMETRY_KEY="symmetric" |
455 |
__TOLERANCE_KEY="tolerance" |
456 |
__PRECONDITIONER_KEY="preconditioner" |
457 |
|
458 |
|
459 |
def __init__(self,domain,numEquations=None,numSolutions=None,debug=False): |
460 |
""" |
461 |
initializes a new linear PDE |
462 |
|
463 |
@param domain: domain of the PDE |
464 |
@type domain: L{Domain<escript.Domain>} |
465 |
@param numEquations: number of equations. If numEquations==None the number of equations |
466 |
is exracted from the PDE coefficients. |
467 |
@param numSolutions: number of solution components. If numSolutions==None the number of solution components |
468 |
is exracted from the PDE coefficients. |
469 |
@param debug: if True debug informations are printed. |
470 |
|
471 |
""" |
472 |
super(LinearPDE, self).__init__() |
473 |
# |
474 |
# the coefficients of the general PDE: |
475 |
# |
476 |
self.__COEFFICIENTS_OF_GENEARL_PDE={ |
477 |
"A" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_DIM,PDECoefficient.BY_SOLUTION,PDECoefficient.BY_DIM),PDECoefficient.OPERATOR), |
478 |
"B" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_DIM,PDECoefficient.BY_SOLUTION),PDECoefficient.OPERATOR), |
479 |
"C" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_SOLUTION,PDECoefficient.BY_DIM),PDECoefficient.OPERATOR), |
480 |
"D" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_SOLUTION),PDECoefficient.OPERATOR), |
481 |
"X" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_DIM),PDECoefficient.RIGHTHANDSIDE), |
482 |
"Y" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), |
483 |
"d" : PDECoefficient(PDECoefficient.BOUNDARY,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_SOLUTION),PDECoefficient.OPERATOR), |
484 |
"y" : PDECoefficient(PDECoefficient.BOUNDARY,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), |
485 |
"d_contact" : PDECoefficient(PDECoefficient.CONTACT,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_SOLUTION),PDECoefficient.OPERATOR), |
486 |
"y_contact" : PDECoefficient(PDECoefficient.CONTACT,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), |
487 |
"r" : PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_SOLUTION,),PDECoefficient.RIGHTHANDSIDE), |
488 |
"q" : PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_SOLUTION,),PDECoefficient.BOTH)} |
489 |
|
490 |
# COEFFICIENTS can be overwritten by subclasses: |
491 |
self.COEFFICIENTS=self.__COEFFICIENTS_OF_GENEARL_PDE |
492 |
self.__altered_coefficients=False |
493 |
# initialize attributes |
494 |
self.__debug=debug |
495 |
self.__domain=domain |
496 |
self.__numEquations=numEquations |
497 |
self.__numSolutions=numSolutions |
498 |
self.__resetSystem() |
499 |
|
500 |
# set some default values: |
501 |
self.__reduce_equation_order=False |
502 |
self.__reduce_solution_order=False |
503 |
self.__tolerance=1.e-8 |
504 |
self.__solver_method=self.DEFAULT |
505 |
self.__solver_package=self.DEFAULT |
506 |
self.__preconditioner=self.DEFAULT |
507 |
self.__matrix_type=self.__domain.getSystemMatrixTypeId(self.DEFAULT,self.DEFAULT,False) |
508 |
self.__sym=False |
509 |
|
510 |
self.resetCoefficients() |
511 |
self.trace("PDE Coeffients are %s"%str(self.COEFFICIENTS.keys())) |
512 |
# ============================================================================= |
513 |
# general stuff: |
514 |
# ============================================================================= |
515 |
def __str__(self): |
516 |
""" |
517 |
returns string representation of the PDE |
518 |
|
519 |
@return: a simple representation of the PDE |
520 |
@rtype: C{str} |
521 |
""" |
522 |
return "<LinearPDE %d>"%id(self) |
523 |
# ============================================================================= |
524 |
# debug : |
525 |
# ============================================================================= |
526 |
def setDebugOn(self): |
527 |
""" |
528 |
switches on debugging |
529 |
""" |
530 |
self.__debug=not None |
531 |
|
532 |
def setDebugOff(self): |
533 |
""" |
534 |
switches off debugging |
535 |
""" |
536 |
self.__debug=None |
537 |
|
538 |
def trace(self,text): |
539 |
""" |
540 |
print the text message if debugging is swiched on. |
541 |
@param text: message |
542 |
@type text: C{string} |
543 |
""" |
544 |
if self.__debug: print "%s: %s"%(str(self),text) |
545 |
|
546 |
# ============================================================================= |
547 |
# some service functions: |
548 |
# ============================================================================= |
549 |
def getDomain(self): |
550 |
""" |
551 |
returns the domain of the PDE |
552 |
|
553 |
@return: the domain of the PDE |
554 |
@rtype: L{Domain<escript.Domain>} |
555 |
""" |
556 |
return self.__domain |
557 |
|
558 |
def getDim(self): |
559 |
""" |
560 |
returns the spatial dimension of the PDE |
561 |
|
562 |
@return: the spatial dimension of the PDE domain |
563 |
@rtype: C{int} |
564 |
""" |
565 |
return self.getDomain().getDim() |
566 |
|
567 |
def getNumEquations(self): |
568 |
""" |
569 |
returns the number of equations |
570 |
|
571 |
@return: the number of equations |
572 |
@rtype: C{int} |
573 |
@raise UndefinedPDEError: if the number of equations is not be specified yet. |
574 |
""" |
575 |
if self.__numEquations==None: |
576 |
raise UndefinedPDEError,"Number of equations is undefined. Please specify argument numEquations." |
577 |
else: |
578 |
return self.__numEquations |
579 |
|
580 |
def getNumSolutions(self): |
581 |
""" |
582 |
returns the number of unknowns |
583 |
|
584 |
@return: the number of unknowns |
585 |
@rtype: C{int} |
586 |
@raise UndefinedPDEError: if the number of unknowns is not be specified yet. |
587 |
""" |
588 |
if self.__numSolutions==None: |
589 |
raise UndefinedPDEError,"Number of solution is undefined. Please specify argument numSolutions." |
590 |
else: |
591 |
return self.__numSolutions |
592 |
|
593 |
def reduceEquationOrder(self): |
594 |
""" |
595 |
return status for order reduction for equation |
596 |
|
597 |
@return: return True is reduced interpolation order is used for the represenation of the equation |
598 |
@rtype: L{bool} |
599 |
""" |
600 |
return self.__reduce_equation_order |
601 |
|
602 |
def reduceSolutionOrder(self): |
603 |
""" |
604 |
return status for order reduction for the solution |
605 |
|
606 |
@return: return True is reduced interpolation order is used for the represenation of the solution |
607 |
@rtype: L{bool} |
608 |
""" |
609 |
return self.__reduce_solution_order |
610 |
|
611 |
def getFunctionSpaceForEquation(self): |
612 |
""" |
613 |
returns the L{FunctionSpace<escript.FunctionSpace>} used to discretize the equation |
614 |
|
615 |
@return: representation space of equation |
616 |
@rtype: L{FunctionSpace<escript.FunctionSpace>} |
617 |
""" |
618 |
if self.reduceEquationOrder(): |
619 |
return escript.ReducedSolution(self.getDomain()) |
620 |
else: |
621 |
return escript.Solution(self.getDomain()) |
622 |
|
623 |
def getFunctionSpaceForSolution(self): |
624 |
""" |
625 |
returns the L{FunctionSpace<escript.FunctionSpace>} used to represent the solution |
626 |
|
627 |
@return: representation space of solution |
628 |
@rtype: L{FunctionSpace<escript.FunctionSpace>} |
629 |
""" |
630 |
if self.reduceSolutionOrder(): |
631 |
return escript.ReducedSolution(self.getDomain()) |
632 |
else: |
633 |
return escript.Solution(self.getDomain()) |
634 |
|
635 |
|
636 |
def getOperator(self): |
637 |
""" |
638 |
provides access to the operator of the PDE |
639 |
|
640 |
@return: the operator of the PDE |
641 |
@rtype: L{Operator<escript.Operator>} |
642 |
""" |
643 |
m=self.getSystem()[0] |
644 |
if self.isUsingLumping(): |
645 |
return self.copyConstraint(1./m) |
646 |
else: |
647 |
return m |
648 |
|
649 |
def getRightHandSide(self): |
650 |
""" |
651 |
provides access to the right hand side of the PDE |
652 |
@return: the right hand side of the PDE |
653 |
@rtype: L{Data<escript.Data>} |
654 |
""" |
655 |
r=self.getSystem()[1] |
656 |
if self.isUsingLumping(): |
657 |
return self.copyConstraint(r) |
658 |
else: |
659 |
return r |
660 |
|
661 |
def applyOperator(self,u=None): |
662 |
""" |
663 |
applies the operator of the PDE to a given u or the solution of PDE if u is not present. |
664 |
|
665 |
@param u: argument of the operator. It must be representable in C{elf.getFunctionSpaceForSolution()}. If u is not present or equals L{None} |
666 |
the current solution is used. |
667 |
@type u: L{Data<escript.Data>} or None |
668 |
@return: image of u |
669 |
@rtype: L{Data<escript.Data>} |
670 |
""" |
671 |
if u==None: |
672 |
return self.getOperator()*self.getSolution() |
673 |
else: |
674 |
self.getOperator()*escript.Data(u,self.getFunctionSpaceForSolution()) |
675 |
|
676 |
def getResidual(self,u=None): |
677 |
""" |
678 |
return the residual of u or the current solution if u is not present. |
679 |
|
680 |
@param u: argument in the residual calculation. It must be representable in C{elf.getFunctionSpaceForSolution()}. If u is not present or equals L{None} |
681 |
the current solution is used. |
682 |
@type u: L{Data<escript.Data>} or None |
683 |
@return: residual of u |
684 |
@rtype: L{Data<escript.Data>} |
685 |
""" |
686 |
return self.applyOperator(u)-self.getRightHandSide() |
687 |
|
688 |
def checkSymmetry(self,verbose=True): |
689 |
""" |
690 |
test the PDE for symmetry. |
691 |
|
692 |
@param verbose: if equal to True or not present a report on coefficients which are breaking the symmetry is printed. |
693 |
@type verbose: C{bool} |
694 |
@return: True if the PDE is symmetric. |
695 |
@rtype: L{Data<escript.Data>} |
696 |
@note: This is a very expensive operation. It should be used for degugging only! The symmetry flag is not altered. |
697 |
""" |
698 |
verbose=verbose or self.__debug |
699 |
out=True |
700 |
if self.getNumSolutions()!=self.getNumEquations(): |
701 |
if verbose: print "non-symmetric PDE because of different number of equations and solutions" |
702 |
out=False |
703 |
else: |
704 |
A=self.getCoefficientOfGeneralPDE("A") |
705 |
if not A.isEmpty(): |
706 |
tol=util.Lsup(A)*self.SMALL_TOLERANCE |
707 |
if self.getNumSolutions()>1: |
708 |
for i in range(self.getNumEquations()): |
709 |
for j in range(self.getDim()): |
710 |
for k in range(self.getNumSolutions()): |
711 |
for l in range(self.getDim()): |
712 |
if util.Lsup(A[i,j,k,l]-A[k,l,i,j])>tol: |
713 |
if verbose: print "non-symmetric PDE because A[%d,%d,%d,%d]!=A[%d,%d,%d,%d]"%(i,j,k,l,k,l,i,j) |
714 |
out=False |
715 |
else: |
716 |
for j in range(self.getDim()): |
717 |
for l in range(self.getDim()): |
718 |
if util.Lsup(A[j,l]-A[l,j])>tol: |
719 |
if verbose: print "non-symmetric PDE because A[%d,%d]!=A[%d,%d]"%(j,l,l,j) |
720 |
out=False |
721 |
B=self.getCoefficientOfGeneralPDE("B") |
722 |
C=self.getCoefficientOfGeneralPDE("C") |
723 |
if B.isEmpty() and not C.isEmpty(): |
724 |
if verbose: print "non-symmetric PDE because B is not present but C is" |
725 |
out=False |
726 |
elif not B.isEmpty() and C.isEmpty(): |
727 |
if verbose: print "non-symmetric PDE because C is not present but B is" |
728 |
out=False |
729 |
elif not B.isEmpty() and not C.isEmpty(): |
730 |
tol=(util.Lsup(B)+util.Lsup(C))*self.SMALL_TOLERANCE/2. |
731 |
if self.getNumSolutions()>1: |
732 |
for i in range(self.getNumEquations()): |
733 |
for j in range(self.getDim()): |
734 |
for k in range(self.getNumSolutions()): |
735 |
if util.Lsup(B[i,j,k]-C[k,i,j])>tol: |
736 |
if verbose: print "non-symmetric PDE because B[%d,%d,%d]!=C[%d,%d,%d]"%(i,j,k,k,i,j) |
737 |
out=False |
738 |
else: |
739 |
for j in range(self.getDim()): |
740 |
if util.Lsup(B[j]-C[j])>tol: |
741 |
if verbose: print "non-symmetric PDE because B[%d]!=C[%d]"%(j,j) |
742 |
out=False |
743 |
if self.getNumSolutions()>1: |
744 |
D=self.getCoefficientOfGeneralPDE("D") |
745 |
if not D.isEmpty(): |
746 |
tol=util.Lsup(D)*self.SMALL_TOLERANCE |
747 |
for i in range(self.getNumEquations()): |
748 |
for k in range(self.getNumSolutions()): |
749 |
if util.Lsup(D[i,k]-D[k,i])>tol: |
750 |
if verbose: print "non-symmetric PDE because D[%d,%d]!=D[%d,%d]"%(i,k,k,i) |
751 |
out=False |
752 |
d=self.getCoefficientOfGeneralPDE("d") |
753 |
if not d.isEmpty(): |
754 |
tol=util.Lsup(d)*self.SMALL_TOLERANCE |
755 |
for i in range(self.getNumEquations()): |
756 |
for k in range(self.getNumSolutions()): |
757 |
if util.Lsup(d[i,k]-d[k,i])>tol: |
758 |
if verbose: print "non-symmetric PDE because d[%d,%d]!=d[%d,%d]"%(i,k,k,i) |
759 |
out=False |
760 |
d_contact=self.getCoefficientOfGeneralPDE("d_contact") |
761 |
if not d_contact.isEmpty(): |
762 |
tol=util.Lsup(d_contact)*self.SMALL_TOLERANCE |
763 |
for i in range(self.getNumEquations()): |
764 |
for k in range(self.getNumSolutions()): |
765 |
if util.Lsup(d_contact[i,k]-d_contact[k,i])>tol: |
766 |
if verbose: print "non-symmetric PDE because d_contact[%d,%d]!=d_contact[%d,%d]"%(i,k,k,i) |
767 |
out=False |
768 |
return out |
769 |
|
770 |
def getSolution(self,**options): |
771 |
""" |
772 |
returns the solution of the PDE. If the solution is not valid the PDE is solved. |
773 |
|
774 |
@return: the solution |
775 |
@rtype: L{Data<escript.Data>} |
776 |
@param options: solver options |
777 |
@keyword verbose: True to get some information during PDE solution |
778 |
@type verbose: C{bool} |
779 |
@keyword reordering: reordering scheme to be used during elimination. Allowed values are |
780 |
L{NO_REORDERING}, L{MINIMUM_FILL_IN}, L{NESTED_DISSECTION} |
781 |
@keyword iter_max: maximum number of iteration steps allowed. |
782 |
@keyword drop_tolerance: threshold for drupping in L{ILUT} |
783 |
@keyword drop_storage: maximum of allowed memory in L{ILUT} |
784 |
@keyword truncation: maximum number of residuals in L{GMRES} |
785 |
@keyword restart: restart cycle length in L{GMRES} |
786 |
""" |
787 |
if not self.__solution_isValid: |
788 |
mat,f=self.getSystem() |
789 |
if self.isUsingLumping(): |
790 |
self.__solution=self.copyConstraint(f*mat) |
791 |
else: |
792 |
options[self.__TOLERANCE_KEY]=self.getTolerance() |
793 |
options[self.__METHOD_KEY]=self.getSolverMethod()[0] |
794 |
options[self.__PRECONDITIONER_KEY]=self.getSolverMethod()[1] |
795 |
options[self.__PACKAGE_KEY]=self.getSolverPackage() |
796 |
options[self.__SYMMETRY_KEY]=self.isSymmetric() |
797 |
self.trace("PDE is resolved.") |
798 |
self.trace("solver options: %s"%str(options)) |
799 |
self.__solution=mat.solve(f,options) |
800 |
self.__solution_isValid=True |
801 |
return self.__solution |
802 |
|
803 |
def getFlux(self,u=None): |
804 |
""" |
805 |
returns the flux M{J} for a given M{u} |
806 |
|
807 |
M{J[i,j]=A[i,j,k,l]*grad(u[k])[l]+B[i,j,k]u[k]-X[i,j]} |
808 |
|
809 |
or |
810 |
|
811 |
M{J[j]=A[i,j]*grad(u)[l]+B[j]u-X[j]} |
812 |
|
813 |
@param u: argument in the flux. If u is not present or equals L{None} the current solution is used. |
814 |
@type u: L{Data<escript.Data>} or None |
815 |
@return: flux |
816 |
@rtype: L{Data<escript.Data>} |
817 |
""" |
818 |
if u==None: u=self.getSolution() |
819 |
return util.tensormult(self.getCoefficientOfGeneralPDE("A"),util.grad(u))+util.matrixmult(self.getCoefficientOfGeneralPDE("B"),u)-util.self.getCoefficientOfGeneralPDE("X") |
820 |
# ============================================================================= |
821 |
# solver settings: |
822 |
# ============================================================================= |
823 |
def setSolverMethod(self,solver=None,preconditioner=None): |
824 |
""" |
825 |
sets a new solver |
826 |
|
827 |
@param solver: sets a new solver method. |
828 |
@type solver: one of L{DEFAULT}, L{ITERATIVE} L{DIRECT}, L{CHOLEVSKY}, L{PCG}, L{CR}, L{CGS}, L{BICGSTAB}, L{SSOR}, L{GMRES}, L{PRES20}, L{LUMPING}, L{AMG} |
829 |
@param preconditioner: sets a new solver method. |
830 |
@type preconditioner: one of L{DEFAULT}, L{JACOBI} L{ILU0}, L{ILUT},L{SSOR}, L{RILU} |
831 |
""" |
832 |
if solver==None: solve=self.DEFAULT |
833 |
if preconditioner==None: preconditioner=self.DEFAULT |
834 |
if not (solver,preconditioner)==self.getSolverMethod(): |
835 |
self.__solver_method=solver |
836 |
self.__preconditioner=preconditioner |
837 |
self.__checkMatrixType() |
838 |
self.trace("New solver is %s"%self.getSolverMethodName()) |
839 |
|
840 |
def getSolverMethodName(self): |
841 |
""" |
842 |
returns the name of the solver currently used |
843 |
|
844 |
@return: the name of the solver currently used. |
845 |
@rtype: C{string} |
846 |
""" |
847 |
|
848 |
m=self.getSolverMethod() |
849 |
p=self.getSolverPackage() |
850 |
method="" |
851 |
if m[0]==self.DEFAULT: method="DEFAULT" |
852 |
elif m[0]==self.DIRECT: method= "DIRECT" |
853 |
elif m[0]==self.ITERATIVE: method= "ITERATIVE" |
854 |
elif m[0]==self.CHOLEVSKY: method= "CHOLEVSKY" |
855 |
elif m[0]==self.PCG: method= "PCG" |
856 |
elif m[0]==self.CR: method= "CR" |
857 |
elif m[0]==self.CGS: method= "CGS" |
858 |
elif m[0]==self.BICGSTAB: method= "BICGSTAB" |
859 |
elif m[0]==self.SSOR: method= "SSOR" |
860 |
elif m[0]==self.GMRES: method= "GMRES" |
861 |
elif m[0]==self.PRES20: method= "PRES20" |
862 |
elif m[0]==self.LUMPING: method= "LUMPING" |
863 |
elif m[0]==self.AMG: method= "AMG" |
864 |
if m[1]==self.DEFAULT: method+="+DEFAULT" |
865 |
elif m[1]==self.JACOBI: method+= "+JACOBI" |
866 |
elif m[1]==self.ILU0: method+= "+ILU0" |
867 |
elif m[1]==self.ILUT: method+= "+ILUT" |
868 |
elif m[1]==self.SSOR: method+= "+SSOR" |
869 |
elif m[1]==self.AMG: method+= "+AMG" |
870 |
elif m[1]==self.RILU: method+= "+RILU" |
871 |
if p==self.DEFAULT: package="DEFAULT" |
872 |
elif p==self.PASO: package= "PASO" |
873 |
elif p==self.MKL: package= "MKL" |
874 |
elif p==self.SCSL: package= "SCSL" |
875 |
elif p==self.UMFPACK: package= "UMFPACK" |
876 |
else : method="unknown" |
877 |
return "%s solver of %s package"%(method,package) |
878 |
|
879 |
|
880 |
def getSolverMethod(self): |
881 |
""" |
882 |
returns the solver method |
883 |
|
884 |
@return: the solver method currently be used. |
885 |
@rtype: C{int} |
886 |
""" |
887 |
return self.__solver_method,self.__preconditioner |
888 |
|
889 |
def setSolverPackage(self,package=None): |
890 |
""" |
891 |
sets a new solver package |
892 |
|
893 |
@param solver: sets a new solver method. |
894 |
@type solver: one of L{DEFAULT}, L{PASO} L{SCSL}, L{MKL}, L{UMLPACK} |
895 |
""" |
896 |
if package==None: package=self.DEFAULT |
897 |
if not package==self.getSolverPackage(): |
898 |
self.__solver_method=solver |
899 |
self.__checkMatrixType() |
900 |
self.trace("New solver is %s"%self.getSolverMethodName()) |
901 |
|
902 |
def getSolverPackage(self): |
903 |
""" |
904 |
returns the package of the solver |
905 |
|
906 |
@return: the solver package currently being used. |
907 |
@rtype: C{int} |
908 |
""" |
909 |
return self.__solver_package |
910 |
|
911 |
def isUsingLumping(self): |
912 |
""" |
913 |
checks if matrix lumping is used a solver method |
914 |
|
915 |
@return: True is lumping is currently used a solver method. |
916 |
@rtype: C{bool} |
917 |
""" |
918 |
return self.getSolverMethod()[0]==self.LUMPING |
919 |
|
920 |
def setTolerance(self,tol=1.e-8): |
921 |
""" |
922 |
resets the tolerance for the solver method to tol where for an appropriate norm M{|.|} |
923 |
|
924 |
M{|L{getResidual}()|<tol*|L{getRightHandSide}()|} |
925 |
|
926 |
defines the stopping criterion. |
927 |
|
928 |
@param tol: new tolerance for the solver. If the tol is lower then the current tolerence |
929 |
the system will be resolved. |
930 |
@type tol: positive C{float} |
931 |
@raise ValueException: if tolerance is not positive. |
932 |
""" |
933 |
if not tol>0: |
934 |
raise ValueException,"Tolerance as to be positive" |
935 |
if tol<self.getTolerance(): self.__invalidateSolution() |
936 |
self.trace("New tolerance %e"%tol) |
937 |
self.__tolerance=tol |
938 |
return |
939 |
|
940 |
def getTolerance(self): |
941 |
""" |
942 |
returns the tolerance set for the solution |
943 |
|
944 |
@return: tolerance currently used. |
945 |
@rtype: C{float} |
946 |
""" |
947 |
return self.__tolerance |
948 |
|
949 |
# ============================================================================= |
950 |
# symmetry flag: |
951 |
# ============================================================================= |
952 |
def isSymmetric(self): |
953 |
""" |
954 |
checks if symmetry is indicated. |
955 |
|
956 |
@return: True is a symmetric PDE is indicated, otherwise False is returned |
957 |
@rtype: C{bool} |
958 |
""" |
959 |
return self.__sym |
960 |
|
961 |
def setSymmetryOn(self): |
962 |
""" |
963 |
sets the symmetry flag. |
964 |
""" |
965 |
if not self.isSymmetric(): |
966 |
self.trace("PDE is set to be symmetric") |
967 |
self.__sym=True |
968 |
self.__checkMatrixType() |
969 |
|
970 |
def setSymmetryOff(self): |
971 |
""" |
972 |
removes the symmetry flag. |
973 |
""" |
974 |
if self.isSymmetric(): |
975 |
self.trace("PDE is set to be unsymmetric") |
976 |
self.__sym=False |
977 |
self.__checkMatrixType() |
978 |
|
979 |
def setSymmetryTo(self,flag=False): |
980 |
""" |
981 |
sets the symmetry flag to flag |
982 |
|
983 |
@param flag: If flag, the symmetry flag is set otherwise the symmetry flag is released. |
984 |
@type flag: C{bool} |
985 |
""" |
986 |
if flag: |
987 |
self.setSymmetryOn() |
988 |
else: |
989 |
self.setSymmetryOff() |
990 |
|
991 |
# ============================================================================= |
992 |
# function space handling for the equation as well as the solution |
993 |
# ============================================================================= |
994 |
def setReducedOrderOn(self): |
995 |
""" |
996 |
switches on reduced order for solution and equation representation |
997 |
|
998 |
@raise RuntimeError: if order reduction is altered after a coefficient has been set. |
999 |
""" |
1000 |
self.setReducedOrderForSolutionOn() |
1001 |
self.setReducedOrderForEquationOn() |
1002 |
|
1003 |
def setReducedOrderOff(self): |
1004 |
""" |
1005 |
switches off reduced order for solution and equation representation |
1006 |
|
1007 |
@raise RuntimeError: if order reduction is altered after a coefficient has been set. |
1008 |
""" |
1009 |
self.setReducedOrderForSolutionOff() |
1010 |
self.setReducedOrderForEquationOff() |
1011 |
|
1012 |
def setReducedOrderTo(self,flag=False): |
1013 |
""" |
1014 |
sets order reduction for both solution and equation representation according to flag. |
1015 |
@param flag: if flag is True, the order reduction is switched on for both solution and equation representation, otherwise or |
1016 |
if flag is not present order reduction is switched off |
1017 |
@type flag: C{bool} |
1018 |
@raise RuntimeError: if order reduction is altered after a coefficient has been set. |
1019 |
""" |
1020 |
self.setReducedOrderForSolutionTo(flag) |
1021 |
self.setReducedOrderForEquationTo(flag) |
1022 |
|
1023 |
|
1024 |
def setReducedOrderForSolutionOn(self): |
1025 |
""" |
1026 |
switches on reduced order for solution representation |
1027 |
|
1028 |
@raise RuntimeError: if order reduction is altered after a coefficient has been set. |
1029 |
""" |
1030 |
if not self.__reduce_solution_order: |
1031 |
if self.__altered_coefficients: |
1032 |
raise RuntimeError,"order cannot be altered after coefficients have been defined." |
1033 |
self.trace("Reduced order is used to solution representation.") |
1034 |
self.__reduce_solution_order=True |
1035 |
self.__resetSystem() |
1036 |
|
1037 |
def setReducedOrderForSolutionOff(self): |
1038 |
""" |
1039 |
switches off reduced order for solution representation |
1040 |
|
1041 |
@raise RuntimeError: if order reduction is altered after a coefficient has been set. |
1042 |
""" |
1043 |
if self.__reduce_solution_order: |
1044 |
if self.__altered_coefficients: |
1045 |
raise RuntimeError,"order cannot be altered after coefficients have been defined." |
1046 |
self.trace("Full order is used to interpolate solution.") |
1047 |
self.__reduce_solution_order=False |
1048 |
self.__resetSystem() |
1049 |
|
1050 |
def setReducedOrderForSolutionTo(self,flag=False): |
1051 |
""" |
1052 |
sets order for test functions according to flag |
1053 |
|
1054 |
@param flag: if flag is True, the order reduction is switched on for solution representation, otherwise or |
1055 |
if flag is not present order reduction is switched off |
1056 |
@type flag: C{bool} |
1057 |
@raise RuntimeError: if order reduction is altered after a coefficient has been set. |
1058 |
""" |
1059 |
if flag: |
1060 |
self.setReducedOrderForSolutionOn() |
1061 |
else: |
1062 |
self.setReducedOrderForSolutionOff() |
1063 |
|
1064 |
def setReducedOrderForEquationOn(self): |
1065 |
""" |
1066 |
switches on reduced order for equation representation |
1067 |
|
1068 |
@raise RuntimeError: if order reduction is altered after a coefficient has been set. |
1069 |
""" |
1070 |
if not self.__reduce_equation_order: |
1071 |
if self.__altered_coefficients: |
1072 |
raise RuntimeError,"order cannot be altered after coefficients have been defined." |
1073 |
self.trace("Reduced order is used for test functions.") |
1074 |
self.__reduce_equation_order=True |
1075 |
self.__resetSystem() |
1076 |
|
1077 |
def setReducedOrderForEquationOff(self): |
1078 |
""" |
1079 |
switches off reduced order for equation representation |
1080 |
|
1081 |
@raise RuntimeError: if order reduction is altered after a coefficient has been set. |
1082 |
""" |
1083 |
if self.__reduce_equation_order: |
1084 |
if self.__altered_coefficients: |
1085 |
raise RuntimeError,"order cannot be altered after coefficients have been defined." |
1086 |
self.trace("Full order is used for test functions.") |
1087 |
self.__reduce_equation_order=False |
1088 |
self.__resetSystem() |
1089 |
|
1090 |
def setReducedOrderForEquationTo(self,flag=False): |
1091 |
""" |
1092 |
sets order for test functions according to flag |
1093 |
|
1094 |
@param flag: if flag is True, the order reduction is switched on for equation representation, otherwise or |
1095 |
if flag is not present order reduction is switched off |
1096 |
@type flag: C{bool} |
1097 |
@raise RuntimeError: if order reduction is altered after a coefficient has been set. |
1098 |
""" |
1099 |
if flag: |
1100 |
self.setReducedOrderForEquationOn() |
1101 |
else: |
1102 |
self.setReducedOrderForEquationOff() |
1103 |
|
1104 |
# ============================================================================= |
1105 |
# private method: |
1106 |
# ============================================================================= |
1107 |
def __checkMatrixType(self): |
1108 |
""" |
1109 |
reassess the matrix type and, if a new matrix is needed, resets the system. |
1110 |
""" |
1111 |
new_matrix_type=self.getDomain().getSystemMatrixTypeId(self.getSolverMethod()[0],self.getSolverPackage(),self.isSymmetric()) |
1112 |
if not new_matrix_type==self.__matrix_type: |
1113 |
self.trace("Matrix type is now %d."%new_matrix_type) |
1114 |
self.__matrix_type=new_matrix_type |
1115 |
self.__resetSystem() |
1116 |
# |
1117 |
# rebuild switches : |
1118 |
# |
1119 |
def __invalidateSolution(self): |
1120 |
""" |
1121 |
indicates the PDE has to be resolved if the solution is requested |
1122 |
""" |
1123 |
if self.__solution_isValid: self.trace("PDE has to be resolved.") |
1124 |
self.__solution_isValid=False |
1125 |
|
1126 |
def __invalidateOperator(self): |
1127 |
""" |
1128 |
indicates the operator has to be rebuilt next time it is used |
1129 |
""" |
1130 |
if self.__operator_is_Valid: self.trace("Operator has to be rebuilt.") |
1131 |
self.__invalidateSolution() |
1132 |
self.__operator_is_Valid=False |
1133 |
|
1134 |
def __invalidateRightHandSide(self): |
1135 |
""" |
1136 |
indicates the right hand side has to be rebuild next time it is used |
1137 |
""" |
1138 |
if self.__righthandside_isValid: self.trace("Right hand side has to be rebuilt.") |
1139 |
self.__invalidateSolution() |
1140 |
self.__righthandside_isValid=False |
1141 |
|
1142 |
def __invalidateSystem(self): |
1143 |
""" |
1144 |
annonced that everthing has to be rebuild: |
1145 |
""" |
1146 |
if self.__righthandside_isValid: self.trace("System has to be rebuilt.") |
1147 |
self.__invalidateSolution() |
1148 |
self.__invalidateOperator() |
1149 |
self.__invalidateRightHandSide() |
1150 |
|
1151 |
def __resetSystem(self): |
1152 |
""" |
1153 |
annonced that everthing has to be rebuild: |
1154 |
""" |
1155 |
self.trace("New System is built from scratch.") |
1156 |
self.__operator=escript.Operator() |
1157 |
self.__operator_is_Valid=False |
1158 |
self.__righthandside=escript.Data() |
1159 |
self.__righthandside_isValid=False |
1160 |
self.__solution=escript.Data() |
1161 |
self.__solution_isValid=False |
1162 |
# |
1163 |
# system initialization: |
1164 |
# |
1165 |
def __getNewOperator(self): |
1166 |
""" |
1167 |
returns an instance of a new operator |
1168 |
""" |
1169 |
self.trace("New operator is allocated.") |
1170 |
return self.getDomain().newOperator( \ |
1171 |
self.getNumEquations(), \ |
1172 |
self.getFunctionSpaceForEquation(), \ |
1173 |
self.getNumSolutions(), \ |
1174 |
self.getFunctionSpaceForSolution(), \ |
1175 |
self.__matrix_type) |
1176 |
|
1177 |
def __getNewRightHandSide(self): |
1178 |
""" |
1179 |
returns an instance of a new right hand side |
1180 |
""" |
1181 |
self.trace("New right hand side is allocated.") |
1182 |
if self.getNumEquations()>1: |
1183 |
return escript.Data(0.,(self.getNumEquations(),),self.getFunctionSpaceForEquation(),True) |
1184 |
else: |
1185 |
return escript.Data(0.,(),self.getFunctionSpaceForEquation(),True) |
1186 |
|
1187 |
def __getNewSolution(self): |
1188 |
""" |
1189 |
returns an instance of a new solution |
1190 |
""" |
1191 |
self.trace("New solution is allocated.") |
1192 |
if self.getNumSolutions()>1: |
1193 |
return escript.Data(0.,(self.getNumSolutions(),),self.getFunctionSpaceForSolution(),True) |
1194 |
else: |
1195 |
return escript.Data(0.,(),self.getFunctionSpaceForSolution(),True) |
1196 |
|
1197 |
def __makeFreshSolution(self): |
1198 |
""" |
1199 |
makes sure that the solution is instantiated and returns it initialized by zeros |
1200 |
""" |
1201 |
if self.__solution.isEmpty(): |
1202 |
self.__solution=self.__getNewSolution() |
1203 |
else: |
1204 |
self.__solution*=0 |
1205 |
self.trace("Solution is reset to zero.") |
1206 |
return self.__solution |
1207 |
|
1208 |
def __makeFreshRightHandSide(self): |
1209 |
""" |
1210 |
makes sure that the right hand side is instantiated and returns it initialized by zeros |
1211 |
""" |
1212 |
if self.__righthandside.isEmpty(): |
1213 |
self.__righthandside=self.__getNewRightHandSide() |
1214 |
else: |
1215 |
self.__righthandside*=0 |
1216 |
self.trace("Right hand side is reset to zero.") |
1217 |
return self.__righthandside |
1218 |
|
1219 |
def __makeFreshOperator(self): |
1220 |
""" |
1221 |
makes sure that the operator is instantiated and returns it initialized by zeros |
1222 |
""" |
1223 |
if self.__operator.isEmpty(): |
1224 |
self.__operator=self.__getNewOperator() |
1225 |
else: |
1226 |
self.__operator.resetValues() |
1227 |
self.trace("Operator reset to zero") |
1228 |
return self.__operator |
1229 |
|
1230 |
def __applyConstraint(self): |
1231 |
""" |
1232 |
applies the constraints defined by q and r to the system |
1233 |
""" |
1234 |
if not self.isUsingLumping(): |
1235 |
q=self.getCoefficientOfGeneralPDE("q") |
1236 |
r=self.getCoefficientOfGeneralPDE("r") |
1237 |
if not q.isEmpty() and not self.__operator.isEmpty(): |
1238 |
# q is the row and column mask to indicate where constraints are set: |
1239 |
row_q=escript.Data(q,self.getFunctionSpaceForEquation()) |
1240 |
col_q=escript.Data(q,self.getFunctionSpaceForSolution()) |
1241 |
u=self.__getNewSolution() |
1242 |
if r.isEmpty(): |
1243 |
r_s=self.__getNewSolution() |
1244 |
else: |
1245 |
r_s=escript.Data(r,self.getFunctionSpaceForSolution()) |
1246 |
u.copyWithMask(r_s,col_q) |
1247 |
if not self.__righthandside.isEmpty(): |
1248 |
self.__righthandside-=self.__operator*u |
1249 |
self.__righthandside=self.copyConstraint(self.__righthandside) |
1250 |
self.__operator.nullifyRowsAndCols(row_q,col_q,1.) |
1251 |
# ============================================================================= |
1252 |
# function giving access to coefficients of the general PDE: |
1253 |
# ============================================================================= |
1254 |
def getCoefficientOfGeneralPDE(self,name): |
1255 |
""" |
1256 |
return the value of the coefficient name of the general PDE. |
1257 |
|
1258 |
@note: This method is called by the assembling routine it can be overwritten |
1259 |
to map coefficients of a particular PDE to the general PDE. |
1260 |
@param name: name of the coefficient requested. |
1261 |
@type name: C{string} |
1262 |
@return: the value of the coefficient name |
1263 |
@rtype: L{Data<escript.Data>} |
1264 |
@raise IllegalCoefficient: if name is not one of coefficients |
1265 |
M{A}, M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. |
1266 |
""" |
1267 |
if self.hasCoefficientOfGeneralPDE(name): |
1268 |
return self.getCoefficient(name) |
1269 |
else: |
1270 |
raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name |
1271 |
|
1272 |
def hasCoefficientOfGeneralPDE(self,name): |
1273 |
""" |
1274 |
checks if name is a the name of a coefficient of the general PDE. |
1275 |
|
1276 |
@param name: name of the coefficient enquired. |
1277 |
@type name: C{string} |
1278 |
@return: True if name is the name of a coefficient of the general PDE. Otherwise False. |
1279 |
@rtype: C{bool} |
1280 |
|
1281 |
""" |
1282 |
return self.__COEFFICIENTS_OF_GENEARL_PDE.has_key(name) |
1283 |
|
1284 |
def createCoefficientOfGeneralPDE(self,name): |
1285 |
""" |
1286 |
returns a new instance of a coefficient for coefficient name of the general PDE |
1287 |
|
1288 |
@param name: name of the coefficient requested. |
1289 |
@type name: C{string} |
1290 |
@return: a coefficient name initialized to 0. |
1291 |
@rtype: L{Data<escript.Data>} |
1292 |
@raise IllegalCoefficient: if name is not one of coefficients |
1293 |
M{A}, M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. |
1294 |
""" |
1295 |
if self.hasCoefficientOfGeneralPDE(name): |
1296 |
return escript.Data(0,self.getShapeOfCoefficientOfGeneralPDE(name),self.getFunctionSpaceForCoefficientOfGeneralPDE(name)) |
1297 |
else: |
1298 |
raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name |
1299 |
|
1300 |
def getFunctionSpaceForCoefficientOfGeneralPDE(self,name): |
1301 |
""" |
1302 |
return the L{FunctionSpace<escript.FunctionSpace>} to be used for coefficient name of the general PDE |
1303 |
|
1304 |
@param name: name of the coefficient enquired. |
1305 |
@type name: C{string} |
1306 |
@return: the function space to be used for coefficient name |
1307 |
@rtype: L{FunctionSpace<escript.FunctionSpace>} |
1308 |
@raise IllegalCoefficient: if name is not one of coefficients |
1309 |
M{A}, M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. |
1310 |
""" |
1311 |
if self.hasCoefficientOfGeneralPDE(name): |
1312 |
return self.__COEFFICIENTS_OF_GENEARL_PDE[name].getFunctionSpace(self.getDomain()) |
1313 |
else: |
1314 |
raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name |
1315 |
|
1316 |
def getShapeOfCoefficientOfGeneralPDE(self,name): |
1317 |
""" |
1318 |
return the shape of the coefficient name of the general PDE |
1319 |
|
1320 |
@param name: name of the coefficient enquired. |
1321 |
@type name: C{string} |
1322 |
@return: the shape of the coefficient name |
1323 |
@rtype: C{tuple} of C{int} |
1324 |
@raise IllegalCoefficient: if name is not one of coefficients |
1325 |
M{A}, M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. |
1326 |
""" |
1327 |
if self.hasCoefficientOfGeneralPDE(name): |
1328 |
return self.__COEFFICIENTS_OF_GENEARL_PDE[name].getShape(self.getDomain(),self.getNumEquations(),self.getNumSolutions()) |
1329 |
else: |
1330 |
raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name |
1331 |
|
1332 |
# ============================================================================= |
1333 |
# functions giving access to coefficients of a particular PDE implementation: |
1334 |
# ============================================================================= |
1335 |
def getCoefficient(self,name): |
1336 |
""" |
1337 |
returns the value of the coefficient name |
1338 |
|
1339 |
@param name: name of the coefficient requested. |
1340 |
@type name: C{string} |
1341 |
@return: the value of the coefficient name |
1342 |
@rtype: L{Data<escript.Data>} |
1343 |
@raise IllegalCoefficient: if name is not a coefficient of the PDE. |
1344 |
""" |
1345 |
if self.hasCoefficient(name): |
1346 |
return self.COEFFICIENTS[name].getValue() |
1347 |
else: |
1348 |
raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name |
1349 |
|
1350 |
def hasCoefficient(self,name): |
1351 |
""" |
1352 |
return True if name is the name of a coefficient |
1353 |
|
1354 |
@param name: name of the coefficient enquired. |
1355 |
@type name: C{string} |
1356 |
@return: True if name is the name of a coefficient of the general PDE. Otherwise False. |
1357 |
@rtype: C{bool} |
1358 |
""" |
1359 |
return self.COEFFICIENTS.has_key(name) |
1360 |
|
1361 |
def createCoefficient(self, name): |
1362 |
""" |
1363 |
create a L{Data<escript.Data>} object corresponding to coefficient name |
1364 |
|
1365 |
@return: a coefficient name initialized to 0. |
1366 |
@rtype: L{Data<escript.Data>} |
1367 |
@raise IllegalCoefficient: if name is not a coefficient of the PDE. |
1368 |
""" |
1369 |
if self.hasCoefficient(name): |
1370 |
return escript.Data(0.,self.getShapeOfCoefficient(name),self.getFunctionSpaceForCoefficient(name)) |
1371 |
else: |
1372 |
raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name |
1373 |
|
1374 |
def getFunctionSpaceForCoefficient(self,name): |
1375 |
""" |
1376 |
return the L{FunctionSpace<escript.FunctionSpace>} to be used for coefficient name |
1377 |
|
1378 |
@param name: name of the coefficient enquired. |
1379 |
@type name: C{string} |
1380 |
@return: the function space to be used for coefficient name |
1381 |
@rtype: L{FunctionSpace<escript.FunctionSpace>} |
1382 |
@raise IllegalCoefficient: if name is not a coefficient of the PDE. |
1383 |
""" |
1384 |
if self.hasCoefficient(name): |
1385 |
return self.COEFFICIENTS[name].getFunctionSpace(self.getDomain()) |
1386 |
else: |
1387 |
raise ValueError,"unknown coefficient %s requested"%name |
1388 |
def getShapeOfCoefficient(self,name): |
1389 |
""" |
1390 |
return the shape of the coefficient name |
1391 |
|
1392 |
@param name: name of the coefficient enquired. |
1393 |
@type name: C{string} |
1394 |
@return: the shape of the coefficient name |
1395 |
@rtype: C{tuple} of C{int} |
1396 |
@raise IllegalCoefficient: if name is not a coefficient of the PDE. |
1397 |
""" |
1398 |
if self.hasCoefficient(name): |
1399 |
return self.COEFFICIENTS[name].getShape(self.getDomain(),self.getNumEquations(),self.getNumSolutions()) |
1400 |
else: |
1401 |
raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name |
1402 |
|
1403 |
def resetCoefficients(self): |
1404 |
""" |
1405 |
resets all coefficients to there default values. |
1406 |
""" |
1407 |
for i in self.COEFFICIENTS.iterkeys(): |
1408 |
self.COEFFICIENTS[i].resetValue() |
1409 |
|
1410 |
def alteredCoefficient(self,name): |
1411 |
""" |
1412 |
announce that coefficient name has been changed |
1413 |
|
1414 |
@param name: name of the coefficient enquired. |
1415 |
@type name: C{string} |
1416 |
@raise IllegalCoefficient: if name is not a coefficient of the PDE. |
1417 |
@note: if name is q or r, the method will not trigger a rebuilt of the system as constraints are applied to the solved system. |
1418 |
""" |
1419 |
if self.hasCoefficient(name): |
1420 |
self.trace("Coefficient %s has been altered."%name) |
1421 |
if not ((name=="q" or name=="r") and self.isUsingLumping()): |
1422 |
if self.COEFFICIENTS[name].isAlteringOperator(): self.__invalidateOperator() |
1423 |
if self.COEFFICIENTS[name].isAlteringRightHandSide(): self.__invalidateRightHandSide() |
1424 |
else: |
1425 |
raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name |
1426 |
|
1427 |
def copyConstraint(self,u): |
1428 |
""" |
1429 |
copies the constraint into u and returns u. |
1430 |
|
1431 |
@param u: a function of rank 0 is a single PDE is solved and of shape (numSolution,) for a system of PDEs |
1432 |
@type u: L{Data<escript.Data>} |
1433 |
@return: the input u modified by the constraints. |
1434 |
@rtype: L{Data<escript.Data>} |
1435 |
@warning: u is altered if it has the appropriate L{FunctionSpace<escript.FunctionSpace>} |
1436 |
""" |
1437 |
q=self.getCoefficientOfGeneralPDE("q") |
1438 |
r=self.getCoefficientOfGeneralPDE("r") |
1439 |
if not q.isEmpty(): |
1440 |
if u.isEmpty(): u=escript.Data(0.,q.getShape(),q.getFunctionSpace()) |
1441 |
if r.isEmpty(): |
1442 |
r=escript.Data(0,u.getShape(),u.getFunctionSpace()) |
1443 |
else: |
1444 |
r=escript.Data(r,u.getFunctionSpace()) |
1445 |
u.copyWithMask(r,escript.Data(q,u.getFunctionSpace())) |
1446 |
return u |
1447 |
|
1448 |
def setValue(self,**coefficients): |
1449 |
""" |
1450 |
sets new values to coefficients |
1451 |
|
1452 |
@param coefficients: new values assigned to coefficients |
1453 |
@keyword A: value for coefficient A. |
1454 |
@type A: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1455 |
@keyword B: value for coefficient B |
1456 |
@type B: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1457 |
@keyword C: value for coefficient C |
1458 |
@type C: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1459 |
@keyword D: value for coefficient D |
1460 |
@type D: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1461 |
@keyword X: value for coefficient X |
1462 |
@type X: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1463 |
@keyword Y: value for coefficient Y |
1464 |
@type Y: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1465 |
@keyword d: value for coefficient d |
1466 |
@type d: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>}. |
1467 |
@keyword y: value for coefficient y |
1468 |
@type y: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>}. |
1469 |
@keyword d_contact: value for coefficient d_contact |
1470 |
@type d_contact: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnContactOne<escript.FunctionOnContactOne>}. |
1471 |
or L{FunctionOnContactZero<escript.FunctionOnContactZero>}. |
1472 |
@keyword y_contact: value for coefficient y_contact |
1473 |
@type y_contact: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnContactOne<escript.FunctionOnContactOne>}. |
1474 |
or L{FunctionOnContactZero<escript.FunctionOnContactZero>}. |
1475 |
@keyword r: values prescribed to the solution at the locations of constraints |
1476 |
@type r: any type that can be casted to L{Data<escript.Data>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} |
1477 |
depending of reduced order is used for the solution. |
1478 |
@keyword q: mask for location of constraints |
1479 |
@type q: any type that can be casted to L{Data<escript.Data>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} |
1480 |
depending of reduced order is used for the representation of the equation. |
1481 |
@raise IllegalCoefficient: if an unknown coefficient keyword is used. |
1482 |
""" |
1483 |
# check if the coefficients are legal: |
1484 |
for i in coefficients.iterkeys(): |
1485 |
if not self.hasCoefficient(i): |
1486 |
raise IllegalCoefficient,"Attempt to set unknown coefficient %s"%i |
1487 |
# if the number of unknowns or equations is still unknown we try to estimate them: |
1488 |
if self.__numEquations==None or self.__numSolutions==None: |
1489 |
for i,d in coefficients.iteritems(): |
1490 |
if hasattr(d,"shape"): |
1491 |
s=d.shape |
1492 |
elif hasattr(d,"getShape"): |
1493 |
s=d.getShape() |
1494 |
else: |
1495 |
s=numarray.array(d).shape |
1496 |
if s!=None: |
1497 |
# get number of equations and number of unknowns: |
1498 |
res=self.COEFFICIENTS[i].estimateNumEquationsAndNumSolutions(self.getDomain(),s) |
1499 |
if res==None: |
1500 |
raise IllegalCoefficientValue,"Illegal shape %s of coefficient %s"%(s,i) |
1501 |
else: |
1502 |
if self.__numEquations==None: self.__numEquations=res[0] |
1503 |
if self.__numSolutions==None: self.__numSolutions=res[1] |
1504 |
if self.__numEquations==None: raise UndefinedPDEError,"unidententified number of equations" |
1505 |
if self.__numSolutions==None: raise UndefinedPDEError,"unidententified number of solutions" |
1506 |
# now we check the shape of the coefficient if numEquations and numSolutions are set: |
1507 |
for i,d in coefficients.iteritems(): |
1508 |
try: |
1509 |
self.COEFFICIENTS[i].setValue(self.getDomain(),self.getNumEquations(),self.getNumSolutions(),self.reduceEquationOrder(),self.reduceSolutionOrder(),d) |
1510 |
except IllegalCoefficientValue,m: |
1511 |
raise IllegalCoefficientValue("Coefficient %s:%s"%(i,m)) |
1512 |
self.alteredCoefficient(i) |
1513 |
|
1514 |
self.__altered_coefficients=True |
1515 |
# check if the systrem is inhomogeneous: |
1516 |
if len(coefficients)>0 and not self.isUsingLumping(): |
1517 |
q=self.getCoefficientOfGeneralPDE("q") |
1518 |
r=self.getCoefficientOfGeneralPDE("r") |
1519 |
homogeneous_constraint=True |
1520 |
if not q.isEmpty() and not r.isEmpty(): |
1521 |
if util.Lsup(q*r)>=1.e-13*util.Lsup(r): |
1522 |
self.trace("Inhomogeneous constraint detected.") |
1523 |
self.__invalidateSystem() |
1524 |
|
1525 |
def getSystem(self): |
1526 |
""" |
1527 |
return the operator and right hand side of the PDE |
1528 |
|
1529 |
@return: the discrete version of the PDE |
1530 |
@rtype: C{tuple} of L{Operator,<escript.Operator>} and L{Data<escript.Data>}. |
1531 |
""" |
1532 |
if not self.__operator_is_Valid or not self.__righthandside_isValid: |
1533 |
if self.isUsingLumping(): |
1534 |
if not self.__operator_is_Valid: |
1535 |
if not self.getFunctionSpaceForEquation()==self.getFunctionSpaceForSolution(): |
1536 |
raise TypeError,"Lumped matrix requires same order for equations and unknowns" |
1537 |
if not self.getCoefficientOfGeneralPDE("A").isEmpty(): |
1538 |
raise ValueError,"coefficient A in lumped matrix may not be present." |
1539 |
if not self.getCoefficientOfGeneralPDE("B").isEmpty(): |
1540 |
raise ValueError,"coefficient A in lumped matrix may not be present." |
1541 |
if not self.getCoefficientOfGeneralPDE("C").isEmpty(): |
1542 |
raise ValueError,"coefficient A in lumped matrix may not be present." |
1543 |
D=self.getCoefficientOfGeneralPDE("D") |
1544 |
if not D.isEmpty(): |
1545 |
if self.getNumSolutions()>1: |
1546 |
D_times_e=util.matrixmult(D,numarray.ones((self.getNumSolutions(),))) |
1547 |
else: |
1548 |
D_times_e=D |
1549 |
else: |
1550 |
D_times_e=escript.Data() |
1551 |
d=self.getCoefficientOfGeneralPDE("d") |
1552 |
if not d.isEmpty(): |
1553 |
if self.getNumSolutions()>1: |
1554 |
d_times_e=util.matrixmult(d,numarray.ones((self.getNumSolutions(),))) |
1555 |
else: |
1556 |
d_times_e=d |
1557 |
else: |
1558 |
d_times_e=escript.Data() |
1559 |
d_contact=self.getCoefficientOfGeneralPDE("d_contact") |
1560 |
if not d_contact.isEmpty(): |
1561 |
if self.getNumSolutions()>1: |
1562 |
d_contact_times_e=util.matrixmult(d_contact,numarray.ones((self.getNumSolutions(),))) |
1563 |
else: |
1564 |
d_contact_times_e=d_contact |
1565 |
else: |
1566 |
d_contact_times_e=escript.Data() |
1567 |
|
1568 |
self.__operator=self.__getNewRightHandSide() |
1569 |
self.getDomain().addPDEToRHS(self.__operator, \ |
1570 |
escript.Data(), \ |
1571 |
D_times_e, \ |
1572 |
d_times_e,\ |
1573 |
d_contact_times_e) |
1574 |
self.__operator=1./self.__operator |
1575 |
self.trace("New lumped operator has been built.") |
1576 |
self.__operator_is_Valid=True |
1577 |
if not self.__righthandside_isValid: |
1578 |
self.getDomain().addPDEToRHS(self.__makeFreshRightHandSide(), \ |
1579 |
self.getCoefficientOfGeneralPDE("X"), \ |
1580 |
self.getCoefficientOfGeneralPDE("Y"),\ |
1581 |
self.getCoefficientOfGeneralPDE("y"),\ |
1582 |
self.getCoefficientOfGeneralPDE("y_contact")) |
1583 |
self.trace("New right hand side as been built.") |
1584 |
self.__righthandside_isValid=True |
1585 |
else: |
1586 |
if not self.__operator_is_Valid and not self.__righthandside_isValid: |
1587 |
self.getDomain().addPDEToSystem(self.__makeFreshOperator(),self.__makeFreshRightHandSide(), \ |
1588 |
self.getCoefficientOfGeneralPDE("A"), \ |
1589 |
self.getCoefficientOfGeneralPDE("B"), \ |
1590 |
self.getCoefficientOfGeneralPDE("C"), \ |
1591 |
self.getCoefficientOfGeneralPDE("D"), \ |
1592 |
self.getCoefficientOfGeneralPDE("X"), \ |
1593 |
self.getCoefficientOfGeneralPDE("Y"), \ |
1594 |
self.getCoefficientOfGeneralPDE("d"), \ |
1595 |
self.getCoefficientOfGeneralPDE("y"), \ |
1596 |
self.getCoefficientOfGeneralPDE("d_contact"), \ |
1597 |
self.getCoefficientOfGeneralPDE("y_contact")) |
1598 |
self.__applyConstraint() |
1599 |
self.__righthandside=self.copyConstraint(self.__righthandside) |
1600 |
self.trace("New system has been built.") |
1601 |
self.__operator_is_Valid=True |
1602 |
self.__righthandside_isValid=True |
1603 |
elif not self.__righthandside_isValid: |
1604 |
self.getDomain().addPDEToRHS(self.__makeFreshRightHandSide(), \ |
1605 |
self.getCoefficientOfGeneralPDE("X"), \ |
1606 |
self.getCoefficientOfGeneralPDE("Y"),\ |
1607 |
self.getCoefficientOfGeneralPDE("y"),\ |
1608 |
self.getCoefficientOfGeneralPDE("y_contact")) |
1609 |
self.__righthandside=self.copyConstraint(self.__righthandside) |
1610 |
self.trace("New right hand side has been built.") |
1611 |
self.__righthandside_isValid=True |
1612 |
elif not self.__operator_is_Valid: |
1613 |
self.getDomain().addPDEToSystem(self.__makeFreshOperator(),escript.Data(), \ |
1614 |
self.getCoefficientOfGeneralPDE("A"), \ |
1615 |
self.getCoefficientOfGeneralPDE("B"), \ |
1616 |
self.getCoefficientOfGeneralPDE("C"), \ |
1617 |
self.getCoefficientOfGeneralPDE("D"), \ |
1618 |
escript.Data(), \ |
1619 |
escript.Data(), \ |
1620 |
self.getCoefficientOfGeneralPDE("d"), \ |
1621 |
escript.Data(),\ |
1622 |
self.getCoefficientOfGeneralPDE("d_contact"), \ |
1623 |
escript.Data()) |
1624 |
self.__applyConstraint() |
1625 |
self.trace("New operator has been built.") |
1626 |
self.__operator_is_Valid=True |
1627 |
return (self.__operator,self.__righthandside) |
1628 |
|
1629 |
|
1630 |
class Poisson(LinearPDE): |
1631 |
""" |
1632 |
Class to define a Poisson equation problem, which is genear L{LinearPDE} of the form |
1633 |
|
1634 |
M{-grad(grad(u)[j])[j] = f} |
1635 |
|
1636 |
with natural boundary conditons |
1637 |
|
1638 |
M{n[j]*grad(u)[j] = 0 } |
1639 |
|
1640 |
and constraints: |
1641 |
|
1642 |
M{u=0} where M{q>0} |
1643 |
|
1644 |
""" |
1645 |
|
1646 |
def __init__(self,domain,debug=False): |
1647 |
""" |
1648 |
initializes a new Poisson equation |
1649 |
|
1650 |
@param domain: domain of the PDE |
1651 |
@type domain: L{Domain<escript.Domain>} |
1652 |
@param debug: if True debug informations are printed. |
1653 |
|
1654 |
""" |
1655 |
super(Poisson, self).__init__(domain,1,1,debug) |
1656 |
self.COEFFICIENTS={"f": PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), |
1657 |
"q": PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_EQUATION,),PDECoefficient.BOTH)} |
1658 |
self.setSymmetryOn() |
1659 |
|
1660 |
def setValue(self,**coefficients): |
1661 |
""" |
1662 |
sets new values to coefficients |
1663 |
|
1664 |
@param coefficients: new values assigned to coefficients |
1665 |
@keyword f: value for right hand side M{f} |
1666 |
@type f: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Function<escript.Function>}. |
1667 |
@keyword q: mask for location of constraints |
1668 |
@type q: any type that can be casted to rank zeo L{Data<escript.Data>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} |
1669 |
depending of reduced order is used for the representation of the equation. |
1670 |
@raise IllegalCoefficient: if an unknown coefficient keyword is used. |
1671 |
""" |
1672 |
super(Poisson, self).setValue(**coefficients) |
1673 |
|
1674 |
def getCoefficientOfGeneralPDE(self,name): |
1675 |
""" |
1676 |
return the value of the coefficient name of the general PDE |
1677 |
@param name: name of the coefficient requested. |
1678 |
@type name: C{string} |
1679 |
@return: the value of the coefficient name |
1680 |
@rtype: L{Data<escript.Data>} |
1681 |
@raise IllegalCoefficient: if name is not one of coefficients |
1682 |
M{A}, M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. |
1683 |
@note: This method is called by the assembling routine to map the Possion equation onto the general PDE. |
1684 |
""" |
1685 |
if name == "A" : |
1686 |
return escript.Data(util.kronecker(self.getDim()),escript.Function(self.getDomain())) |
1687 |
elif name == "B" : |
1688 |
return escript.Data() |
1689 |
elif name == "C" : |
1690 |
return escript.Data() |
1691 |
elif name == "D" : |
1692 |
return escript.Data() |
1693 |
elif name == "X" : |
1694 |
return escript.Data() |
1695 |
elif name == "Y" : |
1696 |
return self.getCoefficient("f") |
1697 |
elif name == "d" : |
1698 |
return escript.Data() |
1699 |
elif name == "y" : |
1700 |
return escript.Data() |
1701 |
elif name == "d_contact" : |
1702 |
return escript.Data() |
1703 |
elif name == "y_contact" : |
1704 |
return escript.Data() |
1705 |
elif name == "r" : |
1706 |
return escript.Data() |
1707 |
elif name == "q" : |
1708 |
return self.getCoefficient("q") |
1709 |
else: |
1710 |
raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name |
1711 |
|
1712 |
class Helmholtz(LinearPDE): |
1713 |
""" |
1714 |
Class to define a Helmhotz equation problem, which is genear L{LinearPDE} of the form |
1715 |
|
1716 |
M{S{omega}*u - grad(k*grad(u)[j])[j] = f} |
1717 |
|
1718 |
with natural boundary conditons |
1719 |
|
1720 |
M{k*n[j]*grad(u)[j] = g- S{alpha}u } |
1721 |
|
1722 |
and constraints: |
1723 |
|
1724 |
M{u=r} where M{q>0} |
1725 |
|
1726 |
""" |
1727 |
|
1728 |
def __init__(self,domain,debug=False): |
1729 |
""" |
1730 |
initializes a new Poisson equation |
1731 |
|
1732 |
@param domain: domain of the PDE |
1733 |
@type domain: L{Domain<escript.Domain>} |
1734 |
@param debug: if True debug informations are printed. |
1735 |
|
1736 |
""" |
1737 |
super(Helmholtz, self).__init__(domain,1,1,debug) |
1738 |
self.COEFFICIENTS={"omega": PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,),PDECoefficient.OPERATOR), |
1739 |
"k": PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,),PDECoefficient.OPERATOR), |
1740 |
"f": PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), |
1741 |
"alpha": PDECoefficient(PDECoefficient.BOUNDARY,(PDECoefficient.BY_EQUATION,),PDECoefficient.OPERATOR), |
1742 |
"g": PDECoefficient(PDECoefficient.BOUNDARY,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), |
1743 |
"r": PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_EQUATION,),PDECoefficient.BOTH), |
1744 |
"q": PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_EQUATION,),PDECoefficient.BOTH)} |
1745 |
self.setSymmetryOn() |
1746 |
|
1747 |
def setValue(self,**coefficients): |
1748 |
""" |
1749 |
sets new values to coefficients |
1750 |
|
1751 |
@param coefficients: new values assigned to coefficients |
1752 |
@keyword omega: value for coefficient M{S{omega}} |
1753 |
@type omega: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Function<escript.Function>}. |
1754 |
@keyword k: value for coefficeint M{k} |
1755 |
@type k: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Function<escript.Function>}. |
1756 |
@keyword f: value for right hand side M{f} |
1757 |
@type f: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Function<escript.Function>}. |
1758 |
@keyword alpha: value for right hand side M{S{alpha}} |
1759 |
@type alpha: any type that can be casted to L{Scalar<escript.Scalar>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>}. |
1760 |
@keyword g: value for right hand side M{g} |
1761 |
@type g: any type that can be casted to L{Scalar<escript.Scalar>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>}. |
1762 |
@keyword r: prescribed values M{r} for the solution in constraints. |
1763 |
@type r: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} |
1764 |
depending of reduced order is used for the representation of the equation. |
1765 |
@keyword q: mask for location of constraints |
1766 |
@type q: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} |
1767 |
depending of reduced order is used for the representation of the equation. |
1768 |
@raise IllegalCoefficient: if an unknown coefficient keyword is used. |
1769 |
""" |
1770 |
super(Helmholtz, self).setValue(**coefficients) |
1771 |
|
1772 |
def getCoefficientOfGeneralPDE(self,name): |
1773 |
""" |
1774 |
return the value of the coefficient name of the general PDE |
1775 |
|
1776 |
@param name: name of the coefficient requested. |
1777 |
@type name: C{string} |
1778 |
@return: the value of the coefficient name |
1779 |
@rtype: L{Data<escript.Data>} |
1780 |
@raise IllegalCoefficient: if name is not one of coefficients |
1781 |
"A", M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. |
1782 |
@note: This method is called by the assembling routine to map the Possion equation onto the general PDE. |
1783 |
""" |
1784 |
if name == "A" : |
1785 |
return escript.Data(numarray.identity(self.getDim()),escript.Function(self.getDomain()))*self.getCoefficient("k") |
1786 |
elif name == "B" : |
1787 |
return escript.Data() |
1788 |
elif name == "C" : |
1789 |
return escript.Data() |
1790 |
elif name == "D" : |
1791 |
return self.getCoefficient("omega") |
1792 |
elif name == "X" : |
1793 |
return escript.Data() |
1794 |
elif name == "Y" : |
1795 |
return self.getCoefficient("f") |
1796 |
elif name == "d" : |
1797 |
return self.getCoefficient("alpha") |
1798 |
elif name == "y" : |
1799 |
return self.getCoefficient("g") |
1800 |
elif name == "d_contact" : |
1801 |
return escript.Data() |
1802 |
elif name == "y_contact" : |
1803 |
return escript.Data() |
1804 |
elif name == "r" : |
1805 |
return self.getCoefficient("r") |
1806 |
elif name == "q" : |
1807 |
return self.getCoefficient("q") |
1808 |
else: |
1809 |
raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name |
1810 |
|
1811 |
class LameEquation(LinearPDE): |
1812 |
""" |
1813 |
Class to define a Lame equation problem: |
1814 |
|
1815 |
M{-grad(S{mu}*(grad(u[i])[j]+grad(u[j])[i]))[j] - grad(S{lambda}*grad(u[j])[i])[j] = F_i -grad(S{sigma}[i,j])[j] } |
1816 |
|
1817 |
with natural boundary conditons: |
1818 |
|
1819 |
M{n[j]*(S{mu}*(grad(u[i])[j]+grad(u[j])[i]) - S{lambda}*grad(u[j])[i]) = f_i -n[j]*S{sigma}[i,j] } |
1820 |
|
1821 |
and constraints: |
1822 |
|
1823 |
M{u[i]=r[i]} where M{q[i]>0} |
1824 |
|
1825 |
""" |
1826 |
|
1827 |
def __init__(self,domain,debug=False): |
1828 |
super(LameEquation, self).__init__(domain,\ |
1829 |
domain.getDim(),domain.getDim(),debug) |
1830 |
self.COEFFICIENTS={ "lame_lambda" : PDECoefficient(PDECoefficient.INTERIOR,(),PDECoefficient.OPERATOR), |
1831 |
"lame_mu" : PDECoefficient(PDECoefficient.INTERIOR,(),PDECoefficient.OPERATOR), |
1832 |
"F" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), |
1833 |
"sigma" : PDECoefficient(PDECoefficient.INTERIOR,(PDECoefficient.BY_EQUATION,PDECoefficient.BY_DIM),PDECoefficient.RIGHTHANDSIDE), |
1834 |
"f" : PDECoefficient(PDECoefficient.BOUNDARY,(PDECoefficient.BY_EQUATION,),PDECoefficient.RIGHTHANDSIDE), |
1835 |
"r" : PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_EQUATION,),PDECoefficient.BOTH), |
1836 |
"q" : PDECoefficient(PDECoefficient.SOLUTION,(PDECoefficient.BY_EQUATION,),PDECoefficient.BOTH)} |
1837 |
self.setSymmetryOn() |
1838 |
|
1839 |
def setValues(self,**coefficients): |
1840 |
""" |
1841 |
sets new values to coefficients |
1842 |
|
1843 |
@param coefficients: new values assigned to coefficients |
1844 |
@keyword lame_mu: value for coefficient M{S{mu}} |
1845 |
@type lame_mu: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Function<escript.Function>}. |
1846 |
@keyword lame_lambda: value for coefficient M{S{lambda}} |
1847 |
@type lame_lambda: any type that can be casted to L{Scalar<escript.Scalar>} object on L{Function<escript.Function>}. |
1848 |
@keyword F: value for internal force M{F} |
1849 |
@type F: any type that can be casted to L{Vector<escript.Vector>} object on L{Function<escript.Function>} |
1850 |
@keyword sigma: value for initial stress M{S{sigma}} |
1851 |
@type sigma: any type that can be casted to L{Tensor<escript.Tensor>} object on L{Function<escript.Function>} |
1852 |
@keyword f: value for extrenal force M{f} |
1853 |
@type f: any type that can be casted to L{Vector<escript.Vector>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>} |
1854 |
@keyword r: prescribed values M{r} for the solution in constraints. |
1855 |
@type r: any type that can be casted to L{Vector<escript.Vector>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} |
1856 |
depending of reduced order is used for the representation of the equation. |
1857 |
@keyword q: mask for location of constraints |
1858 |
@type q: any type that can be casted to L{Vector<escript.Vector>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} |
1859 |
depending of reduced order is used for the representation of the equation. |
1860 |
@raise IllegalCoefficient: if an unknown coefficient keyword is used. |
1861 |
""" |
1862 |
super(LameEquation, self).setValues(**coefficients) |
1863 |
|
1864 |
def getCoefficientOfGeneralPDE(self,name): |
1865 |
""" |
1866 |
return the value of the coefficient name of the general PDE |
1867 |
|
1868 |
@param name: name of the coefficient requested. |
1869 |
@type name: C{string} |
1870 |
@return: the value of the coefficient name |
1871 |
@rtype: L{Data<escript.Data>} |
1872 |
@raise IllegalCoefficient: if name is not one of coefficients |
1873 |
"A", M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. |
1874 |
@note: This method is called by the assembling routine to map the Possion equation onto the general PDE. |
1875 |
""" |
1876 |
if name == "A" : |
1877 |
out =self.createCoefficientOfGeneralPDE("A") |
1878 |
for i in range(self.getDim()): |
1879 |
for j in range(self.getDim()): |
1880 |
out[i,i,j,j] += self.getCoefficient("lame_lambda") |
1881 |
out[i,j,j,i] += self.getCoefficient("lame_mu") |
1882 |
out[i,j,i,j] += self.getCoefficient("lame_mu") |
1883 |
return out |
1884 |
elif name == "B" : |
1885 |
return escript.Data() |
1886 |
elif name == "C" : |
1887 |
return escript.Data() |
1888 |
elif name == "D" : |
1889 |
return escript.Data() |
1890 |
elif name == "X" : |
1891 |
return self.getCoefficient("sigma") |
1892 |
elif name == "Y" : |
1893 |
return self.getCoefficient("F") |
1894 |
elif name == "d" : |
1895 |
return escript.Data() |
1896 |
elif name == "y" : |
1897 |
return self.getCoefficient("f") |
1898 |
elif name == "d_contact" : |
1899 |
return escript.Data() |
1900 |
elif name == "y_contact" : |
1901 |
return escript.Data() |
1902 |
elif name == "r" : |
1903 |
return self.getCoefficient("r") |
1904 |
elif name == "q" : |
1905 |
return self.getCoefficient("q") |
1906 |
else: |
1907 |
raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name |
1908 |
|
1909 |
class AdvectivePDE(LinearPDE): |
1910 |
""" |
1911 |
In cases of PDEs dominated by the advection terms M{B} and M{C} against the adevctive terms M{A} |
1912 |
up-winding has been used. The L{AdvectivePDE} class applies SUPG upwinding to the advective terms. |
1913 |
|
1914 |
In the following we set |
1915 |
|
1916 |
M{Z[j]=C[j]-B[j]} |
1917 |
|
1918 |
or |
1919 |
|
1920 |
M{Z[i,k,l]=C[i,k,l]-B[i,l,k]} |
1921 |
|
1922 |
To measure the dominance of the advective terms over the diffusive term M{A} the |
1923 |
X{Pelclet number} M{P} is used. It is defined as |
1924 |
|
1925 |
M{P=h|Z|/(2|A|)} |
1926 |
|
1927 |
where M{|.|} denotes the L{length<util.length>} of the arument and M{h} is the local cell size |
1928 |
from L{getSize<escript.Domain.getSize>}. Where M{|A|==0} M{P} is M{S{infinity}}. |
1929 |
|
1930 |
From the X{Pelclet number} the stabilization parameters M{S{Xi}} and M{S{Xi}} are calculated: |
1931 |
|
1932 |
M{S{Xi}=S{xi}(P) h/|Z|} |
1933 |
|
1934 |
where M{S{xi}} is a suitable function of the Peclet number. |
1935 |
|
1936 |
In the case of a single PDE the coefficient are up-dated in the following way: |
1937 |
- M{A[i,j] S{<-} A[i,j] + S{Xi} * Z[j] * Z[l]} |
1938 |
- M{B[j] S{<-} B[j] + S{Xi} * C[j] * D} |
1939 |
- M{C[j] S{<-} C[j] + S{Xi} * B[j] * D} |
1940 |
- M{X[j] S{<-} X[j] + S{Xi} * Z[j] * Y} |
1941 |
|
1942 |
Similar for the case of a systems of PDEs: |
1943 |
- M{A[i,j,k,l] S{<-} A[i,j,k,l]+ S{delta}[p,m] * S{Xi} * Z[p,i,j] * Z[m,k,l]} |
1944 |
- M{B[i,j,k] S{<-} B[i,j,k] + S{delta}[p,m] * S{Xi} * D[p,k] * C[m,i,j]} |
1945 |
- M{C[i,k,l] S{<-} C[i,k,l] + S{delta}[p,m] * S{Xi} * D[p,k] * B[m,l,i]} |
1946 |
- M{X[i,j] S{<-} X[i,j] + S{delta}[p,m] * S{Xi} * Y[p] * Z[m,i,j]} |
1947 |
|
1948 |
where M{S{delta}} is L{kronecker}. |
1949 |
Using upwinding in this form, introduces an additonal error which is proprtional to the cell size M{h} |
1950 |
but with the intension to stabilize the solution. |
1951 |
|
1952 |
""" |
1953 |
def __init__(self,domain,numEquations=None,numSolutions=None,xi=None,debug=False): |
1954 |
""" |
1955 |
creates a linear, steady, second order PDE on a L{Domain<escript.Domain>} |
1956 |
|
1957 |
@param domain: domain of the PDE |
1958 |
@type domain: L{Domain<escript.Domain>} |
1959 |
@param numEquations: number of equations. If numEquations==None the number of equations |
1960 |
is exracted from the PDE coefficients. |
1961 |
@param numSolutions: number of solution components. If numSolutions==None the number of solution components |
1962 |
is exracted from the PDE coefficients. |
1963 |
@param xi: defines a function which returns for any given Preclet number as L{Scalar<escript.Scalar>} object the |
1964 |
M{S{xi}}-value used to define the stabilization parameters. If equal to None, L{ELMAN_RAMAGE} is used. |
1965 |
@type xi: callable object which returns a L{Scalar<escript.Scalar>} object. |
1966 |
@param debug: if True debug informations are printed. |
1967 |
""" |
1968 |
super(AdvectivePDE, self).__init__(domain,\ |
1969 |
numEquations,numSolutions,debug) |
1970 |
if xi==None: |
1971 |
self.__xi=AdvectivePDE.ELMAN_RAMAGE |
1972 |
else: |
1973 |
self.__xi=xi |
1974 |
self.__Xi=escript.Data() |
1975 |
|
1976 |
def setValue(self,**coefficients): |
1977 |
""" |
1978 |
sets new values to coefficients |
1979 |
|
1980 |
@param coefficients: new values assigned to coefficients |
1981 |
@keyword A: value for coefficient A. |
1982 |
@type A: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1983 |
@keyword B: value for coefficient B |
1984 |
@type B: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1985 |
@keyword C: value for coefficient C |
1986 |
@type C: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1987 |
@keyword D: value for coefficient D |
1988 |
@type D: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1989 |
@keyword X: value for coefficient X |
1990 |
@type X: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1991 |
@keyword Y: value for coefficient Y |
1992 |
@type Y: any type that can be casted to L{Data<escript.Data>} object on L{Function<escript.Function>}. |
1993 |
@keyword d: value for coefficient d |
1994 |
@type d: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>}. |
1995 |
@keyword y: value for coefficient y |
1996 |
@type y: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnBoundary<escript.FunctionOnBoundary>}. |
1997 |
@keyword d_contact: value for coefficient d_contact |
1998 |
@type d_contact: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnContactOne<escript.FunctionOnContactOne>}. |
1999 |
or L{FunctionOnContactZero<escript.FunctionOnContactZero>}. |
2000 |
@keyword y_contact: value for coefficient y_contact |
2001 |
@type y_contact: any type that can be casted to L{Data<escript.Data>} object on L{FunctionOnContactOne<escript.FunctionOnContactOne>}. |
2002 |
or L{FunctionOnContactZero<escript.FunctionOnContactZero>}. |
2003 |
@keyword r: values prescribed to the solution at the locations of constraints |
2004 |
@type r: any type that can be casted to L{Data<escript.Data>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} |
2005 |
depending of reduced order is used for the solution. |
2006 |
@keyword q: mask for location of constraints |
2007 |
@type q: any type that can be casted to L{Data<escript.Data>} object on L{Solution<escript.Solution>} or L{ReducedSolution<escript.ReducedSolution>} |
2008 |
depending of reduced order is used for the representation of the equation. |
2009 |
@raise IllegalCoefficient: if an unknown coefficient keyword is used. |
2010 |
|
2011 |
""" |
2012 |
if "A" in coefficients.keys() or "B" in coefficients.keys() or "C" in coefficients.keys(): self.__Xi=escript.Data() |
2013 |
super(AdvectivePDE, self).setValue(**coefficients) |
2014 |
|
2015 |
def ELMAN_RAMAGE(self,P): |
2016 |
""" |
2017 |
Predefined function to set a values for M{S{xi}} from a Preclet number M{P}. |
2018 |
This function uses the method suggested by H.C. Elman and A. Ramage, I{SIAM J. Numer. Anal.}, B{40} (2002) |
2019 |
- M{S{xi}(P)=0} for M{P<1} |
2020 |
- M{S{xi}(P)=(1-1/P)/2} otherwise |
2021 |
|
2022 |
@param P: Preclet number |
2023 |
@type P: L{Scalar<escript.Scalar>} |
2024 |
@return: up-wind weightimg factor |
2025 |
@rtype: L{Scalar<escript.Scalar>} |
2026 |
""" |
2027 |
return util.wherePositive(P-1.)*0.5*(1.-1./(P+1.e-15)) |
2028 |
|
2029 |
def SIMPLIFIED_BROOK_HUGHES(self,P): |
2030 |
""" |
2031 |
Predefined function to set a values for M{S{xi}} from a Preclet number M{P}. |
2032 |
The original methods is |
2033 |
|
2034 |
M{S{xi}(P)=coth(P)-1/P} |
2035 |
|
2036 |
As the evaluation of M{coth} is expensive we are using the approximation: |
2037 |
|
2038 |
- M{S{xi}(P)=P/3} where M{P<3} |
2039 |
- M{S{xi}(P)=1/2} otherwise |
2040 |
|
2041 |
@param P: Preclet number |
2042 |
@type P: L{Scalar<escript.Scalar>} |
2043 |
@return: up-wind weightimg factor |
2044 |
@rtype: L{Scalar<escript.Scalar>} |
2045 |
""" |
2046 |
c=util.whereNegative(P-3.) |
2047 |
return P/6.*c+1./2.*(1.-c) |
2048 |
|
2049 |
def HALF(self,P): |
2050 |
""" |
2051 |
Predefined function to set value M{1/2} for M{S{xi}} |
2052 |
|
2053 |
@param P: Preclet number |
2054 |
@type P: L{Scalar<escript.Scalar>} |
2055 |
@return: up-wind weightimg factor |
2056 |
@rtype: L{Scalar<escript.Scalar>} |
2057 |
""" |
2058 |
return escript.Scalar(0.5,P.getFunctionSpace()) |
2059 |
|
2060 |
def __getXi(self): |
2061 |
if self.__Xi.isEmpty(): |
2062 |
B=self.getCoefficient("B") |
2063 |
C=self.getCoefficient("C") |
2064 |
A=self.getCoefficient("A") |
2065 |
h=self.getDomain().getSize() |
2066 |
self.__Xi=escript.Scalar(0.,self.getFunctionSpaceForCoefficient("A")) |
2067 |
if not C.isEmpty() or not B.isEmpty(): |
2068 |
if not C.isEmpty() and not B.isEmpty(): |
2069 |
if self.getNumEquations()>1: |
2070 |
if self.getNumSolutions()>1: |
2071 |
flux2=escript.Scalar(0,self.getFunctionSpaceForCoefficient("A")) |
2072 |
for i in range(self.getNumEquations()): |
2073 |
for k in range(self.getNumSolutions()): |
2074 |
for l in range(self.getDim()): flux2+=(C[i,k,l]-B[i,l,k])**2 |
2075 |
length_of_flux=util.sqrt(flux2) |
2076 |
# flux=C-util.reorderComponents(B,[0,2,1]) |
2077 |
else: |
2078 |
flux2=escript.Scalar(0,self.getFunctionSpaceForCoefficient("A")) |
2079 |
for i in range(self.getNumEquations()): |
2080 |
for l in range(self.getDim()): flux2+=(C[i,l]-B[i,l])**2 |
2081 |
length_of_flux=util.sqrt(flux2) |
2082 |
# flux=C-B |
2083 |
else: |
2084 |
if self.getNumSolutions()>1: |
2085 |
flux2=escript.Scalar(0,self.getFunctionSpaceForCoefficient("A")) |
2086 |
for k in range(self.getNumSolutions()): |
2087 |
for l in range(self.getDim()): flux2+=(C[k,l]-B[l,k])**2 |
2088 |
# flux=C-util.reorderComponents(B,[1,0]) |
2089 |
length_of_flux=util.sqrt(flux2) |
2090 |
else: |
2091 |
length_of_flux=util.length(C-B) |
2092 |
elif C.isEmpty(): |
2093 |
length_of_flux=util.length(B) |
2094 |
else: |
2095 |
length_of_flux=util.length(C) |
2096 |
flux_max=util.Lsup(length_of_flux) |
2097 |
if flux_max>0.: |
2098 |
if A.isEmpty(): |
2099 |
inv_A=1./self.SMALL_TOLERANCE |
2100 |
peclet_number=escript.Scalar(inv_A,length_of_flux.getFunctionSpace()) |
2101 |
xi=self.__xi(self,peclet_number) |
2102 |
else: |
2103 |
# length_of_A=util.inner(flux,util.tensormutiply(A,flux)) |
2104 |
length_of_A=util.length(A) |
2105 |
A_max=util.Lsup(length_of_A) |
2106 |
if A_max>0: |
2107 |
inv_A=1./(length_of_A+A_max*self.SMALL_TOLERANCE) |
2108 |
else: |
2109 |
inv_A=1./self.SMALL_TOLERANCE |
2110 |
peclet_number=length_of_flux*h/2*inv_A |
2111 |
xi=self.__xi(self,peclet_number) |
2112 |
self.__Xi=h*xi/(length_of_flux+flux_max*self.SMALL_TOLERANCE) |
2113 |
self.trace("preclet number = %e"%util.Lsup(peclet_number)) |
2114 |
else: |
2115 |
self.__Xi=escript.Scalar(0.,length_of_flux.getFunctionSpace()) |
2116 |
return self.__Xi |
2117 |
|
2118 |
|
2119 |
def getCoefficientOfGeneralPDE(self,name): |
2120 |
""" |
2121 |
return the value of the coefficient name of the general PDE |
2122 |
|
2123 |
@param name: name of the coefficient requested. |
2124 |
@type name: C{string} |
2125 |
@return: the value of the coefficient name |
2126 |
@rtype: L{Data<escript.Data>} |
2127 |
@raise IllegalCoefficient: if name is not one of coefficients |
2128 |
M{A}, M{B}, M{C}, M{D}, M{X}, M{Y}, M{d}, M{y}, M{d_contact}, M{y_contact}, M{r} or M{q}. |
2129 |
@note: This method is called by the assembling routine to map the Possion equation onto the general PDE. |
2130 |
""" |
2131 |
if not self.getNumEquations() == self.getNumSolutions(): |
2132 |
raise ValueError,"AdvectivePDE expects the number of solution componets and the number of equations to be equal." |
2133 |
|
2134 |
if name == "A" : |
2135 |
A=self.getCoefficient("A") |
2136 |
B=self.getCoefficient("B") |
2137 |
C=self.getCoefficient("C") |
2138 |
if B.isEmpty() and C.isEmpty(): |
2139 |
Aout=A |
2140 |
else: |
2141 |
if A.isEmpty(): |
2142 |
Aout=self.createCoefficientOfGeneralPDE("A") |
2143 |
else: |
2144 |
Aout=A[:] |
2145 |
Xi=self.__getXi() |
2146 |
if self.getNumEquations()>1: |
2147 |
for i in range(self.getNumEquations()): |
2148 |
for j in range(self.getDim()): |
2149 |
for k in range(self.getNumSolutions()): |
2150 |
for l in range(self.getDim()): |
2151 |
if not C.isEmpty() and not B.isEmpty(): |
2152 |
# tmp=C-util.reorderComponents(B,[0,2,1]) |
2153 |
# Aout=Aout+Xi*util.generalTensorProduct(util.reorder(tmp,[1,2,0]),tmp,offset=1) |
2154 |
for p in range(self.getNumEquations()): Aout[i,j,k,l]+=Xi*(C[p,i,j]-B[p,j,i])*(C[p,k,l]-B[p,l,k]) |
2155 |
elif C.isEmpty(): |
2156 |
for p in range(self.getNumEquations()): Aout[i,j,k,l]+=Xi*B[p,j,i]*B[p,l,k] |
2157 |
# Aout=Aout+Xi*util.generalTensorProduct(util.reorder(B,[2,1,0]),util.reorder(B,[0,2,1]),offset=1) |
2158 |
else: |
2159 |
for p in range(self.getNumEquations()): Aout[i,j,k,l]+=Xi*C[p,i,j]*C[p,k,l] |
2160 |
# Aout=Aout+Xi*util.generalTensorProduct(util.reorder(C,[1,2,0]),C,offset=1) |
2161 |
else: |
2162 |
if not C.isEmpty() and not B.isEmpty(): |
2163 |
delta=(C-B) |
2164 |
Aout+=util.outer(Xi*delta,delta) |
2165 |
elif not B.isEmpty(): |
2166 |
Aout+=util.outer(Xi*B,B) |
2167 |
elif not C.isEmpty(): |
2168 |
Aout+=util.outer(Xi*C,C) |
2169 |
return Aout |
2170 |
elif name == "B" : |
2171 |
# return self.getCoefficient("B") |
2172 |
B=self.getCoefficient("B") |
2173 |
C=self.getCoefficient("C") |
2174 |
D=self.getCoefficient("D") |
2175 |
if C.isEmpty() or D.isEmpty(): |
2176 |
Bout=B |
2177 |
else: |
2178 |
Xi=self.__getXi() |
2179 |
if B.isEmpty(): |
2180 |
Bout=self.createCoefficientOfGeneralPDE("B") |
2181 |
else: |
2182 |
Bout=B[:] |
2183 |
if self.getNumEquations()>1: |
2184 |
for k in range(self.getNumSolutions()): |
2185 |
for p in range(self.getNumEquations()): |
2186 |
tmp=Xi*D[p,k] |
2187 |
for i in range(self.getNumEquations()): |
2188 |
for j in range(self.getDim()): |
2189 |
Bout[i,j,k]+=tmp*C[p,i,j] |
2190 |
# Bout=Bout+Xi*util.generalTensorProduct(util.reorder(C,[1,2,0]),D,offset=1) |
2191 |
else: |
2192 |
Bout+=(Xi*D)*C |
2193 |
return Bout |
2194 |
elif name == "C" : |
2195 |
# return self.getCoefficient("C") |
2196 |
B=self.getCoefficient("B") |
2197 |
C=self.getCoefficient("C") |
2198 |
D=self.getCoefficient("D") |
2199 |
if B.isEmpty() or D.isEmpty(): |
2200 |
Cout=C |
2201 |
else: |
2202 |
Xi=self.__getXi() |
2203 |
if C.isEmpty(): |
2204 |
Cout=self.createCoefficientOfGeneralPDE("C") |
2205 |
else: |
2206 |
Cout=C[:] |
2207 |
if self.getNumEquations()>1: |
2208 |
for k in range(self.getNumSolutions()): |
2209 |
for p in range(self.getNumEquations()): |
2210 |
tmp=Xi*D[p,k] |
2211 |
for i in range(self.getNumEquations()): |
2212 |
for l in range(self.getDim()): |
2213 |
Cout[i,k,l]+=tmp*B[p,l,i] |
2214 |
# Cout=Cout+Xi*B[p,l,i]*D[p,k] |
2215 |
else: |
2216 |
Cout+=(Xi*D)*B |
2217 |
return Cout |
2218 |
elif name == "D" : |
2219 |
return self.getCoefficient("D") |
2220 |
elif name == "X" : |
2221 |
# return self.getCoefficient("X") |
2222 |
X=self.getCoefficient("X") |
2223 |
Y=self.getCoefficient("Y") |
2224 |
B=self.getCoefficient("B") |
2225 |
C=self.getCoefficient("C") |
2226 |
if Y.isEmpty() or (B.isEmpty() and C.isEmpty()): |
2227 |
Xout=X |
2228 |
else: |
2229 |
if X.isEmpty(): |
2230 |
Xout=self.createCoefficientOfGeneralPDE("X") |
2231 |
else: |
2232 |
Xout=X[:] |
2233 |
Xi=self.__getXi() |
2234 |
if self.getNumEquations()>1: |
2235 |
for p in range(self.getNumEquations()): |
2236 |
tmp=Xi*Y[p] |
2237 |
for i in range(self.getNumEquations()): |
2238 |
for j in range(self.getDim()): |
2239 |
if not C.isEmpty() and not B.isEmpty(): |
2240 |
Xout[i,j]+=tmp*(C[p,i,j]-B[p,j,i]) |
2241 |
# Xout=X_out+Xi*util.inner(Y,C-util.reorderComponents(B,[0,2,1]),offset=1) |
2242 |
elif C.isEmpty(): |
2243 |
Xout[i,j]-=tmp*B[p,j,i] |
2244 |
# Xout=X_out-Xi*util.inner(Y,util.reorderComponents(B,[0,2,1]),offset=1) |
2245 |
else: |
2246 |
Xout[i,j]+=tmp*C[p,i,j] |
2247 |
# Xout=X_out+Xi*util.inner(Y,C,offset=1) |
2248 |
else: |
2249 |
if not C.isEmpty() and not B.isEmpty(): |
2250 |
Xout+=(Xi*Y)*(C-B) |
2251 |
elif C.isEmpty(): |
2252 |
Xout-=(Xi*Y)*B |
2253 |
else: |
2254 |
Xout+=(Xi*Y)*C |
2255 |
return Xout |
2256 |
elif name == "Y" : |
2257 |
return self.getCoefficient("Y") |
2258 |
elif name == "d" : |
2259 |
return self.getCoefficient("d") |
2260 |
elif name == "y" : |
2261 |
return self.getCoefficient("y") |
2262 |
elif name == "d_contact" : |
2263 |
return self.getCoefficient("d_contact") |
2264 |
elif name == "y_contact" : |
2265 |
return self.getCoefficient("y_contact") |
2266 |
elif name == "r" : |
2267 |
return self.getCoefficient("r") |
2268 |
elif name == "q" : |
2269 |
return self.getCoefficient("q") |
2270 |
else: |
2271 |
raise IllegalCoefficient,"illegal coefficient %s requested for general PDE."%name |
2272 |
|
2273 |
# $Log$ |
2274 |
# Revision 1.14 2005/09/22 01:54:57 jgs |
2275 |
# Merge of development branch dev-02 back to main trunk on 2005-09-22 |
2276 |
# |
2277 |
# Revision 1.13 2005/09/15 03:44:19 jgs |
2278 |
# Merge of development branch dev-02 back to main trunk on 2005-09-15 |
2279 |
# |
2280 |
# Revision 1.12 2005/09/01 03:31:28 jgs |
2281 |
# Merge of development branch dev-02 back to main trunk on 2005-09-01 |
2282 |
# |
2283 |
# Revision 1.11 2005/08/23 01:24:28 jgs |
2284 |
# Merge of development branch dev-02 back to main trunk on 2005-08-23 |
2285 |
# |
2286 |
# Revision 1.10 2005/08/12 01:45:36 jgs |
2287 |
# erge of development branch dev-02 back to main trunk on 2005-08-12 |
2288 |
# |
2289 |
# Revision 1.9.2.17 2005/09/21 07:03:33 matt |
2290 |
# PDECoefficient and LinearPDE are now new style classes (introduced in Python |
2291 |
# 2.2). Classes Poisson, Helmholtz, LameEquation and AdvectivePDE have been |
2292 |
# modified to instead use portable/cooperative "super" calls to extend base |
2293 |
# class methods. |
2294 |
# |
2295 |
# Revision 1.9.2.16 2005/09/16 01:54:37 matt |
2296 |
# Removed redundant if-loop. |
2297 |
# |
2298 |
# Revision 1.9.2.15 2005/09/14 08:09:18 matt |
2299 |
# Added "REDUCED" solution PDECoefficient descriptors for LinearPDEs. |
2300 |
# |
2301 |
# Revision 1.9.2.14 2005/09/07 06:26:16 gross |
2302 |
# the solver from finley are put into the standalone package paso now |
2303 |
# |
2304 |
# Revision 1.9.2.13 2005/08/31 08:45:03 gross |
2305 |
# in the case of lumping no new system is allocated if the constraint is changed. |
2306 |
# |
2307 |
# Revision 1.9.2.12 2005/08/31 07:10:23 gross |
2308 |
# test for Lumping added |
2309 |
# |
2310 |
# Revision 1.9.2.11 2005/08/30 01:53:45 gross |
2311 |
# bug in format fixed. |
2312 |
# |
2313 |
# Revision 1.9.2.10 2005/08/26 07:14:17 gross |
2314 |
# a few more bugs in linearPDE fixed. remaining problem are finley problems |
2315 |
# |
2316 |
# Revision 1.9.2.9 2005/08/26 06:30:45 gross |
2317 |
# fix for reported bug 0000004. test_linearPDE passes a few more tests |
2318 |
# |
2319 |
# Revision 1.9.2.8 2005/08/26 04:30:13 gross |
2320 |
# gneric unit testing for linearPDE |
2321 |
# |
2322 |
# Revision 1.9.2.7 2005/08/25 07:06:50 gross |
2323 |
# linearPDE documentation is parsed now by epydoc. there is still a problem with links into escriptcpp.so |
2324 |
# |
2325 |
# Revision 1.9.2.6 2005/08/24 05:01:24 gross |
2326 |
# problem with resetting the matrix in case of resetting its values to 0 fixed. |
2327 |
# |
2328 |
# Revision 1.9.2.5 2005/08/24 02:03:28 gross |
2329 |
# epydoc mark up partially fixed |
2330 |
# |
2331 |
# Revision 1.9.2.4 2005/08/22 07:11:09 gross |
2332 |
# some problems with LinearPDEs fixed. |
2333 |
# |
2334 |
# Revision 1.9.2.3 2005/08/18 04:48:48 gross |
2335 |
# the methods SetLumping*() are removed. Lumping is set trough setSolverMethod(LinearPDE.LUMPING) |
2336 |
# |
2337 |
# Revision 1.9.2.2 2005/08/18 04:39:32 gross |
2338 |
# the constants have been removed from util.py as they not needed anymore. PDE related constants are accessed through LinearPDE attributes now |
2339 |
# |
2340 |
# Revision 1.9.2.1 2005/07/29 07:10:27 gross |
2341 |
# new functions in util and a new pde type in linearPDEs |
2342 |
# |
2343 |
# Revision 1.1.2.25 2005/07/28 04:21:09 gross |
2344 |
# Lame equation: (linear elastic, isotropic) added |
2345 |
# |
2346 |
# Revision 1.1.2.24 2005/07/22 06:37:11 gross |
2347 |
# some extensions to modellib and linearPDEs |
2348 |
# |
2349 |
# Revision 1.1.2.23 2005/05/13 00:55:20 cochrane |
2350 |
# Fixed up some docstrings. Moved module-level functions to top of file so |
2351 |
# that epydoc and doxygen can pick them up properly. |
2352 |
# |
2353 |
# Revision 1.1.2.22 2005/05/12 11:41:30 gross |
2354 |
# some basic Models have been added |
2355 |
# |
2356 |
# Revision 1.1.2.21 2005/05/12 07:16:12 cochrane |
2357 |
# Moved ELMAN_RAMAGE, SIMPLIFIED_BROOK_HUGHES, and HALF functions to bottom of |
2358 |
# file so that the AdvectivePDE class is picked up by doxygen. Some |
2359 |
# reformatting of docstrings. Addition of code to make equations come out |
2360 |
# as proper LaTeX. |
2361 |
# |
2362 |
# Revision 1.1.2.20 2005/04/15 07:09:08 gross |
2363 |
# some problems with functionspace and linearPDEs fixed. |
2364 |
# |
2365 |
# Revision 1.1.2.19 2005/03/04 05:27:07 gross |
2366 |
# bug in SystemPattern fixed. |
2367 |
# |
2368 |
# Revision 1.1.2.18 2005/02/08 06:16:45 gross |
2369 |
# Bugs in AdvectivePDE fixed, AdvectiveTest is stable but more testing is needed |
2370 |
# |
2371 |
# Revision 1.1.2.17 2005/02/08 05:56:19 gross |
2372 |
# Reference Number handling added |
2373 |
# |
2374 |
# Revision 1.1.2.16 2005/02/07 04:41:28 gross |
2375 |
# some function exposed to python to make mesh merging running |
2376 |
# |
2377 |
# Revision 1.1.2.15 2005/02/03 00:14:44 gross |
2378 |
# timeseries add and ESySParameter.py renames esysXML.py for consistence |
2379 |
# |
2380 |
# Revision 1.1.2.14 2005/02/01 06:44:10 gross |
2381 |
# new implementation of AdvectivePDE which now also updates right hand side. systems of PDEs are still not working |
2382 |
# |
2383 |
# Revision 1.1.2.13 2005/01/25 00:47:07 gross |
2384 |
# updates in the documentation |
2385 |
# |
2386 |
# Revision 1.1.2.12 2005/01/12 01:28:04 matt |
2387 |
# Added createCoefficient method for linearPDEs. |
2388 |
# |
2389 |
# Revision 1.1.2.11 2005/01/11 01:55:34 gross |
2390 |
# a problem in linearPDE class fixed |
2391 |
# |
2392 |
# Revision 1.1.2.10 2005/01/07 01:13:29 gross |
2393 |
# some bugs in linearPDE fixed |
2394 |
# |
2395 |
# Revision 1.1.2.9 2005/01/06 06:24:58 gross |
2396 |
# some bugs in slicing fixed |
2397 |
# |
2398 |
# Revision 1.1.2.8 2005/01/05 04:21:40 gross |
2399 |
# FunctionSpace checking/matchig in slicing added |
2400 |
# |
2401 |
# Revision 1.1.2.7 2004/12/29 10:03:41 gross |
2402 |
# bug in setValue fixed |
2403 |
# |
2404 |
# Revision 1.1.2.6 2004/12/29 05:29:59 gross |
2405 |
# AdvectivePDE successfully tested for Peclet number 1000000. there is still a problem with setValue and Data() |
2406 |
# |
2407 |
# Revision 1.1.2.5 2004/12/29 00:18:41 gross |
2408 |
# AdvectivePDE added |
2409 |
# |
2410 |
# Revision 1.1.2.4 2004/12/24 06:05:41 gross |
2411 |
# some changes in linearPDEs to add AdevectivePDE |
2412 |
# |
2413 |
# Revision 1.1.2.3 2004/12/16 00:12:34 gross |
2414 |
# __init__ of LinearPDE does not accept any coefficient anymore |
2415 |
# |
2416 |
# Revision 1.1.2.2 2004/12/14 03:55:01 jgs |
2417 |
# *** empty log message *** |
2418 |
# |
2419 |
# Revision 1.1.2.1 2004/12/12 22:53:47 gross |
2420 |
# linearPDE has been renamed LinearPDE |
2421 |
# |
2422 |
# Revision 1.1.1.1.2.7 2004/12/07 10:13:08 gross |
2423 |
# GMRES added |
2424 |
# |
2425 |
# Revision 1.1.1.1.2.6 2004/12/07 03:19:50 gross |
2426 |
# options for GMRES and PRES20 added |
2427 |
# |
2428 |
# Revision 1.1.1.1.2.5 2004/12/01 06:25:15 gross |
2429 |
# some small changes |
2430 |
# |
2431 |
# Revision 1.1.1.1.2.4 2004/11/24 01:50:21 gross |
2432 |
# Finley solves 4M unknowns now |
2433 |
# |
2434 |
# Revision 1.1.1.1.2.3 2004/11/15 06:05:26 gross |
2435 |
# poisson solver added |
2436 |
# |
2437 |
# Revision 1.1.1.1.2.2 2004/11/12 06:58:15 gross |
2438 |
# a lot of changes to get the linearPDE class running: most important change is that there is no matrix format exposed to the user anymore. the format is chosen by the Domain according to the solver and symmetry |
2439 |
# |
2440 |
# Revision 1.1.1.1.2.1 2004/10/28 22:59:22 gross |
2441 |
# finley's RecTest.py is running now: problem in SystemMatrixAdapater fixed |
2442 |
# |
2443 |
# Revision 1.1.1.1 2004/10/26 06:53:56 jgs |
2444 |
# initial import of project esys2 |
2445 |
# |
2446 |
# Revision 1.3.2.3 2004/10/26 06:43:48 jgs |
2447 |
# committing Lutz's and Paul's changes to brach jgs |
2448 |
# |
2449 |
# Revision 1.3.4.1 2004/10/20 05:32:51 cochrane |
2450 |
# Added incomplete Doxygen comments to files, or merely put the docstrings that already exist into Doxygen form. |
2451 |
# |
2452 |
# Revision 1.3 2004/09/23 00:53:23 jgs |
2453 |
# minor fixes |
2454 |
# |
2455 |
# Revision 1.1 2004/08/28 12:58:06 gross |
2456 |
# SimpleSolve is not running yet: problem with == of functionsspace |
2457 |
# |