1 |
|
2 |
######################################################## |
3 |
# |
4 |
# Copyright (c) 2003-2008 by University of Queensland |
5 |
# Earth Systems Science Computational Center (ESSCC) |
6 |
# http://www.uq.edu.au/esscc |
7 |
# |
8 |
# Primary Business: Queensland, Australia |
9 |
# Licensed under the Open Software License version 3.0 |
10 |
# http://www.opensource.org/licenses/osl-3.0.php |
11 |
# |
12 |
######################################################## |
13 |
|
14 |
__copyright__="""Copyright (c) 2003-2008 by University of Queensland |
15 |
Earth Systems Science Computational Center (ESSCC) |
16 |
http://www.uq.edu.au/esscc |
17 |
Primary Business: Queensland, Australia""" |
18 |
__license__="""Licensed under the Open Software License version 3.0 |
19 |
http://www.opensource.org/licenses/osl-3.0.php""" |
20 |
__url__="http://www.uq.edu.au/esscc/escript-finley" |
21 |
|
22 |
""" |
23 |
Provides some tools related to PDEs. |
24 |
|
25 |
Currently includes: |
26 |
- Projector - to project a discontinuous function onto a continuous function |
27 |
- Locator - to trace values in data objects at a certain location |
28 |
- TimeIntegrationManager - to handle extrapolation in time |
29 |
- SaddlePointProblem - solver for Saddle point problems using the inexact uszawa scheme |
30 |
|
31 |
@var __author__: name of author |
32 |
@var __copyright__: copyrights |
33 |
@var __license__: licence agreement |
34 |
@var __url__: url entry point on documentation |
35 |
@var __version__: version |
36 |
@var __date__: date of the version |
37 |
""" |
38 |
|
39 |
__author__="Lutz Gross, l.gross@uq.edu.au" |
40 |
|
41 |
|
42 |
import escript |
43 |
import linearPDEs |
44 |
import numarray |
45 |
import util |
46 |
import math |
47 |
|
48 |
##### Added by Artak |
49 |
# from Numeric import zeros,Int,Float64 |
50 |
################################### |
51 |
|
52 |
|
53 |
class TimeIntegrationManager: |
54 |
""" |
55 |
A simple mechanism to manage time dependend values. |
56 |
|
57 |
Typical usage is:: |
58 |
|
59 |
dt=0.1 # time increment |
60 |
tm=TimeIntegrationManager(inital_value,p=1) |
61 |
while t<1. |
62 |
v_guess=tm.extrapolate(dt) # extrapolate to t+dt |
63 |
v=... |
64 |
tm.checkin(dt,v) |
65 |
t+=dt |
66 |
|
67 |
@note: currently only p=1 is supported. |
68 |
""" |
69 |
def __init__(self,*inital_values,**kwargs): |
70 |
""" |
71 |
Sets up the value manager where C{inital_values} are the initial values |
72 |
and p is the order used for extrapolation. |
73 |
""" |
74 |
if kwargs.has_key("p"): |
75 |
self.__p=kwargs["p"] |
76 |
else: |
77 |
self.__p=1 |
78 |
if kwargs.has_key("time"): |
79 |
self.__t=kwargs["time"] |
80 |
else: |
81 |
self.__t=0. |
82 |
self.__v_mem=[inital_values] |
83 |
self.__order=0 |
84 |
self.__dt_mem=[] |
85 |
self.__num_val=len(inital_values) |
86 |
|
87 |
def getTime(self): |
88 |
return self.__t |
89 |
|
90 |
def getValue(self): |
91 |
out=self.__v_mem[0] |
92 |
if len(out)==1: |
93 |
return out[0] |
94 |
else: |
95 |
return out |
96 |
|
97 |
def checkin(self,dt,*values): |
98 |
""" |
99 |
Adds new values to the manager. The p+1 last values are lost. |
100 |
""" |
101 |
o=min(self.__order+1,self.__p) |
102 |
self.__order=min(self.__order+1,self.__p) |
103 |
v_mem_new=[values] |
104 |
dt_mem_new=[dt] |
105 |
for i in range(o-1): |
106 |
v_mem_new.append(self.__v_mem[i]) |
107 |
dt_mem_new.append(self.__dt_mem[i]) |
108 |
v_mem_new.append(self.__v_mem[o-1]) |
109 |
self.__order=o |
110 |
self.__v_mem=v_mem_new |
111 |
self.__dt_mem=dt_mem_new |
112 |
self.__t+=dt |
113 |
|
114 |
def extrapolate(self,dt): |
115 |
""" |
116 |
Extrapolates to C{dt} forward in time. |
117 |
""" |
118 |
if self.__order==0: |
119 |
out=self.__v_mem[0] |
120 |
else: |
121 |
out=[] |
122 |
for i in range(self.__num_val): |
123 |
out.append((1.+dt/self.__dt_mem[0])*self.__v_mem[0][i]-dt/self.__dt_mem[0]*self.__v_mem[1][i]) |
124 |
|
125 |
if len(out)==0: |
126 |
return None |
127 |
elif len(out)==1: |
128 |
return out[0] |
129 |
else: |
130 |
return out |
131 |
|
132 |
|
133 |
class Projector: |
134 |
""" |
135 |
The Projector is a factory which projects a discontinuous function onto a |
136 |
continuous function on a given domain. |
137 |
""" |
138 |
def __init__(self, domain, reduce=True, fast=True): |
139 |
""" |
140 |
Creates a continuous function space projector for a domain. |
141 |
|
142 |
@param domain: Domain of the projection. |
143 |
@param reduce: Flag to reduce projection order |
144 |
@param fast: Flag to use a fast method based on matrix lumping |
145 |
""" |
146 |
self.__pde = linearPDEs.LinearPDE(domain) |
147 |
if fast: |
148 |
self.__pde.setSolverMethod(linearPDEs.LinearPDE.LUMPING) |
149 |
self.__pde.setSymmetryOn() |
150 |
self.__pde.setReducedOrderTo(reduce) |
151 |
self.__pde.setValue(D = 1.) |
152 |
return |
153 |
|
154 |
def __call__(self, input_data): |
155 |
""" |
156 |
Projects C{input_data} onto a continuous function. |
157 |
|
158 |
@param input_data: the data to be projected |
159 |
""" |
160 |
out=escript.Data(0.,input_data.getShape(),self.__pde.getFunctionSpaceForSolution()) |
161 |
self.__pde.setValue(Y = escript.Data(), Y_reduced = escript.Data()) |
162 |
if input_data.getRank()==0: |
163 |
self.__pde.setValue(Y = input_data) |
164 |
out=self.__pde.getSolution() |
165 |
elif input_data.getRank()==1: |
166 |
for i0 in range(input_data.getShape()[0]): |
167 |
self.__pde.setValue(Y = input_data[i0]) |
168 |
out[i0]=self.__pde.getSolution() |
169 |
elif input_data.getRank()==2: |
170 |
for i0 in range(input_data.getShape()[0]): |
171 |
for i1 in range(input_data.getShape()[1]): |
172 |
self.__pde.setValue(Y = input_data[i0,i1]) |
173 |
out[i0,i1]=self.__pde.getSolution() |
174 |
elif input_data.getRank()==3: |
175 |
for i0 in range(input_data.getShape()[0]): |
176 |
for i1 in range(input_data.getShape()[1]): |
177 |
for i2 in range(input_data.getShape()[2]): |
178 |
self.__pde.setValue(Y = input_data[i0,i1,i2]) |
179 |
out[i0,i1,i2]=self.__pde.getSolution() |
180 |
else: |
181 |
for i0 in range(input_data.getShape()[0]): |
182 |
for i1 in range(input_data.getShape()[1]): |
183 |
for i2 in range(input_data.getShape()[2]): |
184 |
for i3 in range(input_data.getShape()[3]): |
185 |
self.__pde.setValue(Y = input_data[i0,i1,i2,i3]) |
186 |
out[i0,i1,i2,i3]=self.__pde.getSolution() |
187 |
return out |
188 |
|
189 |
class NoPDE: |
190 |
""" |
191 |
Solves the following problem for u: |
192 |
|
193 |
M{kronecker[i,j]*D[j]*u[j]=Y[i]} |
194 |
|
195 |
with constraint |
196 |
|
197 |
M{u[j]=r[j]} where M{q[j]>0} |
198 |
|
199 |
where M{D}, M{Y}, M{r} and M{q} are given functions of rank 1. |
200 |
|
201 |
In the case of scalars this takes the form |
202 |
|
203 |
M{D*u=Y} |
204 |
|
205 |
with constraint |
206 |
|
207 |
M{u=r} where M{q>0} |
208 |
|
209 |
where M{D}, M{Y}, M{r} and M{q} are given scalar functions. |
210 |
|
211 |
The constraint overwrites any other condition. |
212 |
|
213 |
@note: This class is similar to the L{linearPDEs.LinearPDE} class with |
214 |
A=B=C=X=0 but has the intention that all input parameters are given |
215 |
in L{Solution} or L{ReducedSolution}. |
216 |
""" |
217 |
# The whole thing is a bit strange and I blame Rob Woodcock (CSIRO) for |
218 |
# this. |
219 |
def __init__(self,domain,D=None,Y=None,q=None,r=None): |
220 |
""" |
221 |
Initializes the problem. |
222 |
|
223 |
@param domain: domain of the PDE |
224 |
@type domain: L{Domain} |
225 |
@param D: coefficient of the solution |
226 |
@type D: C{float}, C{int}, C{numarray.NumArray}, L{Data} |
227 |
@param Y: right hand side |
228 |
@type Y: C{float}, C{int}, C{numarray.NumArray}, L{Data} |
229 |
@param q: location of constraints |
230 |
@type q: C{float}, C{int}, C{numarray.NumArray}, L{Data} |
231 |
@param r: value of solution at locations of constraints |
232 |
@type r: C{float}, C{int}, C{numarray.NumArray}, L{Data} |
233 |
""" |
234 |
self.__domain=domain |
235 |
self.__D=D |
236 |
self.__Y=Y |
237 |
self.__q=q |
238 |
self.__r=r |
239 |
self.__u=None |
240 |
self.__function_space=escript.Solution(self.__domain) |
241 |
|
242 |
def setReducedOn(self): |
243 |
""" |
244 |
Sets the L{FunctionSpace} of the solution to L{ReducedSolution}. |
245 |
""" |
246 |
self.__function_space=escript.ReducedSolution(self.__domain) |
247 |
self.__u=None |
248 |
|
249 |
def setReducedOff(self): |
250 |
""" |
251 |
Sets the L{FunctionSpace} of the solution to L{Solution}. |
252 |
""" |
253 |
self.__function_space=escript.Solution(self.__domain) |
254 |
self.__u=None |
255 |
|
256 |
def setValue(self,D=None,Y=None,q=None,r=None): |
257 |
""" |
258 |
Assigns values to the parameters. |
259 |
|
260 |
@param D: coefficient of the solution |
261 |
@type D: C{float}, C{int}, C{numarray.NumArray}, L{Data} |
262 |
@param Y: right hand side |
263 |
@type Y: C{float}, C{int}, C{numarray.NumArray}, L{Data} |
264 |
@param q: location of constraints |
265 |
@type q: C{float}, C{int}, C{numarray.NumArray}, L{Data} |
266 |
@param r: value of solution at locations of constraints |
267 |
@type r: C{float}, C{int}, C{numarray.NumArray}, L{Data} |
268 |
""" |
269 |
if not D==None: |
270 |
self.__D=D |
271 |
self.__u=None |
272 |
if not Y==None: |
273 |
self.__Y=Y |
274 |
self.__u=None |
275 |
if not q==None: |
276 |
self.__q=q |
277 |
self.__u=None |
278 |
if not r==None: |
279 |
self.__r=r |
280 |
self.__u=None |
281 |
|
282 |
def getSolution(self): |
283 |
""" |
284 |
Returns the solution. |
285 |
|
286 |
@return: the solution of the problem |
287 |
@rtype: L{Data} object in the L{FunctionSpace} L{Solution} or |
288 |
L{ReducedSolution} |
289 |
""" |
290 |
if self.__u==None: |
291 |
if self.__D==None: |
292 |
raise ValueError,"coefficient D is undefined" |
293 |
D=escript.Data(self.__D,self.__function_space) |
294 |
if D.getRank()>1: |
295 |
raise ValueError,"coefficient D must have rank 0 or 1" |
296 |
if self.__Y==None: |
297 |
self.__u=escript.Data(0.,D.getShape(),self.__function_space) |
298 |
else: |
299 |
self.__u=util.quotient(self.__Y,D) |
300 |
if not self.__q==None: |
301 |
q=util.wherePositive(escript.Data(self.__q,self.__function_space)) |
302 |
self.__u*=(1.-q) |
303 |
if not self.__r==None: self.__u+=q*self.__r |
304 |
return self.__u |
305 |
|
306 |
class Locator: |
307 |
""" |
308 |
Locator provides access to the values of data objects at a given spatial |
309 |
coordinate x. |
310 |
|
311 |
In fact, a Locator object finds the sample in the set of samples of a |
312 |
given function space or domain which is closest to the given point x. |
313 |
""" |
314 |
|
315 |
def __init__(self,where,x=numarray.zeros((3,))): |
316 |
""" |
317 |
Initializes a Locator to access values in Data objects on the Doamin |
318 |
or FunctionSpace for the sample point which is closest to the given |
319 |
point x. |
320 |
|
321 |
@param where: function space |
322 |
@type where: L{escript.FunctionSpace} |
323 |
@param x: coefficient of the solution |
324 |
@type x: C{numarray.NumArray} or C{list} of C{numarray.NumArray} |
325 |
""" |
326 |
if isinstance(where,escript.FunctionSpace): |
327 |
self.__function_space=where |
328 |
else: |
329 |
self.__function_space=escript.ContinuousFunction(where) |
330 |
if isinstance(x, list): |
331 |
self.__id=[] |
332 |
for p in x: |
333 |
self.__id.append(util.length(self.__function_space.getX()-p[:self.__function_space.getDim()]).minGlobalDataPoint()) |
334 |
else: |
335 |
self.__id=util.length(self.__function_space.getX()-x[:self.__function_space.getDim()]).minGlobalDataPoint() |
336 |
|
337 |
def __str__(self): |
338 |
""" |
339 |
Returns the coordinates of the Locator as a string. |
340 |
""" |
341 |
x=self.getX() |
342 |
if instance(x,list): |
343 |
out="[" |
344 |
first=True |
345 |
for xx in x: |
346 |
if not first: |
347 |
out+="," |
348 |
else: |
349 |
first=False |
350 |
out+=str(xx) |
351 |
out+="]>" |
352 |
else: |
353 |
out=str(x) |
354 |
return out |
355 |
|
356 |
def getX(self): |
357 |
""" |
358 |
Returns the exact coordinates of the Locator. |
359 |
""" |
360 |
return self(self.getFunctionSpace().getX()) |
361 |
|
362 |
def getFunctionSpace(self): |
363 |
""" |
364 |
Returns the function space of the Locator. |
365 |
""" |
366 |
return self.__function_space |
367 |
|
368 |
def getId(self,item=None): |
369 |
""" |
370 |
Returns the identifier of the location. |
371 |
""" |
372 |
if item == None: |
373 |
return self.__id |
374 |
else: |
375 |
if isinstance(self.__id,list): |
376 |
return self.__id[item] |
377 |
else: |
378 |
return self.__id |
379 |
|
380 |
|
381 |
def __call__(self,data): |
382 |
""" |
383 |
Returns the value of data at the Locator of a Data object. |
384 |
""" |
385 |
return self.getValue(data) |
386 |
|
387 |
def getValue(self,data): |
388 |
""" |
389 |
Returns the value of C{data} at the Locator if C{data} is a L{Data} |
390 |
object otherwise the object is returned. |
391 |
""" |
392 |
if isinstance(data,escript.Data): |
393 |
if data.getFunctionSpace()==self.getFunctionSpace(): |
394 |
dat=data |
395 |
else: |
396 |
dat=data.interpolate(self.getFunctionSpace()) |
397 |
id=self.getId() |
398 |
r=data.getRank() |
399 |
if isinstance(id,list): |
400 |
out=[] |
401 |
for i in id: |
402 |
o=data.getValueOfGlobalDataPoint(*i) |
403 |
if data.getRank()==0: |
404 |
out.append(o[0]) |
405 |
else: |
406 |
out.append(o) |
407 |
return out |
408 |
else: |
409 |
out=data.getValueOfGlobalDataPoint(*id) |
410 |
if data.getRank()==0: |
411 |
return out[0] |
412 |
else: |
413 |
return out |
414 |
else: |
415 |
return data |
416 |
|
417 |
class SolverSchemeException(Exception): |
418 |
""" |
419 |
This is a generic exception thrown by solvers. |
420 |
""" |
421 |
pass |
422 |
|
423 |
class IndefinitePreconditioner(SolverSchemeException): |
424 |
""" |
425 |
Exception thrown if the preconditioner is not positive definite. |
426 |
""" |
427 |
pass |
428 |
|
429 |
class MaxIterReached(SolverSchemeException): |
430 |
""" |
431 |
Exception thrown if the maximum number of iteration steps is reached. |
432 |
""" |
433 |
pass |
434 |
|
435 |
class CorrectionFailed(SolverSchemeException): |
436 |
""" |
437 |
Exception thrown if no convergence has been achieved in the solution |
438 |
correction scheme. |
439 |
""" |
440 |
pass |
441 |
|
442 |
class IterationBreakDown(SolverSchemeException): |
443 |
""" |
444 |
Exception thrown if the iteration scheme encountered an incurable breakdown. |
445 |
""" |
446 |
pass |
447 |
|
448 |
class NegativeNorm(SolverSchemeException): |
449 |
""" |
450 |
Exception thrown if a norm calculation returns a negative norm. |
451 |
""" |
452 |
pass |
453 |
|
454 |
def PCG(r, Aprod, x, Msolve, bilinearform, atol=0, rtol=1.e-8, iter_max=100, initial_guess=True, verbose=False): |
455 |
""" |
456 |
Solver for |
457 |
|
458 |
M{Ax=b} |
459 |
|
460 |
with a symmetric and positive definite operator A (more details required!). |
461 |
It uses the conjugate gradient method with preconditioner M providing an |
462 |
approximation of A. |
463 |
|
464 |
The iteration is terminated if |
465 |
|
466 |
M{|r| <= atol+rtol*|r0|} |
467 |
|
468 |
where M{r0} is the initial residual and M{|.|} is the energy norm. In fact |
469 |
|
470 |
M{|r| = sqrt( bilinearform(Msolve(r),r))} |
471 |
|
472 |
For details on the preconditioned conjugate gradient method see the book: |
473 |
|
474 |
I{Templates for the Solution of Linear Systems by R. Barrett, M. Berry, |
475 |
T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, |
476 |
C. Romine, and H. van der Vorst}. |
477 |
|
478 |
@param r: initial residual M{r=b-Ax}. C{r} is altered. |
479 |
@type r: any object supporting inplace add (x+=y) and scaling (x=scalar*y) |
480 |
@param x: an initial guess for the solution |
481 |
@type x: any object supporting inplace add (x+=y) and scaling (x=scalar*y) |
482 |
@param Aprod: returns the value Ax |
483 |
@type Aprod: function C{Aprod(x)} where C{x} is of the same object like |
484 |
argument C{x}. The returned object needs to be of the same type |
485 |
like argument C{r}. |
486 |
@param Msolve: solves Mx=r |
487 |
@type Msolve: function C{Msolve(r)} where C{r} is of the same type like |
488 |
argument C{r}. The returned object needs to be of the same |
489 |
type like argument C{x}. |
490 |
@param bilinearform: inner product C{<x,r>} |
491 |
@type bilinearform: function C{bilinearform(x,r)} where C{x} is of the same |
492 |
type like argument C{x} and C{r} is. The returned value |
493 |
is a C{float}. |
494 |
@param atol: absolute tolerance |
495 |
@type atol: non-negative C{float} |
496 |
@param rtol: relative tolerance |
497 |
@type rtol: non-negative C{float} |
498 |
@param iter_max: maximum number of iteration steps |
499 |
@type iter_max: C{int} |
500 |
@return: the solution approximation and the corresponding residual |
501 |
@rtype: C{tuple} |
502 |
@warning: C{r} and C{x} are altered. |
503 |
""" |
504 |
iter=0 |
505 |
rhat=Msolve(r) |
506 |
d = rhat |
507 |
rhat_dot_r = bilinearform(rhat, r) |
508 |
if rhat_dot_r<0: raise NegativeNorm,"negative norm." |
509 |
norm_r0=math.sqrt(rhat_dot_r) |
510 |
atol2=atol+rtol*norm_r0 |
511 |
if atol2<=0: |
512 |
raise ValueError,"Non-positive tolarance." |
513 |
atol2=max(atol2, 100. * util.EPSILON * norm_r0) |
514 |
|
515 |
if verbose: print "PCG: initial residual norm = %e (absolute tolerance = %e)"%(norm_r0, atol2) |
516 |
|
517 |
|
518 |
while not math.sqrt(rhat_dot_r) <= atol2: |
519 |
iter+=1 |
520 |
if iter >= iter_max: raise MaxIterReached,"maximum number of %s steps reached."%iter_max |
521 |
|
522 |
q=Aprod(d) |
523 |
alpha = rhat_dot_r / bilinearform(d, q) |
524 |
x += alpha * d |
525 |
r += (-alpha) * q |
526 |
|
527 |
rhat=Msolve(r) |
528 |
rhat_dot_r_new = bilinearform(rhat, r) |
529 |
beta = rhat_dot_r_new / rhat_dot_r |
530 |
rhat+=beta * d |
531 |
d=rhat |
532 |
|
533 |
rhat_dot_r = rhat_dot_r_new |
534 |
if rhat_dot_r<0: raise NegativeNorm,"negative norm." |
535 |
if verbose: print "PCG: iteration step %s: residual norm = %e"%(iter, math.sqrt(rhat_dot_r)) |
536 |
if verbose: print "PCG: tolerance reached after %s steps."%iter |
537 |
return x,r,math.sqrt(rhat_dot_r) |
538 |
|
539 |
class Defect(object): |
540 |
""" |
541 |
Defines a non-linear defect F(x) of a variable x. |
542 |
""" |
543 |
def __init__(self): |
544 |
""" |
545 |
Initializes defect. |
546 |
""" |
547 |
self.setDerivativeIncrementLength() |
548 |
|
549 |
def bilinearform(self, x0, x1): |
550 |
""" |
551 |
Returns the inner product of x0 and x1 |
552 |
|
553 |
@param x0: value for x0 |
554 |
@param x1: value for x1 |
555 |
@return: the inner product of x0 and x1 |
556 |
@rtype: C{float} |
557 |
""" |
558 |
return 0 |
559 |
|
560 |
def norm(self,x): |
561 |
""" |
562 |
Returns the norm of argument C{x}. |
563 |
|
564 |
@param x: a value |
565 |
@return: norm of argument x |
566 |
@rtype: C{float} |
567 |
@note: by default C{sqrt(self.bilinearform(x,x)} is returned. |
568 |
""" |
569 |
s=self.bilinearform(x,x) |
570 |
if s<0: raise NegativeNorm,"negative norm." |
571 |
return math.sqrt(s) |
572 |
|
573 |
def eval(self,x): |
574 |
""" |
575 |
Returns the value F of a given C{x}. |
576 |
|
577 |
@param x: value for which the defect C{F} is evaluated |
578 |
@return: value of the defect at C{x} |
579 |
""" |
580 |
return 0 |
581 |
|
582 |
def __call__(self,x): |
583 |
return self.eval(x) |
584 |
|
585 |
def setDerivativeIncrementLength(self,inc=math.sqrt(util.EPSILON)): |
586 |
""" |
587 |
Sets the relative length of the increment used to approximate the |
588 |
derivative of the defect. The increment is inc*norm(x)/norm(v)*v in the |
589 |
direction of v with x as a starting point. |
590 |
|
591 |
@param inc: relative increment length |
592 |
@type inc: positive C{float} |
593 |
""" |
594 |
if inc<=0: raise ValueError,"positive increment required." |
595 |
self.__inc=inc |
596 |
|
597 |
def getDerivativeIncrementLength(self): |
598 |
""" |
599 |
Returns the relative increment length used to approximate the |
600 |
derivative of the defect. |
601 |
@return: value of the defect at C{x} |
602 |
@rtype: positive C{float} |
603 |
""" |
604 |
return self.__inc |
605 |
|
606 |
def derivative(self, F0, x0, v, v_is_normalised=True): |
607 |
""" |
608 |
Returns the directional derivative at C{x0} in the direction of C{v}. |
609 |
|
610 |
@param F0: value of this defect at x0 |
611 |
@param x0: value at which derivative is calculated |
612 |
@param v: direction |
613 |
@param v_is_normalised: True to indicate that C{v} is nomalized |
614 |
(self.norm(v)=0) |
615 |
@return: derivative of this defect at x0 in the direction of C{v} |
616 |
@note: by default numerical evaluation (self.eval(x0+eps*v)-F0)/eps is |
617 |
used but this method maybe overwritten to use exact evaluation. |
618 |
""" |
619 |
normx=self.norm(x0) |
620 |
if normx>0: |
621 |
epsnew = self.getDerivativeIncrementLength() * normx |
622 |
else: |
623 |
epsnew = self.getDerivativeIncrementLength() |
624 |
if not v_is_normalised: |
625 |
normv=self.norm(v) |
626 |
if normv<=0: |
627 |
return F0*0 |
628 |
else: |
629 |
epsnew /= normv |
630 |
F1=self.eval(x0 + epsnew * v) |
631 |
return (F1-F0)/epsnew |
632 |
|
633 |
###################################### |
634 |
def NewtonGMRES(defect, x, iter_max=100, sub_iter_max=20, atol=0,rtol=1.e-4, sub_tol_max=0.5, gamma=0.9, verbose=False): |
635 |
""" |
636 |
Solves a non-linear problem M{F(x)=0} for unknown M{x} using the stopping |
637 |
criterion: |
638 |
|
639 |
M{norm(F(x) <= atol + rtol * norm(F(x0)} |
640 |
|
641 |
where M{x0} is the initial guess. |
642 |
|
643 |
@param defect: object defining the function M{F}. C{defect.norm} defines the |
644 |
M{norm} used in the stopping criterion. |
645 |
@type defect: L{Defect} |
646 |
@param x: initial guess for the solution, C{x} is altered. |
647 |
@type x: any object type allowing basic operations such as |
648 |
C{numarray.NumArray}, L{Data} |
649 |
@param iter_max: maximum number of iteration steps |
650 |
@type iter_max: positive C{int} |
651 |
@param sub_iter_max: maximum number of inner iteration steps |
652 |
@type sub_iter_max: positive C{int} |
653 |
@param atol: absolute tolerance for the solution |
654 |
@type atol: positive C{float} |
655 |
@param rtol: relative tolerance for the solution |
656 |
@type rtol: positive C{float} |
657 |
@param gamma: tolerance safety factor for inner iteration |
658 |
@type gamma: positive C{float}, less than 1 |
659 |
@param sub_tol_max: upper bound for inner tolerance |
660 |
@type sub_tol_max: positive C{float}, less than 1 |
661 |
@return: an approximation of the solution with the desired accuracy |
662 |
@rtype: same type as the initial guess |
663 |
""" |
664 |
lmaxit=iter_max |
665 |
if atol<0: raise ValueError,"atol needs to be non-negative." |
666 |
if rtol<0: raise ValueError,"rtol needs to be non-negative." |
667 |
if rtol+atol<=0: raise ValueError,"rtol or atol needs to be non-negative." |
668 |
if gamma<=0 or gamma>=1: raise ValueError,"tolerance safety factor for inner iteration (gamma =%s) needs to be positive and less than 1."%gamma |
669 |
if sub_tol_max<=0 or sub_tol_max>=1: raise ValueError,"upper bound for inner tolerance for inner iteration (sub_tol_max =%s) needs to be positive and less than 1."%sub_tol_max |
670 |
|
671 |
F=defect(x) |
672 |
fnrm=defect.norm(F) |
673 |
stop_tol=atol + rtol*fnrm |
674 |
sub_tol=sub_tol_max |
675 |
if verbose: print "NewtonGMRES: initial residual = %e."%fnrm |
676 |
if verbose: print " tolerance = %e."%sub_tol |
677 |
iter=1 |
678 |
# |
679 |
# main iteration loop |
680 |
# |
681 |
while not fnrm<=stop_tol: |
682 |
if iter >= iter_max: raise MaxIterReached,"maximum number of %s steps reached."%iter_max |
683 |
# |
684 |
# adjust sub_tol_ |
685 |
# |
686 |
if iter > 1: |
687 |
rat=fnrm/fnrmo |
688 |
sub_tol_old=sub_tol |
689 |
sub_tol=gamma*rat**2 |
690 |
if gamma*sub_tol_old**2 > .1: sub_tol=max(sub_tol,gamma*sub_tol_old**2) |
691 |
sub_tol=max(min(sub_tol,sub_tol_max), .5*stop_tol/fnrm) |
692 |
# |
693 |
# calculate newton increment xc |
694 |
# if iter_max in __FDGMRES is reached MaxIterReached is thrown |
695 |
# if iter_restart -1 is returned as sub_iter |
696 |
# if atol is reached sub_iter returns the numer of steps performed to get there |
697 |
# |
698 |
# |
699 |
if verbose: print " subiteration (GMRES) is called with relative tolerance %e."%sub_tol |
700 |
try: |
701 |
xc, sub_iter=__FDGMRES(F, defect, x, sub_tol*fnrm, iter_max=iter_max-iter, iter_restart=sub_iter_max) |
702 |
except MaxIterReached: |
703 |
raise MaxIterReached,"maximum number of %s steps reached."%iter_max |
704 |
if sub_iter<0: |
705 |
iter+=sub_iter_max |
706 |
else: |
707 |
iter+=sub_iter |
708 |
# ==== |
709 |
x+=xc |
710 |
F=defect(x) |
711 |
iter+=1 |
712 |
fnrmo, fnrm=fnrm, defect.norm(F) |
713 |
if verbose: print " step %s: residual %e."%(iter,fnrm) |
714 |
if verbose: print "NewtonGMRES: completed after %s steps."%iter |
715 |
return x |
716 |
|
717 |
def __givapp(c,s,vin): |
718 |
""" |
719 |
Applies a sequence of Givens rotations (c,s) recursively to the vector |
720 |
C{vin} |
721 |
|
722 |
@warning: C{vin} is altered. |
723 |
""" |
724 |
vrot=vin |
725 |
if isinstance(c,float): |
726 |
vrot=numarray.array([c*vrot[0]-s*vrot[1],s*vrot[0]+c*vrot[1]]) |
727 |
else: |
728 |
for i in range(len(c)): |
729 |
w1=c[i]*vrot[i]-s[i]*vrot[i+1] |
730 |
w2=s[i]*vrot[i]+c[i]*vrot[i+1] |
731 |
vrot[i]=w1 |
732 |
vrot[i+1]=w2 |
733 |
return vrot |
734 |
|
735 |
def __FDGMRES(F0, defect, x0, atol, iter_max=100, iter_restart=20): |
736 |
h=numarray.zeros((iter_restart,iter_restart),numarray.Float64) |
737 |
c=numarray.zeros(iter_restart,numarray.Float64) |
738 |
s=numarray.zeros(iter_restart,numarray.Float64) |
739 |
g=numarray.zeros(iter_restart,numarray.Float64) |
740 |
v=[] |
741 |
|
742 |
rho=defect.norm(F0) |
743 |
if rho<=0.: return x0*0 |
744 |
|
745 |
v.append(-F0/rho) |
746 |
g[0]=rho |
747 |
iter=0 |
748 |
while rho > atol and iter<iter_restart-1: |
749 |
if iter >= iter_max: |
750 |
raise MaxIterReached,"maximum number of %s steps reached."%iter_max |
751 |
|
752 |
p=defect.derivative(F0,x0,v[iter], v_is_normalised=True) |
753 |
v.append(p) |
754 |
|
755 |
v_norm1=defect.norm(v[iter+1]) |
756 |
|
757 |
# Modified Gram-Schmidt |
758 |
for j in range(iter+1): |
759 |
h[j,iter]=defect.bilinearform(v[j],v[iter+1]) |
760 |
v[iter+1]-=h[j,iter]*v[j] |
761 |
|
762 |
h[iter+1,iter]=defect.norm(v[iter+1]) |
763 |
v_norm2=h[iter+1,iter] |
764 |
|
765 |
# Reorthogonalize if needed |
766 |
if v_norm1 + 0.001*v_norm2 == v_norm1: #Brown/Hindmarsh condition (default) |
767 |
for j in range(iter+1): |
768 |
hr=defect.bilinearform(v[j],v[iter+1]) |
769 |
h[j,iter]=h[j,iter]+hr |
770 |
v[iter+1] -= hr*v[j] |
771 |
|
772 |
v_norm2=defect.norm(v[iter+1]) |
773 |
h[iter+1,iter]=v_norm2 |
774 |
# watch out for happy breakdown |
775 |
if not v_norm2 == 0: |
776 |
v[iter+1]=v[iter+1]/h[iter+1,iter] |
777 |
|
778 |
# Form and store the information for the new Givens rotation |
779 |
if iter > 0 : |
780 |
hhat=numarray.zeros(iter+1,numarray.Float64) |
781 |
for i in range(iter+1) : hhat[i]=h[i,iter] |
782 |
hhat=__givapp(c[0:iter],s[0:iter],hhat); |
783 |
for i in range(iter+1) : h[i,iter]=hhat[i] |
784 |
|
785 |
mu=math.sqrt(h[iter,iter]*h[iter,iter]+h[iter+1,iter]*h[iter+1,iter]) |
786 |
|
787 |
if mu!=0 : |
788 |
c[iter]=h[iter,iter]/mu |
789 |
s[iter]=-h[iter+1,iter]/mu |
790 |
h[iter,iter]=c[iter]*h[iter,iter]-s[iter]*h[iter+1,iter] |
791 |
h[iter+1,iter]=0.0 |
792 |
gg=__givapp(c[iter],s[iter],numarray.array([g[iter],g[iter+1]])) |
793 |
g[iter]=gg[0] |
794 |
g[iter+1]=gg[1] |
795 |
|
796 |
# Update the residual norm |
797 |
rho=abs(g[iter+1]) |
798 |
iter+=1 |
799 |
|
800 |
# At this point either iter > iter_max or rho < tol. |
801 |
# It's time to compute x and leave. |
802 |
if iter > 0 : |
803 |
y=numarray.zeros(iter,numarray.Float64) |
804 |
y[iter-1] = g[iter-1] / h[iter-1,iter-1] |
805 |
if iter > 1 : |
806 |
i=iter-2 |
807 |
while i>=0 : |
808 |
y[i] = ( g[i] - numarray.dot(h[i,i+1:iter], y[i+1:iter])) / h[i,i] |
809 |
i=i-1 |
810 |
xhat=v[iter-1]*y[iter-1] |
811 |
for i in range(iter-1): |
812 |
xhat += v[i]*y[i] |
813 |
else : |
814 |
xhat=v[0] * 0 |
815 |
|
816 |
if iter<iter_restart-1: |
817 |
stopped=iter |
818 |
else: |
819 |
stopped=-1 |
820 |
|
821 |
return xhat,stopped |
822 |
|
823 |
def GMRES(r, Aprod, x, bilinearform, atol=0, rtol=1.e-8, iter_max=100, iter_restart=20, verbose=False,P_R=None): |
824 |
""" |
825 |
Solver for |
826 |
|
827 |
M{Ax=b} |
828 |
|
829 |
with a general operator A (more details required!). |
830 |
It uses the generalized minimum residual method (GMRES). |
831 |
|
832 |
The iteration is terminated if |
833 |
|
834 |
M{|r| <= atol+rtol*|r0|} |
835 |
|
836 |
where M{r0} is the initial residual and M{|.|} is the energy norm. In fact |
837 |
|
838 |
M{|r| = sqrt( bilinearform(r,r))} |
839 |
|
840 |
@param r: initial residual M{r=b-Ax}. C{r} is altered. |
841 |
@type r: any object supporting inplace add (x+=y) and scaling (x=scalar*y) |
842 |
@param x: an initial guess for the solution |
843 |
@type x: same like C{r} |
844 |
@param Aprod: returns the value Ax |
845 |
@type Aprod: function C{Aprod(x)} where C{x} is of the same object like |
846 |
argument C{x}. The returned object needs to be of the same |
847 |
type like argument C{r}. |
848 |
@param bilinearform: inner product C{<x,r>} |
849 |
@type bilinearform: function C{bilinearform(x,r)} where C{x} is of the same |
850 |
type like argument C{x} and C{r}. The returned value is |
851 |
a C{float}. |
852 |
@param atol: absolute tolerance |
853 |
@type atol: non-negative C{float} |
854 |
@param rtol: relative tolerance |
855 |
@type rtol: non-negative C{float} |
856 |
@param iter_max: maximum number of iteration steps |
857 |
@type iter_max: C{int} |
858 |
@param iter_restart: in order to save memory the orthogonalization process |
859 |
is terminated after C{iter_restart} steps and the |
860 |
iteration is restarted. |
861 |
@type iter_restart: C{int} |
862 |
@return: the solution approximation and the corresponding residual |
863 |
@rtype: C{tuple} |
864 |
@warning: C{r} and C{x} are altered. |
865 |
""" |
866 |
m=iter_restart |
867 |
restarted=False |
868 |
iter=0 |
869 |
if rtol>0: |
870 |
r_dot_r = bilinearform(r, r) |
871 |
if r_dot_r<0: raise NegativeNorm,"negative norm." |
872 |
atol2=atol+rtol*math.sqrt(r_dot_r) |
873 |
if verbose: print "GMRES: norm of right hand side = %e (absolute tolerance = %e)"%(math.sqrt(r_dot_r), atol2) |
874 |
else: |
875 |
atol2=atol |
876 |
if verbose: print "GMRES: absolute tolerance = %e"%atol2 |
877 |
if atol2<=0: |
878 |
raise ValueError,"Non-positive tolarance." |
879 |
|
880 |
while True: |
881 |
if iter >= iter_max: raise MaxIterReached,"maximum number of %s steps reached"%iter_max |
882 |
if restarted: |
883 |
r2 = r-Aprod(x-x2) |
884 |
else: |
885 |
r2=1*r |
886 |
x2=x*1. |
887 |
x,stopped=_GMRESm(r2, Aprod, x, bilinearform, atol2, iter_max=iter_max-iter, iter_restart=m, verbose=verbose,P_R=P_R) |
888 |
iter+=iter_restart |
889 |
if stopped: break |
890 |
if verbose: print "GMRES: restart." |
891 |
restarted=True |
892 |
if verbose: print "GMRES: tolerance has been reached." |
893 |
return x |
894 |
|
895 |
def _GMRESm(r, Aprod, x, bilinearform, atol, iter_max=100, iter_restart=20, verbose=False, P_R=None): |
896 |
iter=0 |
897 |
|
898 |
h=numarray.zeros((iter_restart+1,iter_restart),numarray.Float64) |
899 |
c=numarray.zeros(iter_restart,numarray.Float64) |
900 |
s=numarray.zeros(iter_restart,numarray.Float64) |
901 |
g=numarray.zeros(iter_restart+1,numarray.Float64) |
902 |
v=[] |
903 |
|
904 |
r_dot_r = bilinearform(r, r) |
905 |
if r_dot_r<0: raise NegativeNorm,"negative norm." |
906 |
rho=math.sqrt(r_dot_r) |
907 |
|
908 |
v.append(r/rho) |
909 |
g[0]=rho |
910 |
|
911 |
if verbose: print "GMRES: initial residual %e (absolute tolerance = %e)"%(rho,atol) |
912 |
while not (rho<=atol or iter==iter_restart): |
913 |
|
914 |
if iter >= iter_max: raise MaxIterReached,"maximum number of %s steps reached."%iter_max |
915 |
|
916 |
if P_R!=None: |
917 |
p=Aprod(P_R(v[iter])) |
918 |
else: |
919 |
p=Aprod(v[iter]) |
920 |
v.append(p) |
921 |
|
922 |
v_norm1=math.sqrt(bilinearform(v[iter+1], v[iter+1])) |
923 |
|
924 |
# Modified Gram-Schmidt |
925 |
for j in range(iter+1): |
926 |
h[j,iter]=bilinearform(v[j],v[iter+1]) |
927 |
v[iter+1]-=h[j,iter]*v[j] |
928 |
|
929 |
h[iter+1,iter]=math.sqrt(bilinearform(v[iter+1],v[iter+1])) |
930 |
v_norm2=h[iter+1,iter] |
931 |
|
932 |
# Reorthogonalize if needed |
933 |
if v_norm1 + 0.001*v_norm2 == v_norm1: #Brown/Hindmarsh condition (default) |
934 |
for j in range(iter+1): |
935 |
hr=bilinearform(v[j],v[iter+1]) |
936 |
h[j,iter]=h[j,iter]+hr |
937 |
v[iter+1] -= hr*v[j] |
938 |
|
939 |
v_norm2=math.sqrt(bilinearform(v[iter+1], v[iter+1])) |
940 |
h[iter+1,iter]=v_norm2 |
941 |
|
942 |
# watch out for happy breakdown |
943 |
if not v_norm2 == 0: |
944 |
v[iter+1]=v[iter+1]/h[iter+1,iter] |
945 |
|
946 |
# Form and store the information for the new Givens rotation |
947 |
if iter > 0: h[:iter+1,iter]=__givapp(c[:iter],s[:iter],h[:iter+1,iter]) |
948 |
mu=math.sqrt(h[iter,iter]*h[iter,iter]+h[iter+1,iter]*h[iter+1,iter]) |
949 |
|
950 |
if mu!=0 : |
951 |
c[iter]=h[iter,iter]/mu |
952 |
s[iter]=-h[iter+1,iter]/mu |
953 |
h[iter,iter]=c[iter]*h[iter,iter]-s[iter]*h[iter+1,iter] |
954 |
h[iter+1,iter]=0.0 |
955 |
gg=__givapp(c[iter],s[iter],numarray.array([g[iter],g[iter+1]])) |
956 |
g[iter]=gg[0] |
957 |
g[iter+1]=gg[1] |
958 |
# Update the residual norm |
959 |
|
960 |
rho=abs(g[iter+1]) |
961 |
if verbose: print "GMRES: iteration step %s: residual %e"%(iter,rho) |
962 |
iter+=1 |
963 |
|
964 |
# At this point either iter > iter_max or rho < tol. |
965 |
# It's time to compute x and leave. |
966 |
|
967 |
if verbose: print "GMRES: iteration stopped after %s step."%iter |
968 |
if iter > 0 : |
969 |
y=numarray.zeros(iter,numarray.Float64) |
970 |
y[iter-1] = g[iter-1] / h[iter-1,iter-1] |
971 |
if iter > 1 : |
972 |
i=iter-2 |
973 |
while i>=0 : |
974 |
y[i] = ( g[i] - numarray.dot(h[i,i+1:iter], y[i+1:iter])) / h[i,i] |
975 |
i=i-1 |
976 |
xhat=v[iter-1]*y[iter-1] |
977 |
for i in range(iter-1): |
978 |
xhat += v[i]*y[i] |
979 |
else: |
980 |
xhat=v[0] * 0 |
981 |
if P_R!=None: |
982 |
x += P_R(xhat) |
983 |
else: |
984 |
x += xhat |
985 |
if iter<iter_restart-1: |
986 |
stopped=True |
987 |
else: |
988 |
stopped=False |
989 |
|
990 |
return x,stopped |
991 |
|
992 |
def MINRES(r, Aprod, x, Msolve, bilinearform, atol=0, rtol=1.e-8, iter_max=100): |
993 |
""" |
994 |
Solver for |
995 |
|
996 |
M{Ax=b} |
997 |
|
998 |
with a symmetric and positive definite operator A (more details required!). |
999 |
It uses the minimum residual method (MINRES) with preconditioner M |
1000 |
providing an approximation of A. |
1001 |
|
1002 |
The iteration is terminated if |
1003 |
|
1004 |
M{|r| <= atol+rtol*|r0|} |
1005 |
|
1006 |
where M{r0} is the initial residual and M{|.|} is the energy norm. In fact |
1007 |
|
1008 |
M{|r| = sqrt( bilinearform(Msolve(r),r))} |
1009 |
|
1010 |
For details on the preconditioned conjugate gradient method see the book: |
1011 |
|
1012 |
I{Templates for the Solution of Linear Systems by R. Barrett, M. Berry, |
1013 |
T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, |
1014 |
C. Romine, and H. van der Vorst}. |
1015 |
|
1016 |
@param r: initial residual M{r=b-Ax}. C{r} is altered. |
1017 |
@type r: any object supporting inplace add (x+=y) and scaling (x=scalar*y) |
1018 |
@param x: an initial guess for the solution |
1019 |
@type x: any object supporting inplace add (x+=y) and scaling (x=scalar*y) |
1020 |
@param Aprod: returns the value Ax |
1021 |
@type Aprod: function C{Aprod(x)} where C{x} is of the same object like |
1022 |
argument C{x}. The returned object needs to be of the same |
1023 |
type like argument C{r}. |
1024 |
@param Msolve: solves Mx=r |
1025 |
@type Msolve: function C{Msolve(r)} where C{r} is of the same type like |
1026 |
argument C{r}. The returned object needs to be of the same |
1027 |
type like argument C{x}. |
1028 |
@param bilinearform: inner product C{<x,r>} |
1029 |
@type bilinearform: function C{bilinearform(x,r)} where C{x} is of the same |
1030 |
type like argument C{x} and C{r} is. The returned value |
1031 |
is a C{float}. |
1032 |
@param atol: absolute tolerance |
1033 |
@type atol: non-negative C{float} |
1034 |
@param rtol: relative tolerance |
1035 |
@type rtol: non-negative C{float} |
1036 |
@param iter_max: maximum number of iteration steps |
1037 |
@type iter_max: C{int} |
1038 |
@return: the solution approximation and the corresponding residual |
1039 |
@rtype: C{tuple} |
1040 |
@warning: C{r} and C{x} are altered. |
1041 |
""" |
1042 |
#------------------------------------------------------------------ |
1043 |
# Set up y and v for the first Lanczos vector v1. |
1044 |
# y = beta1 P' v1, where P = C**(-1). |
1045 |
# v is really P' v1. |
1046 |
#------------------------------------------------------------------ |
1047 |
r1 = r |
1048 |
y = Msolve(r) |
1049 |
beta1 = bilinearform(y,r) |
1050 |
|
1051 |
if beta1< 0: raise NegativeNorm,"negative norm." |
1052 |
|
1053 |
# If r = 0 exactly, stop with x |
1054 |
if beta1==0: return x |
1055 |
|
1056 |
if beta1> 0: beta1 = math.sqrt(beta1) |
1057 |
|
1058 |
#------------------------------------------------------------------ |
1059 |
# Initialize quantities. |
1060 |
# ------------------------------------------------------------------ |
1061 |
iter = 0 |
1062 |
Anorm = 0 |
1063 |
ynorm = 0 |
1064 |
oldb = 0 |
1065 |
beta = beta1 |
1066 |
dbar = 0 |
1067 |
epsln = 0 |
1068 |
phibar = beta1 |
1069 |
rhs1 = beta1 |
1070 |
rhs2 = 0 |
1071 |
rnorm = phibar |
1072 |
tnorm2 = 0 |
1073 |
ynorm2 = 0 |
1074 |
cs = -1 |
1075 |
sn = 0 |
1076 |
w = r*0. |
1077 |
w2 = r*0. |
1078 |
r2 = r1 |
1079 |
eps = 0.0001 |
1080 |
|
1081 |
#--------------------------------------------------------------------- |
1082 |
# Main iteration loop. |
1083 |
# -------------------------------------------------------------------- |
1084 |
while not rnorm<=atol+rtol*Anorm*ynorm: # checks ||r|| < (||A|| ||x||) * TOL |
1085 |
|
1086 |
if iter >= iter_max: raise MaxIterReached,"maximum number of %s steps reached."%iter_max |
1087 |
iter = iter + 1 |
1088 |
|
1089 |
#----------------------------------------------------------------- |
1090 |
# Obtain quantities for the next Lanczos vector vk+1, k = 1, 2,... |
1091 |
# The general iteration is similar to the case k = 1 with v0 = 0: |
1092 |
# |
1093 |
# p1 = Operator * v1 - beta1 * v0, |
1094 |
# alpha1 = v1'p1, |
1095 |
# q2 = p2 - alpha1 * v1, |
1096 |
# beta2^2 = q2'q2, |
1097 |
# v2 = (1/beta2) q2. |
1098 |
# |
1099 |
# Again, y = betak P vk, where P = C**(-1). |
1100 |
#----------------------------------------------------------------- |
1101 |
s = 1/beta # Normalize previous vector (in y). |
1102 |
v = s*y # v = vk if P = I |
1103 |
|
1104 |
y = Aprod(v) |
1105 |
|
1106 |
if iter >= 2: |
1107 |
y = y - (beta/oldb)*r1 |
1108 |
|
1109 |
alfa = bilinearform(v,y) # alphak |
1110 |
y += (- alfa/beta)*r2 |
1111 |
r1 = r2 |
1112 |
r2 = y |
1113 |
y = Msolve(r2) |
1114 |
oldb = beta # oldb = betak |
1115 |
beta = bilinearform(y,r2) # beta = betak+1^2 |
1116 |
if beta < 0: raise NegativeNorm,"negative norm." |
1117 |
|
1118 |
beta = math.sqrt( beta ) |
1119 |
tnorm2 = tnorm2 + alfa*alfa + oldb*oldb + beta*beta |
1120 |
|
1121 |
if iter==1: # Initialize a few things. |
1122 |
gmax = abs( alfa ) # alpha1 |
1123 |
gmin = gmax # alpha1 |
1124 |
|
1125 |
# Apply previous rotation Qk-1 to get |
1126 |
# [deltak epslnk+1] = [cs sn][dbark 0 ] |
1127 |
# [gbar k dbar k+1] [sn -cs][alfak betak+1]. |
1128 |
|
1129 |
oldeps = epsln |
1130 |
delta = cs * dbar + sn * alfa # delta1 = 0 deltak |
1131 |
gbar = sn * dbar - cs * alfa # gbar 1 = alfa1 gbar k |
1132 |
epsln = sn * beta # epsln2 = 0 epslnk+1 |
1133 |
dbar = - cs * beta # dbar 2 = beta2 dbar k+1 |
1134 |
|
1135 |
# Compute the next plane rotation Qk |
1136 |
|
1137 |
gamma = math.sqrt(gbar*gbar+beta*beta) # gammak |
1138 |
gamma = max(gamma,eps) |
1139 |
cs = gbar / gamma # ck |
1140 |
sn = beta / gamma # sk |
1141 |
phi = cs * phibar # phik |
1142 |
phibar = sn * phibar # phibark+1 |
1143 |
|
1144 |
# Update x. |
1145 |
|
1146 |
denom = 1/gamma |
1147 |
w1 = w2 |
1148 |
w2 = w |
1149 |
w = (v - oldeps*w1 - delta*w2) * denom |
1150 |
x += phi*w |
1151 |
|
1152 |
# Go round again. |
1153 |
|
1154 |
gmax = max(gmax,gamma) |
1155 |
gmin = min(gmin,gamma) |
1156 |
z = rhs1 / gamma |
1157 |
ynorm2 = z*z + ynorm2 |
1158 |
rhs1 = rhs2 - delta*z |
1159 |
rhs2 = - epsln*z |
1160 |
|
1161 |
# Estimate various norms and test for convergence. |
1162 |
|
1163 |
Anorm = math.sqrt( tnorm2 ) |
1164 |
ynorm = math.sqrt( ynorm2 ) |
1165 |
|
1166 |
rnorm = phibar |
1167 |
|
1168 |
return x |
1169 |
|
1170 |
def TFQMR(r, Aprod, x, bilinearform, atol=0, rtol=1.e-8, iter_max=100): |
1171 |
""" |
1172 |
Solver for |
1173 |
|
1174 |
M{Ax=b} |
1175 |
|
1176 |
with a general operator A (more details required!). |
1177 |
It uses the Transpose-Free Quasi-Minimal Residual method (TFQMR). |
1178 |
|
1179 |
The iteration is terminated if |
1180 |
|
1181 |
M{|r| <= atol+rtol*|r0|} |
1182 |
|
1183 |
where M{r0} is the initial residual and M{|.|} is the energy norm. In fact |
1184 |
|
1185 |
M{|r| = sqrt( bilinearform(r,r))} |
1186 |
|
1187 |
@param r: initial residual M{r=b-Ax}. C{r} is altered. |
1188 |
@type r: any object supporting inplace add (x+=y) and scaling (x=scalar*y) |
1189 |
@param x: an initial guess for the solution |
1190 |
@type x: same like C{r} |
1191 |
@param Aprod: returns the value Ax |
1192 |
@type Aprod: function C{Aprod(x)} where C{x} is of the same object like |
1193 |
argument C{x}. The returned object needs to be of the same type |
1194 |
like argument C{r}. |
1195 |
@param bilinearform: inner product C{<x,r>} |
1196 |
@type bilinearform: function C{bilinearform(x,r)} where C{x} is of the same |
1197 |
type like argument C{x} and C{r}. The returned value is |
1198 |
a C{float}. |
1199 |
@param atol: absolute tolerance |
1200 |
@type atol: non-negative C{float} |
1201 |
@param rtol: relative tolerance |
1202 |
@type rtol: non-negative C{float} |
1203 |
@param iter_max: maximum number of iteration steps |
1204 |
@type iter_max: C{int} |
1205 |
@rtype: C{tuple} |
1206 |
@warning: C{r} and C{x} are altered. |
1207 |
""" |
1208 |
u1=0 |
1209 |
u2=0 |
1210 |
y1=0 |
1211 |
y2=0 |
1212 |
|
1213 |
w = r |
1214 |
y1 = r |
1215 |
iter = 0 |
1216 |
d = 0 |
1217 |
v = Aprod(y1) |
1218 |
u1 = v |
1219 |
|
1220 |
theta = 0.0; |
1221 |
eta = 0.0; |
1222 |
rho=bilinearform(r,r) |
1223 |
if rho < 0: raise NegativeNorm,"negative norm." |
1224 |
tau = math.sqrt(rho) |
1225 |
norm_r0=tau |
1226 |
while tau>atol+rtol*norm_r0: |
1227 |
if iter >= iter_max: raise MaxIterReached,"maximum number of %s steps reached."%iter_max |
1228 |
|
1229 |
sigma = bilinearform(r,v) |
1230 |
if sigma == 0.0: raise IterationBreakDown,'TFQMR breakdown, sigma=0' |
1231 |
|
1232 |
alpha = rho / sigma |
1233 |
|
1234 |
for j in range(2): |
1235 |
# |
1236 |
# Compute y2 and u2 only if you have to |
1237 |
# |
1238 |
if ( j == 1 ): |
1239 |
y2 = y1 - alpha * v |
1240 |
u2 = Aprod(y2) |
1241 |
|
1242 |
m = 2 * (iter+1) - 2 + (j+1) |
1243 |
if j==0: |
1244 |
w = w - alpha * u1 |
1245 |
d = y1 + ( theta * theta * eta / alpha ) * d |
1246 |
if j==1: |
1247 |
w = w - alpha * u2 |
1248 |
d = y2 + ( theta * theta * eta / alpha ) * d |
1249 |
|
1250 |
theta = math.sqrt(bilinearform(w,w))/ tau |
1251 |
c = 1.0 / math.sqrt ( 1.0 + theta * theta ) |
1252 |
tau = tau * theta * c |
1253 |
eta = c * c * alpha |
1254 |
x = x + eta * d |
1255 |
# |
1256 |
# Try to terminate the iteration at each pass through the loop |
1257 |
# |
1258 |
if rho == 0.0: raise IterationBreakDown,'TFQMR breakdown, rho=0' |
1259 |
|
1260 |
rhon = bilinearform(r,w) |
1261 |
beta = rhon / rho; |
1262 |
rho = rhon; |
1263 |
y1 = w + beta * y2; |
1264 |
u1 = Aprod(y1) |
1265 |
v = u1 + beta * ( u2 + beta * v ) |
1266 |
|
1267 |
iter += 1 |
1268 |
|
1269 |
return x |
1270 |
|
1271 |
|
1272 |
############################################# |
1273 |
|
1274 |
class ArithmeticTuple(object): |
1275 |
""" |
1276 |
Tuple supporting inplace update x+=y and scaling x=a*y where C{x,y} is an |
1277 |
ArithmeticTuple and C{a} is a float. |
1278 |
|
1279 |
Example of usage:: |
1280 |
|
1281 |
from esys.escript import Data |
1282 |
from numarray import array |
1283 |
a=Data(...) |
1284 |
b=array([1.,4.]) |
1285 |
x=ArithmeticTuple(a,b) |
1286 |
y=5.*x |
1287 |
|
1288 |
""" |
1289 |
def __init__(self,*args): |
1290 |
""" |
1291 |
Initializes object with elements C{args}. |
1292 |
|
1293 |
@param args: tuple of objects that support inplace add (x+=y) and |
1294 |
scaling (x=a*y) |
1295 |
""" |
1296 |
self.__items=list(args) |
1297 |
|
1298 |
def __len__(self): |
1299 |
""" |
1300 |
Returns the number of items. |
1301 |
|
1302 |
@return: number of items |
1303 |
@rtype: C{int} |
1304 |
""" |
1305 |
return len(self.__items) |
1306 |
|
1307 |
def __getitem__(self,index): |
1308 |
""" |
1309 |
Returns item at specified position. |
1310 |
|
1311 |
@param index: index of item to be returned |
1312 |
@type index: C{int} |
1313 |
@return: item with index C{index} |
1314 |
""" |
1315 |
return self.__items.__getitem__(index) |
1316 |
|
1317 |
def __mul__(self,other): |
1318 |
""" |
1319 |
Scales by C{other} from the right. |
1320 |
|
1321 |
@param other: scaling factor |
1322 |
@type other: C{float} |
1323 |
@return: itemwise self*other |
1324 |
@rtype: L{ArithmeticTuple} |
1325 |
""" |
1326 |
out=[] |
1327 |
try: |
1328 |
l=len(other) |
1329 |
if l!=len(self): |
1330 |
raise ValueError,"length of arguments don't match." |
1331 |
for i in range(l): out.append(self[i]*other[i]) |
1332 |
except TypeError: |
1333 |
for i in range(len(self)): out.append(self[i]*other) |
1334 |
return ArithmeticTuple(*tuple(out)) |
1335 |
|
1336 |
def __rmul__(self,other): |
1337 |
""" |
1338 |
Scales by C{other} from the left. |
1339 |
|
1340 |
@param other: scaling factor |
1341 |
@type other: C{float} |
1342 |
@return: itemwise other*self |
1343 |
@rtype: L{ArithmeticTuple} |
1344 |
""" |
1345 |
out=[] |
1346 |
try: |
1347 |
l=len(other) |
1348 |
if l!=len(self): |
1349 |
raise ValueError,"length of arguments don't match." |
1350 |
for i in range(l): out.append(other[i]*self[i]) |
1351 |
except TypeError: |
1352 |
for i in range(len(self)): out.append(other*self[i]) |
1353 |
return ArithmeticTuple(*tuple(out)) |
1354 |
|
1355 |
def __div__(self,other): |
1356 |
""" |
1357 |
Scales by (1/C{other}) from the right. |
1358 |
|
1359 |
@param other: scaling factor |
1360 |
@type other: C{float} |
1361 |
@return: itemwise self/other |
1362 |
@rtype: L{ArithmeticTuple} |
1363 |
""" |
1364 |
return self*(1/other) |
1365 |
|
1366 |
def __rdiv__(self,other): |
1367 |
""" |
1368 |
Scales by (1/C{other}) from the left. |
1369 |
|
1370 |
@param other: scaling factor |
1371 |
@type other: C{float} |
1372 |
@return: itemwise other/self |
1373 |
@rtype: L{ArithmeticTuple} |
1374 |
""" |
1375 |
out=[] |
1376 |
try: |
1377 |
l=len(other) |
1378 |
if l!=len(self): |
1379 |
raise ValueError,"length of arguments don't match." |
1380 |
for i in range(l): out.append(other[i]/self[i]) |
1381 |
except TypeError: |
1382 |
for i in range(len(self)): out.append(other/self[i]) |
1383 |
return ArithmeticTuple(*tuple(out)) |
1384 |
|
1385 |
def __iadd__(self,other): |
1386 |
""" |
1387 |
Inplace addition of C{other} to self. |
1388 |
|
1389 |
@param other: increment |
1390 |
@type other: C{ArithmeticTuple} |
1391 |
""" |
1392 |
if len(self) != len(other): |
1393 |
raise ValueError,"tuple lengths must match." |
1394 |
for i in range(len(self)): |
1395 |
self.__items[i]+=other[i] |
1396 |
return self |
1397 |
|
1398 |
def __add__(self,other): |
1399 |
""" |
1400 |
Adds C{other} to self. |
1401 |
|
1402 |
@param other: increment |
1403 |
@type other: C{ArithmeticTuple} |
1404 |
""" |
1405 |
out=[] |
1406 |
try: |
1407 |
l=len(other) |
1408 |
if l!=len(self): |
1409 |
raise ValueError,"length of arguments don't match." |
1410 |
for i in range(l): out.append(self[i]+other[i]) |
1411 |
except TypeError: |
1412 |
for i in range(len(self)): out.append(self[i]+other) |
1413 |
return ArithmeticTuple(*tuple(out)) |
1414 |
|
1415 |
def __sub__(self,other): |
1416 |
""" |
1417 |
Subtracts C{other} from self. |
1418 |
|
1419 |
@param other: decrement |
1420 |
@type other: C{ArithmeticTuple} |
1421 |
""" |
1422 |
out=[] |
1423 |
try: |
1424 |
l=len(other) |
1425 |
if l!=len(self): |
1426 |
raise ValueError,"length of arguments don't match." |
1427 |
for i in range(l): out.append(self[i]-other[i]) |
1428 |
except TypeError: |
1429 |
for i in range(len(self)): out.append(self[i]-other) |
1430 |
return ArithmeticTuple(*tuple(out)) |
1431 |
|
1432 |
def __isub__(self,other): |
1433 |
""" |
1434 |
Inplace subtraction of C{other} from self. |
1435 |
|
1436 |
@param other: decrement |
1437 |
@type other: C{ArithmeticTuple} |
1438 |
""" |
1439 |
if len(self) != len(other): |
1440 |
raise ValueError,"tuple length must match." |
1441 |
for i in range(len(self)): |
1442 |
self.__items[i]-=other[i] |
1443 |
return self |
1444 |
|
1445 |
def __neg__(self): |
1446 |
""" |
1447 |
Negates values. |
1448 |
""" |
1449 |
out=[] |
1450 |
for i in range(len(self)): |
1451 |
out.append(-self[i]) |
1452 |
return ArithmeticTuple(*tuple(out)) |
1453 |
|
1454 |
|
1455 |
class HomogeneousSaddlePointProblem(object): |
1456 |
""" |
1457 |
This class provides a framework for solving linear homogeneous saddle |
1458 |
point problems of the form:: |
1459 |
|
1460 |
M{Av+B^*p=f} |
1461 |
M{Bv =0} |
1462 |
|
1463 |
for the unknowns M{v} and M{p} and given operators M{A} and M{B} and |
1464 |
given right hand side M{f}. M{B^*} is the adjoint operator of M{B}. |
1465 |
""" |
1466 |
def __init__(self,**kwargs): |
1467 |
self.setTolerance() |
1468 |
self.setAbsoluteTolerance() |
1469 |
self.setSubProblemTolerance() |
1470 |
|
1471 |
#============================================================= |
1472 |
def initialize(self): |
1473 |
""" |
1474 |
Initializes the problem (overwrite). |
1475 |
""" |
1476 |
pass |
1477 |
|
1478 |
def inner_pBv(self,p,v): |
1479 |
""" |
1480 |
Returns inner product of element p and Bv (overwrite). |
1481 |
|
1482 |
@param p: a pressure increment |
1483 |
@param v: a residual |
1484 |
@return: inner product of element p and Bv |
1485 |
@rtype: C{float} |
1486 |
@note: used if PCG is applied. |
1487 |
""" |
1488 |
raise NotImplementedError,"no inner product for p implemented." |
1489 |
|
1490 |
def inner_p(self,p0,p1): |
1491 |
""" |
1492 |
Returns inner product of p0 and p1 (overwrite). |
1493 |
|
1494 |
@param p0: a pressure |
1495 |
@param p1: a pressure |
1496 |
@return: inner product of p0 and p1 |
1497 |
@rtype: C{float} |
1498 |
""" |
1499 |
raise NotImplementedError,"no inner product for p implemented." |
1500 |
|
1501 |
def norm_v(self,v): |
1502 |
""" |
1503 |
Returns the norm of v (overwrite). |
1504 |
|
1505 |
@param v: a velovity |
1506 |
@return: norm of v |
1507 |
@rtype: non-negative C{float} |
1508 |
""" |
1509 |
raise NotImplementedError,"no norm of v implemented." |
1510 |
|
1511 |
|
1512 |
def getV(self, p, v0): |
1513 |
""" |
1514 |
return the value for v for a given p (overwrite) |
1515 |
|
1516 |
@param p: a pressure |
1517 |
@param v0: a initial guess for the value v to return. |
1518 |
@return: v given as M{v= A^{-1} (f-B^*p)} |
1519 |
""" |
1520 |
raise NotImplementedError,"no v calculation implemented." |
1521 |
|
1522 |
def norm_Bv(self,v): |
1523 |
""" |
1524 |
Returns Bv (overwrite). |
1525 |
|
1526 |
@rtype: equal to the type of p |
1527 |
@note: boundary conditions on p should be zero! |
1528 |
""" |
1529 |
raise NotImplementedError, "no operator B implemented." |
1530 |
|
1531 |
def solve_AinvBt(self,p): |
1532 |
""" |
1533 |
Solves M{Av=B^*p} with accuracy L{self.getSubProblemTolerance()} |
1534 |
(overwrite). |
1535 |
|
1536 |
@param p: a pressure increment |
1537 |
@return: the solution of M{Av=B^*p} |
1538 |
@note: boundary conditions on v should be zero! |
1539 |
""" |
1540 |
raise NotImplementedError,"no operator A implemented." |
1541 |
|
1542 |
def solve_precB(self,v): |
1543 |
""" |
1544 |
Provides a preconditioner for M{BA^{-1}B^*} with accuracy |
1545 |
L{self.getSubProblemTolerance()} (overwrite). |
1546 |
|
1547 |
@rtype: equal to the type of p |
1548 |
@note: boundary conditions on p should be zero! |
1549 |
""" |
1550 |
raise NotImplementedError,"no preconditioner for Schur complement implemented." |
1551 |
#============================================================= |
1552 |
def __Aprod_PCG(self,p): |
1553 |
return self.solve_AinvBt(p) |
1554 |
|
1555 |
def __inner_PCG(self,p,v): |
1556 |
return self.inner_pBv(p,v) |
1557 |
|
1558 |
def __Msolve_PCG(self,v): |
1559 |
return self.solve_precB(v) |
1560 |
#============================================================= |
1561 |
def __Aprod_GMRES(self,p): |
1562 |
return self.solve_precB(self.solve_AinvBt(p)) |
1563 |
def __inner_GMRES(self,p0,p1): |
1564 |
return self.inner_p(p0,p1) |
1565 |
#============================================================= |
1566 |
def norm_p(self,p): |
1567 |
""" |
1568 |
calculates the norm of C{p} |
1569 |
|
1570 |
@param p: a pressure |
1571 |
@return: the norm of C{p} using the inner product for pressure |
1572 |
@rtype: C{float} |
1573 |
""" |
1574 |
f=self.inner_p(p,p) |
1575 |
if f<0: raise ValueError,"negative pressure norm." |
1576 |
return math.sqrt(f) |
1577 |
|
1578 |
|
1579 |
def solve(self,v,p,max_iter=20, verbose=False, show_details=False, usePCG=True, iter_restart=20, max_correction_steps=10): |
1580 |
""" |
1581 |
Solves the saddle point problem using initial guesses v and p. |
1582 |
|
1583 |
@param v: initial guess for velocity |
1584 |
@param p: initial guess for pressure |
1585 |
@type v: L{Data} |
1586 |
@type p: L{Data} |
1587 |
@param usePCG: indicates the usage of the PCG rather than GMRES scheme. |
1588 |
@param max_iter: maximum number of iteration steps per correction |
1589 |
attempt |
1590 |
@param verbose: if True, shows information on the progress of the |
1591 |
saddlepoint problem solver. |
1592 |
@param show_details: if True, shows details of the sub problem solver |
1593 |
@param iter_restart: restart the iteration after C{iter_restart} steps |
1594 |
(only used if useUzaw=False) |
1595 |
@type usePCG: C{bool} |
1596 |
@type max_iter: C{int} |
1597 |
@type verbose: C{bool} |
1598 |
@type show_details: C{bool} |
1599 |
@type iter_restart: C{int} |
1600 |
@rtype: C{tuple} of L{Data} objects |
1601 |
""" |
1602 |
self.verbose=verbose |
1603 |
self.show_details=show_details and self.verbose |
1604 |
rtol=self.getTolerance() |
1605 |
atol=self.getAbsoluteTolerance() |
1606 |
correction_step=0 |
1607 |
converged=False |
1608 |
while not converged: |
1609 |
# calculate velocity for current pressure: |
1610 |
v=self.getV(p,v) |
1611 |
# |
1612 |
norm_v=self.norm_v(v) |
1613 |
norm_Bv=self.norm_Bv(v) |
1614 |
ATOL=norm_v*rtol+atol |
1615 |
if self.verbose: print "saddle point solver: norm v= %e, norm_Bv= %e, tolerance = %e."%(norm_v, norm_Bv,ATOL) |
1616 |
if not ATOL>0: raise ValueError,"overall absolute tolerance needs to be positive." |
1617 |
if norm_Bv <= ATOL: |
1618 |
converged=True |
1619 |
else: |
1620 |
correction_step+=1 |
1621 |
if correction_step>max_correction_steps: |
1622 |
raise CorrectionFailed,"Given up after %d correction steps."%correction_step |
1623 |
dp=self.solve_precB(v) |
1624 |
if usePCG: |
1625 |
norm2=self.inner_pBv(dp,v) |
1626 |
if norm2<0: raise ValueError,"negative PCG norm." |
1627 |
norm2=math.sqrt(norm2) |
1628 |
else: |
1629 |
norm2=self.norm_p(dp) |
1630 |
ATOL_ITER=ATOL/norm_Bv*norm2 |
1631 |
if self.verbose: print "saddle point solver: tolerance for solver: %e"%ATOL_ITER |
1632 |
if usePCG: |
1633 |
p,v0,a_norm=PCG(v,self.__Aprod_PCG,p,self.__Msolve_PCG,self.__inner_PCG,atol=ATOL_ITER, rtol=0.,iter_max=max_iter, verbose=self.verbose) |
1634 |
else: |
1635 |
p=GMRES(dp,self.__Aprod_GMRES, p, self.__inner_GMRES,atol=ATOL_ITER, rtol=0.,iter_max=max_iter, iter_restart=iter_restart, verbose=self.verbose) |
1636 |
if self.verbose: print "saddle point solver: tolerance reached." |
1637 |
return v,p |
1638 |
|
1639 |
#======================================================================== |
1640 |
def setTolerance(self,tolerance=1.e-4): |
1641 |
""" |
1642 |
Sets the relative tolerance for (v,p). |
1643 |
|
1644 |
@param tolerance: tolerance to be used |
1645 |
@type tolerance: non-negative C{float} |
1646 |
""" |
1647 |
if tolerance<0: |
1648 |
raise ValueError,"tolerance must be positive." |
1649 |
self.__rtol=tolerance |
1650 |
self.setSubProblemTolerance() |
1651 |
|
1652 |
def getTolerance(self): |
1653 |
""" |
1654 |
Returns the relative tolerance. |
1655 |
|
1656 |
@return: relative tolerance |
1657 |
@rtype: C{float} |
1658 |
""" |
1659 |
return self.__rtol |
1660 |
|
1661 |
def setAbsoluteTolerance(self,tolerance=0.): |
1662 |
""" |
1663 |
Sets the absolute tolerance. |
1664 |
|
1665 |
@param tolerance: tolerance to be used |
1666 |
@type tolerance: non-negative C{float} |
1667 |
""" |
1668 |
if tolerance<0: |
1669 |
raise ValueError,"tolerance must be non-negative." |
1670 |
self.__atol=tolerance |
1671 |
|
1672 |
def getAbsoluteTolerance(self): |
1673 |
""" |
1674 |
Returns the absolute tolerance. |
1675 |
|
1676 |
@return: absolute tolerance |
1677 |
@rtype: C{float} |
1678 |
""" |
1679 |
return self.__atol |
1680 |
|
1681 |
def setSubProblemTolerance(self,rtol=None): |
1682 |
""" |
1683 |
Sets the relative tolerance to solve the subproblem(s). |
1684 |
|
1685 |
@param rtol: relative tolerence |
1686 |
@type rtol: positive C{float} |
1687 |
""" |
1688 |
if rtol == None: |
1689 |
rtol=max(200.*util.EPSILON,self.getTolerance()**2) |
1690 |
if rtol<=0: |
1691 |
raise ValueError,"tolerance must be positive." |
1692 |
self.__sub_tol=rtol |
1693 |
|
1694 |
def getSubProblemTolerance(self): |
1695 |
""" |
1696 |
Returns the subproblem reduction factor. |
1697 |
|
1698 |
@return: subproblem reduction factor |
1699 |
@rtype: C{float} |
1700 |
""" |
1701 |
return self.__sub_tol |
1702 |
|
1703 |
def MaskFromBoundaryTag(domain,*tags): |
1704 |
""" |
1705 |
Creates a mask on the Solution(domain) function space where the value is |
1706 |
one for samples that touch the boundary tagged by tags. |
1707 |
|
1708 |
Usage: m=MaskFromBoundaryTag(domain, "left", "right") |
1709 |
|
1710 |
@param domain: domain to be used |
1711 |
@type domain: L{escript.Domain} |
1712 |
@param tags: boundary tags |
1713 |
@type tags: C{str} |
1714 |
@return: a mask which marks samples that are touching the boundary tagged |
1715 |
by any of the given tags |
1716 |
@rtype: L{escript.Data} of rank 0 |
1717 |
""" |
1718 |
pde=linearPDEs.LinearPDE(domain,numEquations=1, numSolutions=1) |
1719 |
d=escript.Scalar(0.,escript.FunctionOnBoundary(domain)) |
1720 |
for t in tags: d.setTaggedValue(t,1.) |
1721 |
pde.setValue(y=d) |
1722 |
return util.whereNonZero(pde.getRightHandSide()) |
1723 |
|
1724 |
#============================================================================== |
1725 |
class SaddlePointProblem(object): |
1726 |
""" |
1727 |
This implements a solver for a saddle point problem |
1728 |
|
1729 |
M{f(u,p)=0} |
1730 |
M{g(u)=0} |
1731 |
|
1732 |
for u and p. The problem is solved with an inexact Uszawa scheme for p: |
1733 |
|
1734 |
M{Q_f (u^{k+1}-u^{k}) = - f(u^{k},p^{k})} |
1735 |
M{Q_g (p^{k+1}-p^{k}) = g(u^{k+1})} |
1736 |
|
1737 |
where Q_f is an approximation of the Jacobian A_f of f with respect to u and |
1738 |
Q_f is an approximation of A_g A_f^{-1} A_g with A_g is the Jacobian of g |
1739 |
with respect to p. As a the construction of a 'proper' Q_g can be difficult, |
1740 |
non-linear conjugate gradient method is applied to solve for p, so Q_g plays |
1741 |
in fact the role of a preconditioner. |
1742 |
""" |
1743 |
def __init__(self,verbose=False,*args): |
1744 |
""" |
1745 |
Initializes the problem. |
1746 |
|
1747 |
@param verbose: if True, some information is printed in the process |
1748 |
@type verbose: C{bool} |
1749 |
@note: this method may be overwritten by a particular saddle point |
1750 |
problem |
1751 |
""" |
1752 |
print "SaddlePointProblem should not be used anymore!" |
1753 |
if not isinstance(verbose,bool): |
1754 |
raise TypeError("verbose needs to be of type bool.") |
1755 |
self.__verbose=verbose |
1756 |
self.relaxation=1. |
1757 |
DeprecationWarning("SaddlePointProblem should not be used anymore.") |
1758 |
|
1759 |
def trace(self,text): |
1760 |
""" |
1761 |
Prints C{text} if verbose has been set. |
1762 |
|
1763 |
@param text: a text message |
1764 |
@type text: C{str} |
1765 |
""" |
1766 |
if self.__verbose: print "%s: %s"%(str(self),text) |
1767 |
|
1768 |
def solve_f(self,u,p,tol=1.e-8): |
1769 |
""" |
1770 |
Solves |
1771 |
|
1772 |
A_f du = f(u,p) |
1773 |
|
1774 |
with tolerance C{tol} and returns du. A_f is Jacobian of f with respect |
1775 |
to u. |
1776 |
|
1777 |
@param u: current approximation of u |
1778 |
@type u: L{escript.Data} |
1779 |
@param p: current approximation of p |
1780 |
@type p: L{escript.Data} |
1781 |
@param tol: tolerance expected for du |
1782 |
@type tol: C{float} |
1783 |
@return: increment du |
1784 |
@rtype: L{escript.Data} |
1785 |
@note: this method has to be overwritten by a particular saddle point |
1786 |
problem |
1787 |
""" |
1788 |
pass |
1789 |
|
1790 |
def solve_g(self,u,tol=1.e-8): |
1791 |
""" |
1792 |
Solves |
1793 |
|
1794 |
Q_g dp = g(u) |
1795 |
|
1796 |
where Q_g is a preconditioner for A_g A_f^{-1} A_g with A_g is the |
1797 |
Jacobian of g with respect to p. |
1798 |
|
1799 |
@param u: current approximation of u |
1800 |
@type u: L{escript.Data} |
1801 |
@param tol: tolerance expected for dp |
1802 |
@type tol: C{float} |
1803 |
@return: increment dp |
1804 |
@rtype: L{escript.Data} |
1805 |
@note: this method has to be overwritten by a particular saddle point |
1806 |
problem |
1807 |
""" |
1808 |
pass |
1809 |
|
1810 |
def inner(self,p0,p1): |
1811 |
""" |
1812 |
Inner product of p0 and p1 approximating p. Typically this returns |
1813 |
C{integrate(p0*p1)}. |
1814 |
@return: inner product of p0 and p1 |
1815 |
@rtype: C{float} |
1816 |
""" |
1817 |
pass |
1818 |
|
1819 |
subiter_max=3 |
1820 |
def solve(self,u0,p0,tolerance=1.e-6,tolerance_u=None,iter_max=100,accepted_reduction=0.995,relaxation=None): |
1821 |
""" |
1822 |
Runs the solver. |
1823 |
|
1824 |
@param u0: initial guess for C{u} |
1825 |
@type u0: L{esys.escript.Data} |
1826 |
@param p0: initial guess for C{p} |
1827 |
@type p0: L{esys.escript.Data} |
1828 |
@param tolerance: tolerance for relative error in C{u} and C{p} |
1829 |
@type tolerance: positive C{float} |
1830 |
@param tolerance_u: tolerance for relative error in C{u} if different |
1831 |
from C{tolerance} |
1832 |
@type tolerance_u: positive C{float} |
1833 |
@param iter_max: maximum number of iteration steps |
1834 |
@type iter_max: C{int} |
1835 |
@param accepted_reduction: if the norm g cannot be reduced by |
1836 |
C{accepted_reduction} backtracking to adapt |
1837 |
the relaxation factor. If |
1838 |
C{accepted_reduction=None} no backtracking |
1839 |
is used. |
1840 |
@type accepted_reduction: positive C{float} or C{None} |
1841 |
@param relaxation: initial relaxation factor. If C{relaxation==None}, |
1842 |
the last relaxation factor is used. |
1843 |
@type relaxation: C{float} or C{None} |
1844 |
""" |
1845 |
tol=1.e-2 |
1846 |
if tolerance_u==None: tolerance_u=tolerance |
1847 |
if not relaxation==None: self.relaxation=relaxation |
1848 |
if accepted_reduction ==None: |
1849 |
angle_limit=0. |
1850 |
elif accepted_reduction>=1.: |
1851 |
angle_limit=0. |
1852 |
else: |
1853 |
angle_limit=util.sqrt(1-accepted_reduction**2) |
1854 |
self.iter=0 |
1855 |
u=u0 |
1856 |
p=p0 |
1857 |
# |
1858 |
# initialize things: |
1859 |
# |
1860 |
converged=False |
1861 |
# |
1862 |
# start loop: |
1863 |
# |
1864 |
# initial search direction is g |
1865 |
# |
1866 |
while not converged : |
1867 |
if self.iter>iter_max: |
1868 |
raise ArithmeticError("no convergence after %s steps."%self.iter) |
1869 |
f_new=self.solve_f(u,p,tol) |
1870 |
norm_f_new = util.Lsup(f_new) |
1871 |
u_new=u-f_new |
1872 |
g_new=self.solve_g(u_new,tol) |
1873 |
self.iter+=1 |
1874 |
norm_g_new = util.sqrt(self.inner(g_new,g_new)) |
1875 |
if norm_f_new==0. and norm_g_new==0.: return u, p |
1876 |
if self.iter>1 and not accepted_reduction==None: |
1877 |
# |
1878 |
# did we manage to reduce the norm of G? I |
1879 |
# if not we start a backtracking procedure |
1880 |
# |
1881 |
# print "new/old norm = ",norm_g_new, norm_g, norm_g_new/norm_g |
1882 |
if norm_g_new > accepted_reduction * norm_g: |
1883 |
sub_iter=0 |
1884 |
s=self.relaxation |
1885 |
d=g |
1886 |
g_last=g |
1887 |
self.trace(" start substepping: f = %s, g = %s, relaxation = %s."%(norm_f_new, norm_g_new, s)) |
1888 |
while sub_iter < self.subiter_max and norm_g_new > accepted_reduction * norm_g: |
1889 |
dg= g_new-g_last |
1890 |
norm_dg=abs(util.sqrt(self.inner(dg,dg))/self.relaxation) |
1891 |
rad=self.inner(g_new,dg)/self.relaxation |
1892 |
# print " ",sub_iter,": rad, norm_dg:",abs(rad), norm_dg*norm_g_new * angle_limit |
1893 |
# print " ",sub_iter,": rad, norm_dg:",rad, norm_dg, norm_g_new, norm_g |
1894 |
if abs(rad) < norm_dg*norm_g_new * angle_limit: |
1895 |
if sub_iter>0: self.trace(" no further improvements expected from backtracking.") |
1896 |
break |
1897 |
r=self.relaxation |
1898 |
self.relaxation= - rad/norm_dg**2 |
1899 |
s+=self.relaxation |
1900 |
##### |
1901 |
# a=g_new+self.relaxation*dg/r |
1902 |
# print "predicted new norm = ",util.sqrt(self.inner(a,a)),util.sqrt(self.inner(g_new,g_new)), self.relaxation |
1903 |
##### |
1904 |
g_last=g_new |
1905 |
p+=self.relaxation*d |
1906 |
f_new=self.solve_f(u,p,tol) |
1907 |
u_new=u-f_new |
1908 |
g_new=self.solve_g(u_new,tol) |
1909 |
self.iter+=1 |
1910 |
norm_f_new = util.Lsup(f_new) |
1911 |
norm_g_new = util.sqrt(self.inner(g_new,g_new)) |
1912 |
# print " ",sub_iter," new g norm",norm_g_new |
1913 |
self.trace(" %s th sub-step: f = %s, g = %s, relaxation = %s."%(sub_iter, norm_f_new, norm_g_new, s)) |
1914 |
# |
1915 |
# can we expect reduction of g? |
1916 |
# |
1917 |
# u_last=u_new |
1918 |
sub_iter+=1 |
1919 |
self.relaxation=s |
1920 |
# |
1921 |
# check for convergence: |
1922 |
# |
1923 |
norm_u_new = util.Lsup(u_new) |
1924 |
p_new=p+self.relaxation*g_new |
1925 |
norm_p_new = util.sqrt(self.inner(p_new,p_new)) |
1926 |
self.trace("%s th step: f = %s, f/u = %s, g = %s, g/p = %s, relaxation = %s."%(self.iter, norm_f_new ,norm_f_new/norm_u_new, norm_g_new, norm_g_new/norm_p_new, self.relaxation)) |
1927 |
|
1928 |
if self.iter>1: |
1929 |
dg2=g_new-g |
1930 |
df2=f_new-f |
1931 |
norm_dg2=util.sqrt(self.inner(dg2,dg2)) |
1932 |
norm_df2=util.Lsup(df2) |
1933 |
# print norm_g_new, norm_g, norm_dg, norm_p, tolerance |
1934 |
tol_eq_g=tolerance*norm_dg2/(norm_g*abs(self.relaxation))*norm_p_new |
1935 |
tol_eq_f=tolerance_u*norm_df2/norm_f*norm_u_new |
1936 |
if norm_g_new <= tol_eq_g and norm_f_new <= tol_eq_f: |
1937 |
converged=True |
1938 |
f, norm_f, u, norm_u, g, norm_g, p, norm_p = f_new, norm_f_new, u_new, norm_u_new, g_new, norm_g_new, p_new, norm_p_new |
1939 |
self.trace("convergence after %s steps."%self.iter) |
1940 |
return u,p |
1941 |
|