/[escript]/trunk/escript/src/Data.cpp
ViewVC logotype

Diff of /trunk/escript/src/Data.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/escript/src/Data/Data.cpp revision 155 by jgs, Wed Nov 9 02:02:19 2005 UTC trunk/escript/src/Data.cpp revision 2049 by phornby, Mon Nov 17 08:54:33 2008 UTC
# Line 1  Line 1 
 // $Id$  
 /*=============================================================================  
1    
2   ******************************************************************************  /*******************************************************
3   *                                                                            *  *
4   *       COPYRIGHT ACcESS 2004 -  All Rights Reserved                         *  * Copyright (c) 2003-2008 by University of Queensland
5   *                                                                            *  * Earth Systems Science Computational Center (ESSCC)
6   * This software is the property of ACcESS.  No part of this code             *  * http://www.uq.edu.au/esscc
7   * may be copied in any form or by any means without the expressed written    *  *
8   * consent of ACcESS.  Copying, use or modification of this software          *  * Primary Business: Queensland, Australia
9   * by any unauthorised person is illegal unless that                          *  * Licensed under the Open Software License version 3.0
10   * person has a software license agreement with ACcESS.                       *  * http://www.opensource.org/licenses/osl-3.0.php
11   *                                                                            *  *
12   ******************************************************************************  *******************************************************/
13    
14    
15    #include "Data.h"
16    
17    #include "DataExpanded.h"
18    #include "DataConstant.h"
19    #include "DataTagged.h"
20    #include "DataEmpty.h"
21    #include "DataLazy.h"
22    #include "FunctionSpaceFactory.h"
23    #include "AbstractContinuousDomain.h"
24    #include "UnaryFuncs.h"
25    #include "FunctionSpaceException.h"
26    #include "EscriptParams.h"
27    
28  ******************************************************************************/  extern "C" {
29    #include "escript/blocktimer.h"
30  #include "escript/Data/Data.h"  }
31    
 #include <iostream>  
32  #include <fstream>  #include <fstream>
33  #include <algorithm>  #include <algorithm>
34  #include <vector>  #include <vector>
 #include <exception>  
35  #include <functional>  #include <functional>
 #include <math.h>  
36    
37  #include <boost/python/dict.hpp>  #include <boost/python/dict.hpp>
 #include <boost/python/str.hpp>  
38  #include <boost/python/extract.hpp>  #include <boost/python/extract.hpp>
39  #include <boost/python/long.hpp>  #include <boost/python/long.hpp>
40    
 #include "escript/Data/DataException.h"  
 #include "escript/Data/DataExpanded.h"  
 #include "escript/Data/DataConstant.h"  
 #include "escript/Data/DataTagged.h"  
 #include "escript/Data/DataEmpty.h"  
 #include "escript/Data/DataArray.h"  
 #include "escript/Data/DataProf.h"  
 #include "escript/Data/FunctionSpaceFactory.h"  
 #include "escript/Data/AbstractContinuousDomain.h"  
 #include "escript/Data/UnaryFuncs.h"  
   
41  using namespace std;  using namespace std;
42  using namespace boost::python;  using namespace boost::python;
43  using namespace boost;  using namespace boost;
44  using namespace escript;  using namespace escript;
45    
46  #if defined DOPROF  // ensure the current object is not a DataLazy
47  //  // The idea was that we could add an optional warning whenever a resolve is forced
48  // global table of profiling data for all Data objects  #define FORCERESOLVE if (isLazy()) {resolve();}
 DataProf dataProfTable;  
 #endif  
49    
50  Data::Data()  Data::Data()
51  {  {
52    //    //
53    // Default data is type DataEmpty    // Default data is type DataEmpty
54    DataAbstract* temp=new DataEmpty();    DataAbstract* temp=new DataEmpty();
55    shared_ptr<DataAbstract> temp_data(temp);    m_data=temp->getPtr();
56    m_data=temp_data;    m_protected=false;
 #if defined DOPROF  
   // create entry in global profiling table for this object  
   profData = dataProfTable.newData();  
 #endif  
57  }  }
58    
59  Data::Data(double value,  Data::Data(double value,
# Line 70  Data::Data(double value, Line 61  Data::Data(double value,
61             const FunctionSpace& what,             const FunctionSpace& what,
62             bool expanded)             bool expanded)
63  {  {
64    DataArrayView::ShapeType dataPointShape;    DataTypes::ShapeType dataPointShape;
65    for (int i = 0; i < shape.attr("__len__")(); ++i) {    for (int i = 0; i < shape.attr("__len__")(); ++i) {
66      dataPointShape.push_back(extract<const int>(shape[i]));      dataPointShape.push_back(extract<const int>(shape[i]));
67    }    }
68    DataArray temp(dataPointShape,value);  
69    initialise(temp.getView(),what,expanded);    int len = DataTypes::noValues(dataPointShape);
70  #if defined DOPROF    DataVector temp_data(len,value,len);
71    // create entry in global profiling table for this object    initialise(temp_data, dataPointShape, what, expanded);
72    profData = dataProfTable.newData();    m_protected=false;
 #endif  
73  }  }
74    
75  Data::Data(double value,  Data::Data(double value,
76         const DataArrayView::ShapeType& dataPointShape,         const DataTypes::ShapeType& dataPointShape,
77         const FunctionSpace& what,         const FunctionSpace& what,
78             bool expanded)             bool expanded)
79  {  {
80    DataArray temp(dataPointShape,value);    int len = DataTypes::noValues(dataPointShape);
81    pair<int,int> dataShape=what.getDataShape();  
82    initialise(temp.getView(),what,expanded);    DataVector temp_data(len,value,len);
83  #if defined DOPROF  //   DataArrayView temp_dataView(temp_data, dataPointShape);
84    // create entry in global profiling table for this object  
85    profData = dataProfTable.newData();  //   initialise(temp_dataView, what, expanded);
86  #endif    initialise(temp_data, dataPointShape, what, expanded);
87    
88      m_protected=false;
89  }  }
90    
91  Data::Data(const Data& inData)  Data::Data(const Data& inData)
92  {  {
93    m_data=inData.m_data;    m_data=inData.m_data;
94  #if defined DOPROF    m_protected=inData.isProtected();
   // create entry in global profiling table for this object  
   profData = dataProfTable.newData();  
 #endif  
95  }  }
96    
97    
98  Data::Data(const Data& inData,  Data::Data(const Data& inData,
99             const DataArrayView::RegionType& region)             const DataTypes::RegionType& region)
100  {  {
101      DataAbstract_ptr dat=inData.m_data;
102      if (inData.isLazy())
103      {
104        dat=inData.m_data->resolve();
105      }
106      else
107      {
108        dat=inData.m_data;
109      }
110    //    //
111    // Create Data which is a slice of another Data    // Create Data which is a slice of another Data
112    DataAbstract* tmp = inData.m_data->getSlice(region);    DataAbstract* tmp = dat->getSlice(region);
113    shared_ptr<DataAbstract> temp_data(tmp);    m_data=DataAbstract_ptr(tmp);
114    m_data=temp_data;    m_protected=false;
 #if defined DOPROF  
   // create entry in global profiling table for this object  
   profData = dataProfTable.newData();  
 #endif  
115  }  }
116    
117  Data::Data(const Data& inData,  Data::Data(const Data& inData,
118             const FunctionSpace& functionspace)             const FunctionSpace& functionspace)
119  {  {
120      if (inData.isEmpty())
121      {
122        throw DataException("Error - will not interpolate for instances of DataEmpty.");
123      }
124    if (inData.getFunctionSpace()==functionspace) {    if (inData.getFunctionSpace()==functionspace) {
125      m_data=inData.m_data;      m_data=inData.m_data;
126    } else {    }
127      Data tmp(0,inData.getPointDataView().getShape(),functionspace,true);    else
128      // Note: Must use a reference or pointer to a derived object    {
129      // in order to get polymorphic behaviour. Shouldn't really  
130      // be able to create an instance of AbstractDomain but that was done      if (inData.isConstant()) {  // for a constant function, we just need to use the new function space
131      // as a boost:python work around which may no longer be required.        if (!inData.probeInterpolation(functionspace))
132      const AbstractDomain& inDataDomain=inData.getDomain();        {           // Even though this is constant, we still need to check whether interpolation is allowed
133      if  (inDataDomain==functionspace.getDomain()) {      throw FunctionSpaceException("Call to probeInterpolation returned false for DataConstant.");
134        inDataDomain.interpolateOnDomain(tmp,inData);        }
135          // if the data is not lazy, this will just be a cast to DataReady
136          DataReady_ptr dr=inData.m_data->resolve();
137          DataConstant* dc=new DataConstant(functionspace,inData.m_data->getShape(),dr->getVector());  
138          m_data=DataAbstract_ptr(dc);
139      } else {      } else {
140        inDataDomain.interpolateACross(tmp,inData);        Data tmp(0,inData.getDataPointShape(),functionspace,true);
141          // Note: Must use a reference or pointer to a derived object
142          // in order to get polymorphic behaviour. Shouldn't really
143          // be able to create an instance of AbstractDomain but that was done
144          // as a boost:python work around which may no longer be required.
145          /*const AbstractDomain& inDataDomain=inData.getDomain();*/
146          const_Domain_ptr inDataDomain=inData.getDomain();
147          if  (inDataDomain==functionspace.getDomain()) {
148            inDataDomain->interpolateOnDomain(tmp,inData);
149          } else {
150            inDataDomain->interpolateACross(tmp,inData);
151          }
152          m_data=tmp.m_data;
153      }      }
     m_data=tmp.m_data;  
154    }    }
155  #if defined DOPROF    m_protected=false;
   // create entry in global profiling table for this object  
   profData = dataProfTable.newData();  
 #endif  
156  }  }
157    
158  Data::Data(const DataTagged::TagListType& tagKeys,  Data::Data(DataAbstract* underlyingdata)
            const DataTagged::ValueListType & values,  
            const DataArrayView& defaultValue,  
            const FunctionSpace& what,  
            bool expanded)  
159  {  {
160    DataAbstract* temp=new DataTagged(tagKeys,values,defaultValue,what);  //  m_data=shared_ptr<DataAbstract>(underlyingdata);
161    shared_ptr<DataAbstract> temp_data(temp);      m_data=underlyingdata->getPtr();
162    m_data=temp_data;      m_protected=false;
   if (expanded) {  
     expand();  
   }  
 #if defined DOPROF  
   // create entry in global profiling table for this object  
   profData = dataProfTable.newData();  
 #endif  
163  }  }
164    
165    Data::Data(DataAbstract_ptr underlyingdata)
166    {
167        m_data=underlyingdata;
168        m_protected=false;
169    }
170    
171    
172  Data::Data(const numeric::array& value,  Data::Data(const numeric::array& value,
173         const FunctionSpace& what,         const FunctionSpace& what,
174             bool expanded)             bool expanded)
175  {  {
176    initialise(value,what,expanded);    initialise(value,what,expanded);
177  #if defined DOPROF    m_protected=false;
   // create entry in global profiling table for this object  
   profData = dataProfTable.newData();  
 #endif  
178  }  }
179    /*
180  Data::Data(const DataArrayView& value,  Data::Data(const DataArrayView& value,
181         const FunctionSpace& what,         const FunctionSpace& what,
182             bool expanded)             bool expanded)
183  {  {
184    initialise(value,what,expanded);    initialise(value,what,expanded);
185  #if defined DOPROF    m_protected=false;
186    // create entry in global profiling table for this object  }*/
187    profData = dataProfTable.newData();  
188  #endif  Data::Data(const DataTypes::ValueType& value,
189             const DataTypes::ShapeType& shape,
190                     const FunctionSpace& what,
191                     bool expanded)
192    {
193       initialise(value,shape,what,expanded);
194       m_protected=false;
195  }  }
196    
197    
198  Data::Data(const object& value,  Data::Data(const object& value,
199         const FunctionSpace& what,         const FunctionSpace& what,
200             bool expanded)             bool expanded)
201  {  {
202    numeric::array asNumArray(value);    numeric::array asNumArray(value);
203    initialise(asNumArray,what,expanded);    initialise(asNumArray,what,expanded);
204  #if defined DOPROF    m_protected=false;
   // create entry in global profiling table for this object  
   profData = dataProfTable.newData();  
 #endif  
205  }  }
206    
207    
208  Data::Data(const object& value,  Data::Data(const object& value,
209             const Data& other)             const Data& other)
210  {  {
211      numeric::array asNumArray(value);
212    
213      // extract the shape of the numarray
214      DataTypes::ShapeType tempShape=DataTypes::shapeFromNumArray(asNumArray);
215    // /*  for (int i=0; i < asNumArray.getrank(); i++) {
216    //     tempShape.push_back(extract<int>(asNumArray.getshape()[i]));
217    //   }*/
218    //   // get the space for the data vector
219    //   int len = DataTypes::noValues(tempShape);
220    //   DataVector temp_data(len, 0.0, len);
221    // /*  DataArrayView temp_dataView(temp_data, tempShape);
222    //   temp_dataView.copy(asNumArray);*/
223    //   temp_data.copyFromNumArray(asNumArray);
224    
225    //    //
226    // Create DataConstant using the given value and all other parameters    // Create DataConstant using the given value and all other parameters
227    // copied from other. If value is a rank 0 object this Data    // copied from other. If value is a rank 0 object this Data
228    // will assume the point data shape of other.    // will assume the point data shape of other.
229    DataArray temp(value);  
230    if (temp.getView().getRank()==0) {    if (DataTypes::getRank(tempShape)/*temp_dataView.getRank()*/==0) {
231      //  
232      // Create a DataArray with the scalar value for all elements  
233      DataArray temp2(other.getPointDataView().getShape(),temp.getView()());      // get the space for the data vector
234      initialise(temp2.getView(),other.getFunctionSpace(),false);      int len1 = DataTypes::noValues(tempShape);
235        DataVector temp_data(len1, 0.0, len1);
236        temp_data.copyFromNumArray(asNumArray);
237    
238        int len = DataTypes::noValues(other.getDataPointShape());
239    
240        DataVector temp2_data(len, temp_data[0]/*temp_dataView()*/, len);
241        //DataArrayView temp2_dataView(temp2_data, other.getPointDataView().getShape());
242    //     initialise(temp2_dataView, other.getFunctionSpace(), false);
243    
244        DataConstant* t=new DataConstant(other.getFunctionSpace(),other.getDataPointShape(),temp2_data);
245    //     boost::shared_ptr<DataAbstract> sp(t);
246    //     m_data=sp;
247        m_data=DataAbstract_ptr(t);
248    
249    } else {    } else {
250      //      //
251      // Create a DataConstant with the same sample shape as other      // Create a DataConstant with the same sample shape as other
252      initialise(temp.getView(),other.getFunctionSpace(),false);  //     initialise(temp_dataView, other.getFunctionSpace(), false);
253        DataConstant* t=new DataConstant(asNumArray,other.getFunctionSpace());
254    //     boost::shared_ptr<DataAbstract> sp(t);
255    //     m_data=sp;
256        m_data=DataAbstract_ptr(t);
257    }    }
258  #if defined DOPROF    m_protected=false;
   // create entry in global profiling table for this object  
   profData = dataProfTable.newData();  
 #endif  
259  }  }
260    
261  Data::~Data()  Data::~Data()
# Line 225  Data::~Data() Line 263  Data::~Data()
263    
264  }  }
265    
266    
267    
268    void
269    Data::initialise(const boost::python::numeric::array& value,
270                     const FunctionSpace& what,
271                     bool expanded)
272    {
273      //
274      // Construct a Data object of the appropriate type.
275      // Construct the object first as there seems to be a bug which causes
276      // undefined behaviour if an exception is thrown during construction
277      // within the shared_ptr constructor.
278      if (expanded) {
279        DataAbstract* temp=new DataExpanded(value, what);
280    //     boost::shared_ptr<DataAbstract> temp_data(temp);
281    //     m_data=temp_data;
282        m_data=temp->getPtr();
283      } else {
284        DataAbstract* temp=new DataConstant(value, what);
285    //     boost::shared_ptr<DataAbstract> temp_data(temp);
286    //     m_data=temp_data;
287        m_data=temp->getPtr();
288      }
289    }
290    
291    
292    void
293    Data::initialise(const DataTypes::ValueType& value,
294             const DataTypes::ShapeType& shape,
295                     const FunctionSpace& what,
296                     bool expanded)
297    {
298      //
299      // Construct a Data object of the appropriate type.
300      // Construct the object first as there seems to be a bug which causes
301      // undefined behaviour if an exception is thrown during construction
302      // within the shared_ptr constructor.
303      if (expanded) {
304        DataAbstract* temp=new DataExpanded(what, shape, value);
305    //     boost::shared_ptr<DataAbstract> temp_data(temp);
306    //     m_data=temp_data;
307        m_data=temp->getPtr();
308      } else {
309        DataAbstract* temp=new DataConstant(what, shape, value);
310    //     boost::shared_ptr<DataAbstract> temp_data(temp);
311    //     m_data=temp_data;
312        m_data=temp->getPtr();
313      }
314    }
315    
316    
317    // void
318    // Data::CompareDebug(const Data& rd)
319    // {
320    //  using namespace std;
321    //  bool mismatch=false;
322    //  std::cout << "Comparing left and right" << endl;
323    //  const DataTagged* left=dynamic_cast<DataTagged*>(m_data.get());
324    //  const DataTagged* right=dynamic_cast<DataTagged*>(rd.m_data.get());
325    //  
326    //  if (left==0)
327    //  {
328    //      cout << "left arg is not a DataTagged\n";
329    //      return;
330    //  }
331    //  
332    //  if (right==0)
333    //  {
334    //      cout << "right arg is not a DataTagged\n";
335    //      return;
336    //  }
337    //  cout << "Num elements=" << left->getVector().size() << ":" << right->getVector().size() << std::endl;
338    //  cout << "Shapes ";
339    //  if (left->getShape()==right->getShape())
340    //  {
341    //      cout << "ok\n";
342    //  }
343    //  else
344    //  {
345    //      cout << "Problem: shapes do not match\n";
346    //      mismatch=true;
347    //  }
348    //  int lim=left->getVector().size();
349    //  if (right->getVector().size()) lim=right->getVector().size();
350    //  for (int i=0;i<lim;++i)
351    //  {
352    //      if (left->getVector()[i]!=right->getVector()[i])
353    //      {
354    //          cout << "[" << i << "] value mismatch " << left->getVector()[i] << ":" << right->getVector()[i] << endl;
355    //          mismatch=true;
356    //      }
357    //  }
358    //
359    //  // still need to check the tag map
360    //  // also need to watch what is happening to function spaces, are they copied or what?
361    //
362    //  const DataTagged::DataMapType& mapleft=left->getTagLookup();
363    //  const DataTagged::DataMapType& mapright=right->getTagLookup();
364    //
365    //  if (mapleft.size()!=mapright.size())
366    //  {
367    //      cout << "Maps are different sizes " << mapleft.size() << ":" << mapright.size() << endl;
368    //      mismatch=true;
369    //      cout << "Left map\n";
370    //      DataTagged::DataMapType::const_iterator i,j;
371    //      for (i=mapleft.begin();i!=mapleft.end();++i) {
372    //          cout << "(" << i->first << "=>" << i->second << ")\n";
373    //      }
374    //      cout << "Right map\n";
375    //      for (i=mapright.begin();i!=mapright.end();++i) {
376    //          cout << "(" << i->first << "=>" << i->second << ")\n";
377    //      }
378    //      cout << "End map\n";
379    //
380    //  }
381    //
382    //  DataTagged::DataMapType::const_iterator i,j;
383    //  for (i=mapleft.begin(),j=mapright.begin();i!=mapleft.end() && j!=mapright.end();++i,++j) {
384    //     if ((i->first!=j->first) || (i->second!=j->second))
385    //     {
386    //      cout << "(" << i->first << "=>" << i->second << ")";
387    //      cout << ":(" << j->first << "=>" << j->second << ") ";
388    //      mismatch=true;
389    //            }
390    //  }
391    //  if (mismatch)
392    //  {
393    //      cout << "#Mismatch\n";
394    //  }
395    // }
396    
397  escriptDataC  escriptDataC
398  Data::getDataC()  Data::getDataC()
399  {  {
# Line 244  Data::getDataC() const Line 413  Data::getDataC() const
413  const boost::python::tuple  const boost::python::tuple
414  Data::getShapeTuple() const  Data::getShapeTuple() const
415  {  {
416    const DataArrayView::ShapeType& shape=getDataPointShape();    const DataTypes::ShapeType& shape=getDataPointShape();
417    switch(getDataPointRank()) {    switch(getDataPointRank()) {
418       case 0:       case 0:
419          return make_tuple();          return make_tuple();
# Line 261  Data::getShapeTuple() const Line 430  Data::getShapeTuple() const
430    }    }
431  }  }
432    
433    
434    // The different name is needed because boost has trouble with overloaded functions.
435    // It can't work out what type the function is based soley on its name.
436    // There are ways to fix this involving creating function pointer variables for each form
437    // but there doesn't seem to be a need given that the methods have the same name from the python point of view
438    Data*
439    Data::copySelf()
440    {
441       DataAbstract* temp=m_data->deepCopy();
442       return new Data(temp);
443    }
444    
445  void  void
446  Data::copy(const Data& other)  Data::copy(const Data& other)
447  {  {
448    //    DataAbstract* temp=other.m_data->deepCopy();
449    // Perform a deep copy    DataAbstract_ptr p=temp->getPtr();
450    {    m_data=p;
451      DataExpanded* temp=dynamic_cast<DataExpanded*>(other.m_data.get());  }
452      if (temp!=0) {  
453        //  
454        // Construct a DataExpanded copy  Data
455        DataAbstract* newData=new DataExpanded(*temp);  Data::delay()
456        shared_ptr<DataAbstract> temp_data(newData);  {
457        m_data=temp_data;    DataLazy* dl=new DataLazy(m_data);
458        return;    return Data(dl);
459      }  }
460    }  
461    {  void
462      DataTagged* temp=dynamic_cast<DataTagged*>(other.m_data.get());  Data::delaySelf()
463      if (temp!=0) {  {
464        //    if (!isLazy())
       // Construct a DataTagged copy  
       DataAbstract* newData=new DataTagged(*temp);  
       shared_ptr<DataAbstract> temp_data(newData);  
       m_data=temp_data;  
       return;  
     }  
   }  
465    {    {
466      DataConstant* temp=dynamic_cast<DataConstant*>(other.m_data.get());      m_data=(new DataLazy(m_data))->getPtr();
     if (temp!=0) {  
       //  
       // Construct a DataConstant copy  
       DataAbstract* newData=new DataConstant(*temp);  
       shared_ptr<DataAbstract> temp_data(newData);  
       m_data=temp_data;  
       return;  
     }  
467    }    }
468    }
469    
470    void
471    Data::setToZero()
472    {
473      if (isEmpty())
474    {    {
475      DataEmpty* temp=dynamic_cast<DataEmpty*>(other.m_data.get());       throw DataException("Error - Operations not permitted on instances of DataEmpty.");
     if (temp!=0) {  
       //  
       // Construct a DataEmpty copy  
       DataAbstract* newData=new DataEmpty();  
       shared_ptr<DataAbstract> temp_data(newData);  
       m_data=temp_data;  
       return;  
     }  
476    }    }
477    throw DataException("Error - Copy not implemented for this Data type.");    m_data->setToZero();
478  }  }
479    
480  void  void
481  Data::copyWithMask(const Data& other,  Data::copyWithMask(const Data& other,
482                     const Data& mask)                     const Data& mask)
483  {  {
484    Data mask1;    // 1. Interpolate if required so all Datas use the same FS as this
485    Data mask2;    // 2. Tag or Expand so that all Data's are the same type
486      // 3. Iterate over the data vectors copying values where mask is >0
487      if (other.isEmpty() || mask.isEmpty())
488      {
489        throw DataException("Error - copyWithMask not permitted using instances of DataEmpty.");
490      }
491      Data other2(other);
492      Data mask2(mask);
493      other2.resolve();
494      mask2.resolve();
495      this->resolve();
496      FunctionSpace myFS=getFunctionSpace();
497      FunctionSpace oFS=other2.getFunctionSpace();
498      FunctionSpace mFS=mask2.getFunctionSpace();
499      if (oFS!=myFS)
500      {
501         if (other2.probeInterpolation(myFS))
502         {
503        other2=other2.interpolate(myFS);
504         }
505         else
506         {
507        throw DataException("Error - copyWithMask: other FunctionSpace is not compatible with this one.");
508         }
509      }
510      if (mFS!=myFS)
511      {
512         if (mask2.probeInterpolation(myFS))
513         {
514        mask2=mask2.interpolate(myFS);
515         }
516         else
517         {
518        throw DataException("Error - copyWithMask: mask FunctionSpace is not compatible with this one.");
519         }
520      }
521                // Ensure that all args have the same type
522      if (this->isExpanded() || mask2.isExpanded() || other2.isExpanded())
523      {
524        this->expand();
525        other2.expand();
526        mask2.expand();
527      }
528      else if (this->isTagged() || mask2.isTagged() || other2.isTagged())
529      {
530        this->tag();
531        other2.tag();
532        mask2.tag();
533      }
534      else if (this->isConstant() && mask2.isConstant() && other2.isConstant())
535      {
536      }
537      else
538      {
539        throw DataException("Error - Unknown DataAbstract passed to copyWithMask.");
540      }
541      // Now we iterate over the elements
542      DataVector& self=getReadyPtr()->getVector();
543      const DataVector& ovec=other2.getReadyPtr()->getVector();
544      const DataVector& mvec=mask2.getReadyPtr()->getVector();
545      if ((self.size()!=ovec.size()) || (self.size()!=mvec.size()))
546      {
547        throw DataException("Error - size mismatch in arguments to copyWithMask.");
548      }
549      size_t num_points=self.size();
550    
551    mask1 = mask.wherePositive();    // OPENMP 3.0 allows unsigned loop vars.
552    mask2.copy(mask1);  #if defined(_OPENMP) && (_OPENMP < 200805)
553      long i;
554    #else
555      size_t i;
556    #endif
557      #pragma omp parallel for private(i) schedule(static)
558      for (i=0;i<num_points;++i)
559      {
560        if (mvec[i]>0)
561        {
562           self[i]=ovec[i];
563        }
564      }
565    }
566    
   mask1 *= other;  
   mask2 *= *this;  
   mask2 = *this - mask2;  
567    
   *this = mask1 + mask2;  
 }  
568    
569  bool  bool
570  Data::isExpanded() const  Data::isExpanded() const
# Line 358  Data::isConstant() const Line 594  Data::isConstant() const
594    return (temp!=0);    return (temp!=0);
595  }  }
596    
597    bool
598    Data::isLazy() const
599    {
600      return m_data->isLazy();
601    }
602    
603    // at the moment this is synonymous with !isLazy() but that could change
604    bool
605    Data::isReady() const
606    {
607      return (dynamic_cast<DataReady*>(m_data.get())!=0);
608    }
609    
610    
611    void
612    Data::setProtection()
613    {
614       m_protected=true;
615    }
616    
617    bool
618    Data::isProtected() const
619    {
620       return m_protected;
621    }
622    
623    
624    
625  void  void
626  Data::expand()  Data::expand()
627  {  {
628    if (isConstant()) {    if (isConstant()) {
629      DataConstant* tempDataConst=dynamic_cast<DataConstant*>(m_data.get());      DataConstant* tempDataConst=dynamic_cast<DataConstant*>(m_data.get());
630      DataAbstract* temp=new DataExpanded(*tempDataConst);      DataAbstract* temp=new DataExpanded(*tempDataConst);
631      shared_ptr<DataAbstract> temp_data(temp);  //     shared_ptr<DataAbstract> temp_data(temp);
632      m_data=temp_data;  //     m_data=temp_data;
633        m_data=temp->getPtr();
634    } else if (isTagged()) {    } else if (isTagged()) {
635      DataTagged* tempDataTag=dynamic_cast<DataTagged*>(m_data.get());      DataTagged* tempDataTag=dynamic_cast<DataTagged*>(m_data.get());
636      DataAbstract* temp=new DataExpanded(*tempDataTag);      DataAbstract* temp=new DataExpanded(*tempDataTag);
637      shared_ptr<DataAbstract> temp_data(temp);  //     shared_ptr<DataAbstract> temp_data(temp);
638      m_data=temp_data;  //     m_data=temp_data;
639        m_data=temp->getPtr();
640    } else if (isExpanded()) {    } else if (isExpanded()) {
641      //      //
642      // do nothing      // do nothing
643    } else if (isEmpty()) {    } else if (isEmpty()) {
644      throw DataException("Error - Expansion of DataEmpty not possible.");      throw DataException("Error - Expansion of DataEmpty not possible.");
645      } else if (isLazy()) {
646        resolve();
647        expand();       // resolve might not give us expanded data
648    } else {    } else {
649      throw DataException("Error - Expansion not implemented for this Data type.");      throw DataException("Error - Expansion not implemented for this Data type.");
650    }    }
# Line 387  Data::tag() Line 656  Data::tag()
656    if (isConstant()) {    if (isConstant()) {
657      DataConstant* tempDataConst=dynamic_cast<DataConstant*>(m_data.get());      DataConstant* tempDataConst=dynamic_cast<DataConstant*>(m_data.get());
658      DataAbstract* temp=new DataTagged(*tempDataConst);      DataAbstract* temp=new DataTagged(*tempDataConst);
659      shared_ptr<DataAbstract> temp_data(temp);  //     shared_ptr<DataAbstract> temp_data(temp);
660      m_data=temp_data;  //     m_data=temp_data;
661        m_data=temp->getPtr();
662    } else if (isTagged()) {    } else if (isTagged()) {
663      // do nothing      // do nothing
664    } else if (isExpanded()) {    } else if (isExpanded()) {
665      throw DataException("Error - Creating tag data from DataExpanded not possible.");      throw DataException("Error - Creating tag data from DataExpanded not possible.");
666    } else if (isEmpty()) {    } else if (isEmpty()) {
667      throw DataException("Error - Creating tag data from DataEmpty not possible.");      throw DataException("Error - Creating tag data from DataEmpty not possible.");
668      } else if (isLazy()) {
669         DataAbstract_ptr res=m_data->resolve();
670         if (m_data->isExpanded())
671         {
672        throw DataException("Error - data would resolve to DataExpanded, tagging is not possible.");
673         }
674         m_data=res;    
675         tag();
676    } else {    } else {
677      throw DataException("Error - Tagging not implemented for this Data type.");      throw DataException("Error - Tagging not implemented for this Data type.");
678    }    }
679  }  }
680    
681  void  void
682  Data::reshapeDataPoint(const DataArrayView::ShapeType& shape)  Data::resolve()
683  {  {
684    m_data->reshapeDataPoint(shape);    if (isLazy())
685      {
686         m_data=m_data->resolve();
687      }
688    }
689    
690    
691    Data
692    Data::oneOver() const
693    {
694      if (isLazy())
695      {
696        DataLazy* c=new DataLazy(borrowDataPtr(),RECIP);
697        return Data(c);
698      }
699      return C_TensorUnaryOperation(*this, bind1st(divides<double>(),1.));
700  }  }
701    
702  Data  Data
703  Data::wherePositive() const  Data::wherePositive() const
704  {  {
705  #if defined DOPROF    if (isLazy())
706    profData->where++;    {
707  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),GZ);
708    return escript::unaryOp(*this,bind2nd(greater<double>(),0.0));      return Data(c);
709      }
710      return C_TensorUnaryOperation(*this, bind2nd(greater<double>(),0.0));
711  }  }
712    
713  Data  Data
714  Data::whereNegative() const  Data::whereNegative() const
715  {  {
716  #if defined DOPROF    if (isLazy())
717    profData->where++;    {
718  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),LZ);
719    return escript::unaryOp(*this,bind2nd(less<double>(),0.0));      return Data(c);
720      }
721      return C_TensorUnaryOperation(*this, bind2nd(less<double>(),0.0));
722  }  }
723    
724  Data  Data
725  Data::whereNonNegative() const  Data::whereNonNegative() const
726  {  {
727  #if defined DOPROF    if (isLazy())
728    profData->where++;    {
729  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),GEZ);
730    return escript::unaryOp(*this,bind2nd(greater_equal<double>(),0.0));      return Data(c);
731      }
732      return C_TensorUnaryOperation(*this, bind2nd(greater_equal<double>(),0.0));
733  }  }
734    
735  Data  Data
736  Data::whereNonPositive() const  Data::whereNonPositive() const
737  {  {
738  #if defined DOPROF    if (isLazy())
739    profData->where++;    {
740  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),LEZ);
741    return escript::unaryOp(*this,bind2nd(less_equal<double>(),0.0));      return Data(c);
742      }
743      return C_TensorUnaryOperation(*this, bind2nd(less_equal<double>(),0.0));
744  }  }
745    
746  Data  Data
747  Data::whereZero() const  Data::whereZero(double tol) const
748  {  {
749  #if defined DOPROF    Data dataAbs=abs();
750    profData->where++;    return C_TensorUnaryOperation(dataAbs, bind2nd(less_equal<double>(),tol));
 #endif  
   return escript::unaryOp(*this,bind2nd(equal_to<double>(),0.0));  
751  }  }
752    
753  Data  Data
754  Data::whereNonZero() const  Data::whereNonZero(double tol) const
755  {  {
756  #if defined DOPROF    Data dataAbs=abs();
757    profData->where++;    return C_TensorUnaryOperation(dataAbs, bind2nd(greater<double>(),tol));
 #endif  
   return escript::unaryOp(*this,bind2nd(not_equal_to<double>(),0.0));  
758  }  }
759    
760  Data  Data
761  Data::interpolate(const FunctionSpace& functionspace) const  Data::interpolate(const FunctionSpace& functionspace) const
762  {  {
 #if defined DOPROF  
   profData->interpolate++;  
 #endif  
763    return Data(*this,functionspace);    return Data(*this,functionspace);
764  }  }
765    
766  bool  bool
767  Data::probeInterpolation(const FunctionSpace& functionspace) const  Data::probeInterpolation(const FunctionSpace& functionspace) const
768  {  {
769    if (getFunctionSpace()==functionspace) {    return getFunctionSpace().probeInterpolation(functionspace);
770      return true;  //   if (getFunctionSpace()==functionspace) {
771    } else {  //     return true;
772      const AbstractDomain& domain=getDomain();  //   } else {
773      if  (domain==functionspace.getDomain()) {  //     const_Domain_ptr domain=getDomain();
774        return domain.probeInterpolationOnDomain(getFunctionSpace().getTypeCode(),functionspace.getTypeCode());  //     if  (*domain==*functionspace.getDomain()) {
775      } else {  //       return domain->probeInterpolationOnDomain(getFunctionSpace().getTypeCode(),functionspace.getTypeCode());
776        return domain.probeInterpolationACross(getFunctionSpace().getTypeCode(),functionspace.getDomain(),functionspace.getTypeCode());  //     } else {
777      }  //       return domain->probeInterpolationACross(getFunctionSpace().getTypeCode(),*(functionspace.getDomain()),functionspace.getTypeCode());
778    }  //     }
779    //   }
780  }  }
781    
782  Data  Data
783  Data::gradOn(const FunctionSpace& functionspace) const  Data::gradOn(const FunctionSpace& functionspace) const
784  {  {
785  #if defined DOPROF    if (isEmpty())
786    profData->grad++;    {
787  #endif      throw DataException("Error - operation not permitted on instances of DataEmpty.");
788      }
789      double blocktimer_start = blocktimer_time();
790    if (functionspace.getDomain()!=getDomain())    if (functionspace.getDomain()!=getDomain())
791      throw DataException("Error - gradient cannot be calculated on different domains.");      throw DataException("Error - gradient cannot be calculated on different domains.");
792    DataArrayView::ShapeType grad_shape=getPointDataView().getShape();    DataTypes::ShapeType grad_shape=getDataPointShape();
793    grad_shape.push_back(functionspace.getDim());    grad_shape.push_back(functionspace.getDim());
794    Data out(0.0,grad_shape,functionspace,true);    Data out(0.0,grad_shape,functionspace,true);
795    getDomain().setToGradient(out,*this);    getDomain()->setToGradient(out,*this);
796      blocktimer_increment("grad()", blocktimer_start);
797    return out;    return out;
798  }  }
799    
800  Data  Data
801  Data::grad() const  Data::grad() const
802  {  {
803    return gradOn(escript::function(getDomain()));    if (isEmpty())
804      {
805        throw DataException("Error - operation not permitted on instances of DataEmpty.");
806      }
807      return gradOn(escript::function(*getDomain()));
808  }  }
809    
810  int  int
811  Data::getDataPointSize() const  Data::getDataPointSize() const
812  {  {
813    return getPointDataView().noValues();    return m_data->getNoValues();
814  }  }
815    
816  DataArrayView::ValueType::size_type  DataTypes::ValueType::size_type
817  Data::getLength() const  Data::getLength() const
818  {  {
819    return m_data->getLength();    return m_data->getLength();
820  }  }
821    
 const DataArrayView::ShapeType&  
 Data::getDataPointShape() const  
 {  
   return getPointDataView().getShape();  
 }  
   
 void  
 Data::fillFromNumArray(const boost::python::numeric::array num_array)  
 {  
   //  
   // check rank  
   if (num_array.getrank()<getDataPointRank())  
       throw DataException("Rank of numarray does not match Data object rank");  
   
   //  
   // check shape of num_array  
   for (int i=0; i<getDataPointRank(); i++) {  
     if (extract<int>(num_array.getshape()[i+1])!=getDataPointShape()[i])  
        throw DataException("Shape of numarray does not match Data object rank");  
   }  
   
   //  
   // make sure data is expanded:  
   if (!isExpanded()) {  
     expand();  
   }  
   
   //  
   // and copy over  
   m_data->copyAll(num_array);  
 }  
   
822  const  const
823  boost::python::numeric::array  boost::python::numeric::array
824  Data::convertToNumArray()  Data:: getValueOfDataPoint(int dataPointNo)
825  {  {
826    //    int i, j, k, l;
827    // determine the total number of data points  
828    int numSamples = getNumSamples();    FORCERESOLVE;
   int numDataPointsPerSample = getNumDataPointsPerSample();  
   int numDataPoints = numSamples * numDataPointsPerSample;  
829    
830    //    //
831    // determine the rank and shape of each data point    // determine the rank and shape of each data point
832    int dataPointRank = getDataPointRank();    int dataPointRank = getDataPointRank();
833    DataArrayView::ShapeType dataPointShape = getDataPointShape();    const DataTypes::ShapeType& dataPointShape = getDataPointShape();
834    
835    //    //
836    // create the numeric array to be returned    // create the numeric array to be returned
837    boost::python::numeric::array numArray(0.0);    boost::python::numeric::array numArray(0.0);
838    
839    //    //
840    // the rank of the returned numeric array will be the rank of    // the shape of the returned numeric array will be the same
841    // the data points, plus one. Where the rank of the array is n,    // as that of the data point
842    // the last n-1 dimensions will be equal to the shape of the    int arrayRank = dataPointRank;
843    // data points, whilst the first dimension will be equal to the    const DataTypes::ShapeType& arrayShape = dataPointShape;
   // total number of data points. Thus the array will consist of  
   // a serial vector of the data points.  
   int arrayRank = dataPointRank + 1;  
   DataArrayView::ShapeType arrayShape;  
   arrayShape.push_back(numDataPoints);  
   for (int d=0; d<dataPointRank; d++) {  
      arrayShape.push_back(dataPointShape[d]);  
   }  
844    
845    //    //
846    // resize the numeric array to the shape just calculated    // resize the numeric array to the shape just calculated
847      if (arrayRank==0) {
848        numArray.resize(1);
849      }
850    if (arrayRank==1) {    if (arrayRank==1) {
851      numArray.resize(arrayShape[0]);      numArray.resize(arrayShape[0]);
852    }    }
# Line 596  Data::convertToNumArray() Line 859  Data::convertToNumArray()
859    if (arrayRank==4) {    if (arrayRank==4) {
860      numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2],arrayShape[3]);      numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2],arrayShape[3]);
861    }    }
   if (arrayRank==5) {  
     numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2],arrayShape[3],arrayShape[4]);  
   }  
862    
863    //    if (getNumDataPointsPerSample()>0) {
864    // loop through each data point in turn, loading the values for that data point         int sampleNo = dataPointNo/getNumDataPointsPerSample();
865    // into the numeric array.         int dataPointNoInSample = dataPointNo - sampleNo * getNumDataPointsPerSample();
866    int dataPoint = 0;         //
867    for (int sampleNo = 0; sampleNo < numSamples; sampleNo++) {         // Check a valid sample number has been supplied
868      for (int dataPointNo = 0; dataPointNo < numDataPointsPerSample; dataPointNo++) {         if ((sampleNo >= getNumSamples()) || (sampleNo < 0 )) {
869        DataArrayView dataPointView = getDataPoint(sampleNo, dataPointNo);             throw DataException("Error - Data::convertToNumArray: invalid sampleNo.");
870        if (dataPointRank==0) {         }
871          numArray[dataPoint]=dataPointView();  
872        }         //
873        if (dataPointRank==1) {         // Check a valid data point number has been supplied
874          for (int i=0; i<dataPointShape[0]; i++) {         if ((dataPointNoInSample >= getNumDataPointsPerSample()) || (dataPointNoInSample < 0)) {
875            numArray[dataPoint][i]=dataPointView(i);             throw DataException("Error - Data::convertToNumArray: invalid dataPointNoInSample.");
876          }         }
877        }         // TODO: global error handling
878        if (dataPointRank==2) {         // create a view of the data if it is stored locally
879          for (int i=0; i<dataPointShape[0]; i++) {  //       DataArrayView dataPointView = getDataPoint(sampleNo, dataPointNoInSample);
880            for (int j=0; j<dataPointShape[1]; j++) {         DataTypes::ValueType::size_type offset=getDataOffset(sampleNo, dataPointNoInSample);
881              numArray[dataPoint][i][j] = dataPointView(i,j);  
882            }  
883          }         switch( dataPointRank ){
884        }              case 0 :
885        if (dataPointRank==3) {                  numArray[0] = getDataAtOffset(offset);
886          for (int i=0; i<dataPointShape[0]; i++) {                  break;
887            for (int j=0; j<dataPointShape[1]; j++) {              case 1 :
888              for (int k=0; k<dataPointShape[2]; k++) {                  for( i=0; i<dataPointShape[0]; i++ )
889                numArray[dataPoint][i][j][k]=dataPointView(i,j,k);                      numArray[i]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i));
890              }                  break;
891            }              case 2 :
892          }                  for( i=0; i<dataPointShape[0]; i++ )
893        }                      for( j=0; j<dataPointShape[1]; j++)
894        if (dataPointRank==4) {                          numArray[make_tuple(i,j)]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i,j));
895          for (int i=0; i<dataPointShape[0]; i++) {                  break;
896            for (int j=0; j<dataPointShape[1]; j++) {              case 3 :
897              for (int k=0; k<dataPointShape[2]; k++) {                  for( i=0; i<dataPointShape[0]; i++ )
898                for (int l=0; l<dataPointShape[3]; l++) {                      for( j=0; j<dataPointShape[1]; j++ )
899                  numArray[dataPoint][i][j][k][l]=dataPointView(i,j,k,l);                          for( k=0; k<dataPointShape[2]; k++)
900                }                              numArray[make_tuple(i,j,k)]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i,j,k));
901              }                  break;
902            }              case 4 :
903          }                  for( i=0; i<dataPointShape[0]; i++ )
904        }                      for( j=0; j<dataPointShape[1]; j++ )
905        dataPoint++;                          for( k=0; k<dataPointShape[2]; k++ )
906      }                              for( l=0; l<dataPointShape[3]; l++)
907                                    numArray[make_tuple(i,j,k,l)]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i,j,k,l));
908                    break;
909        }
910    }    }
   
911    //    //
912    // return the loaded array    // return the array
913    return numArray;    return numArray;
914    
915  }  }
916    
917  const  void
918  boost::python::numeric::array  Data::setValueOfDataPointToPyObject(int dataPointNo, const boost::python::object& py_object)
 Data::convertToNumArrayFromSampleNo(int sampleNo)  
919  {  {
920    //      // this will throw if the value cannot be represented
921    // Check a valid sample number has been supplied      boost::python::numeric::array num_array(py_object);
922    if (sampleNo >= getNumSamples()) {      setValueOfDataPointToArray(dataPointNo,num_array);
923      throw DataException("Error - Data::convertToNumArray: invalid sampleNo.");  }
   }  
   
   //  
   // determine the number of data points per sample  
   int numDataPointsPerSample = getNumDataPointsPerSample();  
   
   //  
   // determine the rank and shape of each data point  
   int dataPointRank = getDataPointRank();  
   DataArrayView::ShapeType dataPointShape = getDataPointShape();  
924    
925    void
926    Data::setValueOfDataPointToArray(int dataPointNo, const boost::python::numeric::array& num_array)
927    {
928      if (isProtected()) {
929            throw DataException("Error - attempt to update protected Data object.");
930      }
931      FORCERESOLVE;
932    //    //
933    // create the numeric array to be returned    // check rank
934    boost::python::numeric::array numArray(0.0);    if (static_cast<unsigned int>(num_array.getrank())<getDataPointRank())
935          throw DataException("Rank of numarray does not match Data object rank");
936    
937    //    //
938    // the rank of the returned numeric array will be the rank of    // check shape of num_array
939    // the data points, plus one. Where the rank of the array is n,    for (unsigned int i=0; i<getDataPointRank(); i++) {
940    // the last n-1 dimensions will be equal to the shape of the      if (extract<int>(num_array.getshape()[i])!=getDataPointShape()[i])
941    // data points, whilst the first dimension will be equal to the         throw DataException("Shape of numarray does not match Data object rank");
   // total number of data points. Thus the array will consist of  
   // a serial vector of the data points.  
   int arrayRank = dataPointRank + 1;  
   DataArrayView::ShapeType arrayShape;  
   arrayShape.push_back(numDataPointsPerSample);  
   for (int d=0; d<dataPointRank; d++) {  
      arrayShape.push_back(dataPointShape[d]);  
942    }    }
   
943    //    //
944    // resize the numeric array to the shape just calculated    // make sure data is expanded:
945    if (arrayRank==1) {    //
946      numArray.resize(arrayShape[0]);    if (!isExpanded()) {
947    }      expand();
   if (arrayRank==2) {  
     numArray.resize(arrayShape[0],arrayShape[1]);  
   }  
   if (arrayRank==3) {  
     numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2]);  
   }  
   if (arrayRank==4) {  
     numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2],arrayShape[3]);  
948    }    }
949    if (arrayRank==5) {    if (getNumDataPointsPerSample()>0) {
950      numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2],arrayShape[3],arrayShape[4]);         int sampleNo = dataPointNo/getNumDataPointsPerSample();
951           int dataPointNoInSample = dataPointNo - sampleNo * getNumDataPointsPerSample();
952           m_data->copyToDataPoint(sampleNo, dataPointNoInSample,num_array);
953      } else {
954           m_data->copyToDataPoint(-1, 0,num_array);
955    }    }
956    }
957    
958    //  void
959    // loop through each data point in turn, loading the values for that data point  Data::setValueOfDataPoint(int dataPointNo, const double value)
960    // into the numeric array.  {
961    for (int dataPoint = 0; dataPoint < numDataPointsPerSample; dataPoint++) {    if (isProtected()) {
962      DataArrayView dataPointView = getDataPoint(sampleNo, dataPoint);          throw DataException("Error - attempt to update protected Data object.");
     if (dataPointRank==0) {  
       numArray[dataPoint]=dataPointView();  
     }  
     if (dataPointRank==1) {  
       for (int i=0; i<dataPointShape[0]; i++) {  
         numArray[dataPoint][i]=dataPointView(i);  
       }  
     }  
     if (dataPointRank==2) {  
       for (int i=0; i<dataPointShape[0]; i++) {  
         for (int j=0; j<dataPointShape[1]; j++) {  
           numArray[dataPoint][i][j] = dataPointView(i,j);  
         }  
       }  
     }  
     if (dataPointRank==3) {  
       for (int i=0; i<dataPointShape[0]; i++) {  
         for (int j=0; j<dataPointShape[1]; j++) {  
           for (int k=0; k<dataPointShape[2]; k++) {  
             numArray[dataPoint][i][j][k]=dataPointView(i,j,k);  
           }  
         }  
       }  
     }  
     if (dataPointRank==4) {  
       for (int i=0; i<dataPointShape[0]; i++) {  
         for (int j=0; j<dataPointShape[1]; j++) {  
           for (int k=0; k<dataPointShape[2]; k++) {  
             for (int l=0; l<dataPointShape[3]; l++) {  
               numArray[dataPoint][i][j][k][l]=dataPointView(i,j,k,l);  
             }  
           }  
         }  
       }  
     }  
963    }    }
   
964    //    //
965    // return the loaded array    // make sure data is expanded:
966    return numArray;    FORCERESOLVE;
967      if (!isExpanded()) {
968        expand();
969      }
970      if (getNumDataPointsPerSample()>0) {
971           int sampleNo = dataPointNo/getNumDataPointsPerSample();
972           int dataPointNoInSample = dataPointNo - sampleNo * getNumDataPointsPerSample();
973           m_data->copyToDataPoint(sampleNo, dataPointNoInSample,value);
974      } else {
975           m_data->copyToDataPoint(-1, 0,value);
976      }
977  }  }
978    
979  const  const
980  boost::python::numeric::array  boost::python::numeric::array
981  Data::convertToNumArrayFromDPNo(int sampleNo,  Data::getValueOfGlobalDataPoint(int procNo, int dataPointNo)
                                 int dataPointNo)  
982  {  {
983    //    size_t length=0;
984    // Check a valid sample number has been supplied    int i, j, k, l, pos;
985    if (sampleNo >= getNumSamples()) {    FORCERESOLVE;
     throw DataException("Error - Data::convertToNumArray: invalid sampleNo.");  
   }  
   
   //  
   // Check a valid data point number has been supplied  
   if (dataPointNo >= getNumDataPointsPerSample()) {  
     throw DataException("Error - Data::convertToNumArray: invalid dataPointNo.");  
   }  
   
986    //    //
987    // determine the rank and shape of each data point    // determine the rank and shape of each data point
988    int dataPointRank = getDataPointRank();    int dataPointRank = getDataPointRank();
989    DataArrayView::ShapeType dataPointShape = getDataPointShape();    const DataTypes::ShapeType& dataPointShape = getDataPointShape();
990    
991    //    //
992    // create the numeric array to be returned    // create the numeric array to be returned
# Line 783  Data::convertToNumArrayFromDPNo(int samp Line 996  Data::convertToNumArrayFromDPNo(int samp
996    // the shape of the returned numeric array will be the same    // the shape of the returned numeric array will be the same
997    // as that of the data point    // as that of the data point
998    int arrayRank = dataPointRank;    int arrayRank = dataPointRank;
999    DataArrayView::ShapeType arrayShape = dataPointShape;    const DataTypes::ShapeType& arrayShape = dataPointShape;
1000    
1001    //    //
1002    // resize the numeric array to the shape just calculated    // resize the numeric array to the shape just calculated
# Line 803  Data::convertToNumArrayFromDPNo(int samp Line 1016  Data::convertToNumArrayFromDPNo(int samp
1016      numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2],arrayShape[3]);      numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2],arrayShape[3]);
1017    }    }
1018    
1019      // added for the MPI communication
1020      length=1;
1021      for( i=0; i<arrayRank; i++ ) length *= arrayShape[i];
1022      double *tmpData = new double[length];
1023    
1024    //    //
1025    // load the values for the data point into the numeric array.    // load the values for the data point into the numeric array.
   DataArrayView dataPointView = getDataPoint(sampleNo, dataPointNo);  
   if (dataPointRank==0) {  
     numArray[0]=dataPointView();  
   }  
   if (dataPointRank==1) {  
     for (int i=0; i<dataPointShape[0]; i++) {  
       numArray[i]=dataPointView(i);  
     }  
   }  
   if (dataPointRank==2) {  
     for (int i=0; i<dataPointShape[0]; i++) {  
       for (int j=0; j<dataPointShape[1]; j++) {  
         numArray[i][j] = dataPointView(i,j);  
       }  
     }  
   }  
   if (dataPointRank==3) {  
     for (int i=0; i<dataPointShape[0]; i++) {  
       for (int j=0; j<dataPointShape[1]; j++) {  
         for (int k=0; k<dataPointShape[2]; k++) {  
           numArray[i][j][k]=dataPointView(i,j,k);  
         }  
       }  
     }  
   }  
   if (dataPointRank==4) {  
     for (int i=0; i<dataPointShape[0]; i++) {  
       for (int j=0; j<dataPointShape[1]; j++) {  
         for (int k=0; k<dataPointShape[2]; k++) {  
           for (int l=0; l<dataPointShape[3]; l++) {  
             numArray[i][j][k][l]=dataPointView(i,j,k,l);  
           }  
         }  
       }  
     }  
   }  
1026    
1027        // updated for the MPI case
1028        if( get_MPIRank()==procNo ){
1029                 if (getNumDataPointsPerSample()>0) {
1030                    int sampleNo = dataPointNo/getNumDataPointsPerSample();
1031                    int dataPointNoInSample = dataPointNo - sampleNo * getNumDataPointsPerSample();
1032                    //
1033                    // Check a valid sample number has been supplied
1034                    if ((sampleNo >= getNumSamples()) || (sampleNo < 0 )) {
1035                      throw DataException("Error - Data::convertToNumArray: invalid sampleNo.");
1036                    }
1037    
1038                    //
1039                    // Check a valid data point number has been supplied
1040                    if ((dataPointNoInSample >= getNumDataPointsPerSample()) || (dataPointNoInSample < 0)) {
1041                      throw DataException("Error - Data::convertToNumArray: invalid dataPointNoInSample.");
1042                    }
1043                    // TODO: global error handling
1044            // create a view of the data if it is stored locally
1045            //DataArrayView dataPointView = getDataPoint(sampleNo, dataPointNoInSample);
1046            DataTypes::ValueType::size_type offset=getDataOffset(sampleNo, dataPointNoInSample);
1047    
1048            // pack the data from the view into tmpData for MPI communication
1049            pos=0;
1050            switch( dataPointRank ){
1051                case 0 :
1052                    tmpData[0] = getDataAtOffset(offset);
1053                    break;
1054                case 1 :
1055                    for( i=0; i<dataPointShape[0]; i++ )
1056                        tmpData[i]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i));
1057                    break;
1058                case 2 :
1059                    for( i=0; i<dataPointShape[0]; i++ )
1060                        for( j=0; j<dataPointShape[1]; j++, pos++ )
1061                            tmpData[pos]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i,j));
1062                    break;
1063                case 3 :
1064                    for( i=0; i<dataPointShape[0]; i++ )
1065                        for( j=0; j<dataPointShape[1]; j++ )
1066                            for( k=0; k<dataPointShape[2]; k++, pos++ )
1067                                tmpData[pos]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i,j,k));
1068                    break;
1069                case 4 :
1070                    for( i=0; i<dataPointShape[0]; i++ )
1071                        for( j=0; j<dataPointShape[1]; j++ )
1072                            for( k=0; k<dataPointShape[2]; k++ )
1073                                for( l=0; l<dataPointShape[3]; l++, pos++ )
1074                                    tmpData[pos]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i,j,k,l));
1075                    break;
1076            }
1077                }
1078        }
1079            #ifdef PASO_MPI
1080            // broadcast the data to all other processes
1081        MPI_Bcast( tmpData, length, MPI_DOUBLE, procNo, get_MPIComm() );
1082            #endif
1083    
1084        // unpack the data
1085        switch( dataPointRank ){
1086            case 0 :
1087                numArray[0]=tmpData[0];
1088                break;
1089            case 1 :
1090                for( i=0; i<dataPointShape[0]; i++ )
1091                    numArray[i]=tmpData[i];
1092                break;
1093            case 2 :
1094                for( i=0; i<dataPointShape[0]; i++ )
1095                    for( j=0; j<dataPointShape[1]; j++ )
1096                       numArray[make_tuple(i,j)]=tmpData[i+j*dataPointShape[0]];
1097                break;
1098            case 3 :
1099                for( i=0; i<dataPointShape[0]; i++ )
1100                    for( j=0; j<dataPointShape[1]; j++ )
1101                        for( k=0; k<dataPointShape[2]; k++ )
1102                            numArray[make_tuple(i,j,k)]=tmpData[i+dataPointShape[0]*(j*+k*dataPointShape[1])];
1103                break;
1104            case 4 :
1105                for( i=0; i<dataPointShape[0]; i++ )
1106                    for( j=0; j<dataPointShape[1]; j++ )
1107                        for( k=0; k<dataPointShape[2]; k++ )
1108                            for( l=0; l<dataPointShape[3]; l++ )
1109                                    numArray[make_tuple(i,j,k,l)]=tmpData[i+dataPointShape[0]*(j*+dataPointShape[1]*(k+l*dataPointShape[2]))];
1110                break;
1111        }
1112    
1113        delete [] tmpData;
1114    //    //
1115    // return the loaded array    // return the loaded array
1116    return numArray;    return numArray;
1117  }  }
1118    
1119    
1120    boost::python::numeric::array
1121    Data::integrate_const() const
1122    {
1123      if (isLazy())
1124      {
1125        throw DataException("Error - cannot integrate for constant lazy data.");
1126      }
1127      return integrateWorker();
1128    }
1129    
1130  boost::python::numeric::array  boost::python::numeric::array
1131  Data::integrate() const  Data::integrate()
1132    {
1133      if (isLazy())
1134      {
1135        expand();
1136      }
1137      return integrateWorker();
1138    }
1139    
1140    
1141    
1142    boost::python::numeric::array
1143    Data::integrateWorker() const
1144  {  {
1145    int index;    int index;
1146    int rank = getDataPointRank();    int rank = getDataPointRank();
1147    DataArrayView::ShapeType shape = getDataPointShape();    DataTypes::ShapeType shape = getDataPointShape();
1148      int dataPointSize = getDataPointSize();
 #if defined DOPROF  
   profData->integrate++;  
 #endif  
1149    
1150    //    //
1151    // calculate the integral values    // calculate the integral values
1152    vector<double> integrals(getDataPointSize());    vector<double> integrals(dataPointSize);
1153    AbstractContinuousDomain::asAbstractContinuousDomain(getDomain()).setToIntegrals(integrals,*this);    vector<double> integrals_local(dataPointSize);
1154    #ifdef PASO_MPI
1155      AbstractContinuousDomain::asAbstractContinuousDomain(*getDomain()).setToIntegrals(integrals_local,*this);
1156      // Global sum: use an array instead of a vector because elements of array are guaranteed to be contiguous in memory
1157      double *tmp = new double[dataPointSize];
1158      double *tmp_local = new double[dataPointSize];
1159      for (int i=0; i<dataPointSize; i++) { tmp_local[i] = integrals_local[i]; }
1160      MPI_Allreduce( &tmp_local[0], &tmp[0], dataPointSize, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD );
1161      for (int i=0; i<dataPointSize; i++) { integrals[i] = tmp[i]; }
1162      delete[] tmp;
1163      delete[] tmp_local;
1164    #else
1165      AbstractContinuousDomain::asAbstractContinuousDomain(*getDomain()).setToIntegrals(integrals,*this);
1166    #endif
1167    
1168    //    //
1169    // create the numeric array to be returned    // create the numeric array to be returned
# Line 880  Data::integrate() const Line 1182  Data::integrate() const
1182      }      }
1183    }    }
1184    if (rank==2) {    if (rank==2) {
1185      bp_array.resize(shape[0],shape[1]);         bp_array.resize(shape[0],shape[1]);
1186      for (int i=0; i<shape[0]; i++) {         for (int i=0; i<shape[0]; i++) {
1187        for (int j=0; j<shape[1]; j++) {           for (int j=0; j<shape[1]; j++) {
1188          index = i + shape[0] * j;             index = i + shape[0] * j;
1189          bp_array[i,j] = integrals[index];             bp_array[make_tuple(i,j)] = integrals[index];
1190        }           }
1191      }         }
1192    }    }
1193    if (rank==3) {    if (rank==3) {
1194      bp_array.resize(shape[0],shape[1],shape[2]);      bp_array.resize(shape[0],shape[1],shape[2]);
# Line 894  Data::integrate() const Line 1196  Data::integrate() const
1196        for (int j=0; j<shape[1]; j++) {        for (int j=0; j<shape[1]; j++) {
1197          for (int k=0; k<shape[2]; k++) {          for (int k=0; k<shape[2]; k++) {
1198            index = i + shape[0] * ( j + shape[1] * k );            index = i + shape[0] * ( j + shape[1] * k );
1199            bp_array[i,j,k] = integrals[index];            bp_array[make_tuple(i,j,k)] = integrals[index];
1200          }          }
1201        }        }
1202      }      }
# Line 906  Data::integrate() const Line 1208  Data::integrate() const
1208          for (int k=0; k<shape[2]; k++) {          for (int k=0; k<shape[2]; k++) {
1209            for (int l=0; l<shape[3]; l++) {            for (int l=0; l<shape[3]; l++) {
1210              index = i + shape[0] * ( j + shape[1] * ( k + shape[2] * l ) );              index = i + shape[0] * ( j + shape[1] * ( k + shape[2] * l ) );
1211              bp_array[i,j,k,l] = integrals[index];              bp_array[make_tuple(i,j,k,l)] = integrals[index];
1212            }            }
1213          }          }
1214        }        }
# Line 921  Data::integrate() const Line 1223  Data::integrate() const
1223  Data  Data
1224  Data::sin() const  Data::sin() const
1225  {  {
1226  #if defined DOPROF    if (isLazy())
1227    profData->unary++;    {
1228  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),SIN);
1229    return escript::unaryOp(*this,(Data::UnaryDFunPtr)::sin);      return Data(c);
1230      }
1231      return C_TensorUnaryOperation<double (*)(double)>(*this, ::sin);
1232  }  }
1233    
1234  Data  Data
1235  Data::cos() const  Data::cos() const
1236  {  {
1237  #if defined DOPROF    if (isLazy())
1238    profData->unary++;    {
1239  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),COS);
1240    return escript::unaryOp(*this,(Data::UnaryDFunPtr)::cos);      return Data(c);
1241      }
1242      return C_TensorUnaryOperation<double (*)(double)>(*this, ::cos);
1243  }  }
1244    
1245  Data  Data
1246  Data::tan() const  Data::tan() const
1247  {  {
1248  #if defined DOPROF    if (isLazy())
1249    profData->unary++;    {
1250  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),TAN);
1251    return escript::unaryOp(*this,(Data::UnaryDFunPtr)::tan);      return Data(c);
1252      }
1253      return C_TensorUnaryOperation<double (*)(double)>(*this, ::tan);
1254  }  }
1255    
1256  Data  Data
1257  Data::asin() const  Data::asin() const
1258  {  {
1259  #if defined DOPROF    if (isLazy())
1260    profData->unary++;    {
1261  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),ASIN);
1262    return escript::unaryOp(*this,(Data::UnaryDFunPtr)::asin);      return Data(c);
1263      }
1264      return C_TensorUnaryOperation<double (*)(double)>(*this, ::asin);
1265  }  }
1266    
1267  Data  Data
1268  Data::acos() const  Data::acos() const
1269  {  {
1270  #if defined DOPROF    if (isLazy())
1271    profData->unary++;    {
1272  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),ACOS);
1273    return escript::unaryOp(*this,(Data::UnaryDFunPtr)::acos);      return Data(c);
1274      }
1275      return C_TensorUnaryOperation<double (*)(double)>(*this, ::acos);
1276  }  }
1277    
1278    
1279  Data  Data
1280  Data::atan() const  Data::atan() const
1281  {  {
1282  #if defined DOPROF    if (isLazy())
1283    profData->unary++;    {
1284  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),ATAN);
1285    return escript::unaryOp(*this,(Data::UnaryDFunPtr)::atan);      return Data(c);
1286      }
1287      return C_TensorUnaryOperation<double (*)(double)>(*this, ::atan);
1288  }  }
1289    
1290  Data  Data
1291  Data::sinh() const  Data::sinh() const
1292  {  {
1293  #if defined DOPROF    if (isLazy())
1294    profData->unary++;    {
1295  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),SINH);
1296    return escript::unaryOp(*this,(Data::UnaryDFunPtr)::sinh);      return Data(c);
1297      }
1298      return C_TensorUnaryOperation<double (*)(double)>(*this, ::sinh);
1299  }  }
1300    
1301  Data  Data
1302  Data::cosh() const  Data::cosh() const
1303  {  {
1304  #if defined DOPROF    if (isLazy())
1305    profData->unary++;    {
1306  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),COSH);
1307    return escript::unaryOp(*this,(Data::UnaryDFunPtr)::cosh);      return Data(c);
1308      }
1309      return C_TensorUnaryOperation<double (*)(double)>(*this, ::cosh);
1310  }  }
1311    
1312  Data  Data
1313  Data::tanh() const  Data::tanh() const
1314  {  {
1315  #if defined DOPROF    if (isLazy())
1316    profData->unary++;    {
1317        DataLazy* c=new DataLazy(borrowDataPtr(),TANH);
1318        return Data(c);
1319      }
1320      return C_TensorUnaryOperation<double (*)(double)>(*this, ::tanh);
1321    }
1322    
1323    
1324    Data
1325    Data::erf() const
1326    {
1327    #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1328      throw DataException("Error - Data:: erf function is not supported on _WIN32 platforms.");
1329    #else
1330      if (isLazy())
1331      {
1332        DataLazy* c=new DataLazy(borrowDataPtr(),ERF);
1333        return Data(c);
1334      }
1335      return C_TensorUnaryOperation(*this, ::erf);
1336  #endif  #endif
   return escript::unaryOp(*this,(Data::UnaryDFunPtr)::tanh);  
1337  }  }
1338    
1339  Data  Data
1340  Data::asinh() const  Data::asinh() const
1341  {  {
1342  #if defined DOPROF    if (isLazy())
1343    profData->unary++;    {
1344        DataLazy* c=new DataLazy(borrowDataPtr(),ASINH);
1345        return Data(c);
1346      }
1347    #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1348      return C_TensorUnaryOperation(*this, escript::asinh_substitute);
1349    #else
1350      return C_TensorUnaryOperation(*this, ::asinh);
1351  #endif  #endif
   return escript::unaryOp(*this,(Data::UnaryDFunPtr)::asinh);  
1352  }  }
1353    
1354  Data  Data
1355  Data::acosh() const  Data::acosh() const
1356  {  {
1357  #if defined DOPROF    if (isLazy())
1358    profData->unary++;    {
1359        DataLazy* c=new DataLazy(borrowDataPtr(),ACOSH);
1360        return Data(c);
1361      }
1362    #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1363      return C_TensorUnaryOperation(*this, escript::acosh_substitute);
1364    #else
1365      return C_TensorUnaryOperation(*this, ::acosh);
1366  #endif  #endif
   return escript::unaryOp(*this,(Data::UnaryDFunPtr)::acosh);  
1367  }  }
1368    
1369  Data  Data
1370  Data::atanh() const  Data::atanh() const
1371  {  {
1372  #if defined DOPROF    if (isLazy())
1373    profData->unary++;    {
1374        DataLazy* c=new DataLazy(borrowDataPtr(),ATANH);
1375        return Data(c);
1376      }
1377    #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1378      return C_TensorUnaryOperation(*this, escript::atanh_substitute);
1379    #else
1380      return C_TensorUnaryOperation(*this, ::atanh);
1381  #endif  #endif
   return escript::unaryOp(*this,(Data::UnaryDFunPtr)::atanh);  
1382  }  }
1383    
1384  Data  Data
1385  Data::log() const  Data::log10() const
1386  {  {  if (isLazy())
1387  #if defined DOPROF    {
1388    profData->unary++;      DataLazy* c=new DataLazy(borrowDataPtr(),LOG10);
1389  #endif      return Data(c);
1390    return escript::unaryOp(*this,(Data::UnaryDFunPtr)::log10);    }
1391      return C_TensorUnaryOperation<double (*)(double)>(*this, ::log10);
1392  }  }
1393    
1394  Data  Data
1395  Data::ln() const  Data::log() const
1396  {  {
1397  #if defined DOPROF    if (isLazy())
1398    profData->unary++;    {
1399  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),LOG);
1400    return escript::unaryOp(*this,(Data::UnaryDFunPtr)::log);      return Data(c);
1401      }
1402      return C_TensorUnaryOperation<double (*)(double)>(*this, ::log);
1403  }  }
1404    
1405  Data  Data
1406  Data::sign() const  Data::sign() const
1407  {  {
1408  #if defined DOPROF    if (isLazy())
1409    profData->unary++;    {
1410  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),SIGN);
1411    return escript::unaryOp(*this,escript::fsign);      return Data(c);
1412      }
1413      return C_TensorUnaryOperation(*this, escript::fsign);
1414  }  }
1415    
1416  Data  Data
1417  Data::abs() const  Data::abs() const
1418  {  {
1419  #if defined DOPROF    if (isLazy())
1420    profData->unary++;    {
1421  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),ABS);
1422    return escript::unaryOp(*this,(Data::UnaryDFunPtr)::fabs);      return Data(c);
1423      }
1424      return C_TensorUnaryOperation<double (*)(double)>(*this, ::fabs);
1425  }  }
1426    
1427  Data  Data
1428  Data::neg() const  Data::neg() const
1429  {  {
1430  #if defined DOPROF    if (isLazy())
1431    profData->unary++;    {
1432  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),NEG);
1433    return escript::unaryOp(*this,negate<double>());      return Data(c);
1434      }
1435      return C_TensorUnaryOperation(*this, negate<double>());
1436  }  }
1437    
1438  Data  Data
1439  Data::pos() const  Data::pos() const
1440  {  {
1441  #if defined DOPROF      // not doing lazy check here is deliberate.
1442    profData->unary++;      // since a deep copy of lazy data should be cheap, I'll just let it happen now
 #endif  
1443    Data result;    Data result;
1444    // perform a deep copy    // perform a deep copy
1445    result.copy(*this);    result.copy(*this);
# Line 1085  Data::pos() const Line 1448  Data::pos() const
1448    
1449  Data  Data
1450  Data::exp() const  Data::exp() const
1451  {  {  
1452  #if defined DOPROF    if (isLazy())
1453    profData->unary++;    {
1454  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),EXP);
1455    return escript::unaryOp(*this,(Data::UnaryDFunPtr)::exp);      return Data(c);
1456      }
1457      return C_TensorUnaryOperation<double (*)(double)>(*this, ::exp);
1458  }  }
1459    
1460  Data  Data
1461  Data::sqrt() const  Data::sqrt() const
1462  {  {
1463  #if defined DOPROF    if (isLazy())
1464    profData->unary++;    {
1465  #endif      DataLazy* c=new DataLazy(borrowDataPtr(),SQRT);
1466    return escript::unaryOp(*this,(Data::UnaryDFunPtr)::sqrt);      return Data(c);
1467      }
1468      return C_TensorUnaryOperation<double (*)(double)>(*this, ::sqrt);
1469  }  }
1470    
1471  double  double
1472  Data::Lsup() const  Data::Lsup_const() const
1473  {  {
1474  #if defined DOPROF     if (isLazy())
1475    profData->reduction1++;     {
1476  #endif      throw DataException("Error - cannot compute Lsup for constant lazy data.");
1477    //     }
1478    // set the initial absolute maximum value to zero     return LsupWorker();
   AbsMax abs_max_func;  
   return algorithm(abs_max_func,0);  
1479  }  }
1480    
1481  double  double
1482  Data::Linf() const  Data::Lsup()
1483  {  {
1484  #if defined DOPROF     if (isLazy())
1485    profData->reduction1++;     {
1486  #endif      expand();
1487    //     }
1488    // set the initial absolute minimum value to max double     return LsupWorker();
1489    AbsMin abs_min_func;  }
1490    return algorithm(abs_min_func,numeric_limits<double>::max());  
1491    double
1492    Data::sup_const() const
1493    {
1494       if (isLazy())
1495       {
1496        throw DataException("Error - cannot compute sup for constant lazy data.");
1497       }
1498       return supWorker();
1499    }
1500    
1501    double
1502    Data::sup()
1503    {
1504       if (isLazy())
1505       {
1506        expand();
1507       }
1508       return supWorker();
1509    }
1510    
1511    double
1512    Data::inf_const() const
1513    {
1514       if (isLazy())
1515       {
1516        throw DataException("Error - cannot compute inf for constant lazy data.");
1517       }
1518       return infWorker();
1519  }  }
1520    
1521  double  double
1522  Data::sup() const  Data::inf()
1523  {  {
1524  #if defined DOPROF     if (isLazy())
1525    profData->reduction1++;     {
1526        expand();
1527       }
1528       return infWorker();
1529    }
1530    
1531    double
1532    Data::LsupWorker() const
1533    {
1534      double localValue;
1535      //
1536      // set the initial absolute maximum value to zero
1537    
1538      AbsMax abs_max_func;
1539      localValue = algorithm(abs_max_func,0);
1540    #ifdef PASO_MPI
1541      double globalValue;
1542      MPI_Allreduce( &localValue, &globalValue, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD );
1543      return globalValue;
1544    #else
1545      return localValue;
1546  #endif  #endif
1547    }
1548    
1549    double
1550    Data::supWorker() const
1551    {
1552      double localValue;
1553    //    //
1554    // set the initial maximum value to min possible double    // set the initial maximum value to min possible double
1555    FMax fmax_func;    FMax fmax_func;
1556    return algorithm(fmax_func,numeric_limits<double>::max()*-1);    localValue = algorithm(fmax_func,numeric_limits<double>::max()*-1);
1557    #ifdef PASO_MPI
1558      double globalValue;
1559      MPI_Allreduce( &localValue, &globalValue, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD );
1560      return globalValue;
1561    #else
1562      return localValue;
1563    #endif
1564  }  }
1565    
1566  double  double
1567  Data::inf() const  Data::infWorker() const
1568  {  {
1569  #if defined DOPROF    double localValue;
   profData->reduction1++;  
 #endif  
1570    //    //
1571    // set the initial minimum value to max possible double    // set the initial minimum value to max possible double
1572    FMin fmin_func;    FMin fmin_func;
1573    return algorithm(fmin_func,numeric_limits<double>::max());    localValue = algorithm(fmin_func,numeric_limits<double>::max());
1574    #ifdef PASO_MPI
1575      double globalValue;
1576      MPI_Allreduce( &localValue, &globalValue, 1, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD );
1577      return globalValue;
1578    #else
1579      return localValue;
1580    #endif
1581  }  }
1582    
1583    /* TODO */
1584    /* global reduction */
1585  Data  Data
1586  Data::maxval() const  Data::maxval() const
1587  {  {
1588  #if defined DOPROF    if (isLazy())
1589    profData->reduction2++;    {
1590  #endif      Data temp(*this);   // to get around the fact that you can't resolve a const Data
1591        temp.resolve();
1592        return temp.maxval();
1593      }
1594    //    //
1595    // set the initial maximum value to min possible double    // set the initial maximum value to min possible double
1596    FMax fmax_func;    FMax fmax_func;
# Line 1164  Data::maxval() const Line 1600  Data::maxval() const
1600  Data  Data
1601  Data::minval() const  Data::minval() const
1602  {  {
1603  #if defined DOPROF    if (isLazy())
1604    profData->reduction2++;    {
1605  #endif      Data temp(*this);   // to get around the fact that you can't resolve a const Data
1606        temp.resolve();
1607        return temp.minval();
1608      }
1609    //    //
1610    // set the initial minimum value to max possible double    // set the initial minimum value to max possible double
1611    FMin fmin_func;    FMin fmin_func;
# Line 1174  Data::minval() const Line 1613  Data::minval() const
1613  }  }
1614    
1615  Data  Data
1616  Data::length() const  Data::swapaxes(const int axis0, const int axis1) const
1617  {  {
1618  #if defined DOPROF       int axis0_tmp,axis1_tmp;
1619    profData->reduction2++;       DataTypes::ShapeType s=getDataPointShape();
1620  #endif       DataTypes::ShapeType ev_shape;
1621    Length len_func;       // Here's the equivalent of python s_out=s[axis_offset:]+s[:axis_offset]
1622    return dp_algorithm(len_func,0);       // which goes thru all shape vector elements starting with axis_offset (at index=rank wrap around to 0)
1623         int rank=getDataPointRank();
1624         if (rank<2) {
1625            throw DataException("Error - Data::swapaxes argument must have at least rank 2.");
1626         }
1627         if (axis0<0 || axis0>rank-1) {
1628            throw DataException("Error - Data::swapaxes: axis0 must be between 0 and rank-1=" + rank-1);
1629         }
1630         if (axis1<0 || axis1>rank-1) {
1631             throw DataException("Error - Data::swapaxes: axis1 must be between 0 and rank-1=" + rank-1);
1632         }
1633         if (axis0 == axis1) {
1634             throw DataException("Error - Data::swapaxes: axis indices must be different.");
1635         }
1636         if (axis0 > axis1) {
1637             axis0_tmp=axis1;
1638             axis1_tmp=axis0;
1639         } else {
1640             axis0_tmp=axis0;
1641             axis1_tmp=axis1;
1642         }
1643         for (int i=0; i<rank; i++) {
1644           if (i == axis0_tmp) {
1645              ev_shape.push_back(s[axis1_tmp]);
1646           } else if (i == axis1_tmp) {
1647              ev_shape.push_back(s[axis0_tmp]);
1648           } else {
1649              ev_shape.push_back(s[i]);
1650           }
1651         }
1652         Data ev(0.,ev_shape,getFunctionSpace());
1653         ev.typeMatchRight(*this);
1654         m_data->swapaxes(ev.m_data.get(), axis0_tmp, axis1_tmp);
1655         return ev;
1656    
1657    }
1658    
1659    Data
1660    Data::symmetric() const
1661    {
1662         // check input
1663         DataTypes::ShapeType s=getDataPointShape();
1664         if (getDataPointRank()==2) {
1665            if(s[0] != s[1])
1666               throw DataException("Error - Data::symmetric can only be calculated for rank 2 object with equal first and second dimension.");
1667         }
1668         else if (getDataPointRank()==4) {
1669            if(!(s[0] == s[2] && s[1] == s[3]))
1670               throw DataException("Error - Data::symmetric can only be calculated for rank 4 object with dim0==dim2 and dim1==dim3.");
1671         }
1672         else {
1673            throw DataException("Error - Data::symmetric can only be calculated for rank 2 or 4 object.");
1674         }
1675         if (isLazy())
1676         {
1677        DataLazy* c=new DataLazy(borrowDataPtr(),SYM);
1678        return Data(c);
1679         }
1680         Data ev(0.,getDataPointShape(),getFunctionSpace());
1681         ev.typeMatchRight(*this);
1682         m_data->symmetric(ev.m_data.get());
1683         return ev;
1684    }
1685    
1686    Data
1687    Data::nonsymmetric() const
1688    {
1689         if (isLazy())
1690         {
1691        DataLazy* c=new DataLazy(borrowDataPtr(),NSYM);
1692        return Data(c);
1693         }
1694         // check input
1695         DataTypes::ShapeType s=getDataPointShape();
1696         if (getDataPointRank()==2) {
1697            if(s[0] != s[1])
1698               throw DataException("Error - Data::nonsymmetric can only be calculated for rank 2 object with equal first and second dimension.");
1699            DataTypes::ShapeType ev_shape;
1700            ev_shape.push_back(s[0]);
1701            ev_shape.push_back(s[1]);
1702            Data ev(0.,ev_shape,getFunctionSpace());
1703            ev.typeMatchRight(*this);
1704            m_data->nonsymmetric(ev.m_data.get());
1705            return ev;
1706         }
1707         else if (getDataPointRank()==4) {
1708            if(!(s[0] == s[2] && s[1] == s[3]))
1709               throw DataException("Error - Data::nonsymmetric can only be calculated for rank 4 object with dim0==dim2 and dim1==dim3.");
1710            DataTypes::ShapeType ev_shape;
1711            ev_shape.push_back(s[0]);
1712            ev_shape.push_back(s[1]);
1713            ev_shape.push_back(s[2]);
1714            ev_shape.push_back(s[3]);
1715            Data ev(0.,ev_shape,getFunctionSpace());
1716            ev.typeMatchRight(*this);
1717            m_data->nonsymmetric(ev.m_data.get());
1718            return ev;
1719         }
1720         else {
1721            throw DataException("Error - Data::nonsymmetric can only be calculated for rank 2 or 4 object.");
1722         }
1723    }
1724    
1725    
1726    // Doing a lazy version of this would require some thought.
1727    // First it needs a parameter (which DataLazy doesn't support at the moment).
1728    // (secondly although it does not apply to trace) we can't handle operations which return
1729    // multiple results (like eigenvectors_values) or return values of different shapes to their input
1730    // (like eigenvalues).
1731    Data
1732    Data::trace(int axis_offset) const
1733    {
1734         if (isLazy())
1735         {
1736        Data temp(*this);   // to get around the fact that you can't resolve a const Data
1737        temp.resolve();
1738        return temp.trace(axis_offset);
1739         }
1740         DataTypes::ShapeType s=getDataPointShape();
1741         if (getDataPointRank()==2) {
1742            DataTypes::ShapeType ev_shape;
1743            Data ev(0.,ev_shape,getFunctionSpace());
1744            ev.typeMatchRight(*this);
1745            m_data->trace(ev.m_data.get(), axis_offset);
1746            return ev;
1747         }
1748         if (getDataPointRank()==3) {
1749            DataTypes::ShapeType ev_shape;
1750            if (axis_offset==0) {
1751              int s2=s[2];
1752              ev_shape.push_back(s2);
1753            }
1754            else if (axis_offset==1) {
1755              int s0=s[0];
1756              ev_shape.push_back(s0);
1757            }
1758            Data ev(0.,ev_shape,getFunctionSpace());
1759            ev.typeMatchRight(*this);
1760            m_data->trace(ev.m_data.get(), axis_offset);
1761            return ev;
1762         }
1763         if (getDataPointRank()==4) {
1764            DataTypes::ShapeType ev_shape;
1765            if (axis_offset==0) {
1766              ev_shape.push_back(s[2]);
1767              ev_shape.push_back(s[3]);
1768            }
1769            else if (axis_offset==1) {
1770              ev_shape.push_back(s[0]);
1771              ev_shape.push_back(s[3]);
1772            }
1773        else if (axis_offset==2) {
1774          ev_shape.push_back(s[0]);
1775          ev_shape.push_back(s[1]);
1776        }
1777            Data ev(0.,ev_shape,getFunctionSpace());
1778            ev.typeMatchRight(*this);
1779        m_data->trace(ev.m_data.get(), axis_offset);
1780            return ev;
1781         }
1782         else {
1783            throw DataException("Error - Data::trace can only be calculated for rank 2, 3 or 4 object.");
1784         }
1785  }  }
1786    
1787  Data  Data
1788  Data::trace() const  Data::transpose(int axis_offset) const
1789  {  {    
1790  #if defined DOPROF       if (isLazy())
1791    profData->reduction2++;       {
1792  #endif      Data temp(*this);   // to get around the fact that you can't resolve a const Data
1793    Trace trace_func;      temp.resolve();
1794    return dp_algorithm(trace_func,0);      return temp.transpose(axis_offset);
1795         }
1796         DataTypes::ShapeType s=getDataPointShape();
1797         DataTypes::ShapeType ev_shape;
1798         // Here's the equivalent of python s_out=s[axis_offset:]+s[:axis_offset]
1799         // which goes thru all shape vector elements starting with axis_offset (at index=rank wrap around to 0)
1800         int rank=getDataPointRank();
1801         if (axis_offset<0 || axis_offset>rank) {
1802            throw DataException("Error - Data::transpose must have 0 <= axis_offset <= rank=" + rank);
1803         }
1804         for (int i=0; i<rank; i++) {
1805           int index = (axis_offset+i)%rank;
1806           ev_shape.push_back(s[index]); // Append to new shape
1807         }
1808         Data ev(0.,ev_shape,getFunctionSpace());
1809         ev.typeMatchRight(*this);
1810         m_data->transpose(ev.m_data.get(), axis_offset);
1811         return ev;
1812  }  }
1813    
1814  Data  Data
1815  Data::transpose(int axis) const  Data::eigenvalues() const
1816    {
1817         if (isLazy())
1818         {
1819        Data temp(*this);   // to get around the fact that you can't resolve a const Data
1820        temp.resolve();
1821        return temp.eigenvalues();
1822         }
1823         // check input
1824         DataTypes::ShapeType s=getDataPointShape();
1825         if (getDataPointRank()!=2)
1826            throw DataException("Error - Data::eigenvalues can only be calculated for rank 2 object.");
1827         if(s[0] != s[1])
1828            throw DataException("Error - Data::eigenvalues can only be calculated for object with equal first and second dimension.");
1829         // create return
1830         DataTypes::ShapeType ev_shape(1,s[0]);
1831         Data ev(0.,ev_shape,getFunctionSpace());
1832         ev.typeMatchRight(*this);
1833         m_data->eigenvalues(ev.m_data.get());
1834         return ev;
1835    }
1836    
1837    const boost::python::tuple
1838    Data::eigenvalues_and_eigenvectors(const double tol) const
1839  {  {
1840  #if defined DOPROF       if (isLazy())
1841    profData->reduction2++;       {
1842  #endif      Data temp(*this);   // to get around the fact that you can't resolve a const Data
1843    // not implemented      temp.resolve();
1844    throw DataException("Error - Data::transpose not implemented yet.");      return temp.eigenvalues_and_eigenvectors(tol);
1845    return Data();       }
1846         DataTypes::ShapeType s=getDataPointShape();
1847         if (getDataPointRank()!=2)
1848            throw DataException("Error - Data::eigenvalues and eigenvectors can only be calculated for rank 2 object.");
1849         if(s[0] != s[1])
1850            throw DataException("Error - Data::eigenvalues and eigenvectors can only be calculated for object with equal first and second dimension.");
1851         // create return
1852         DataTypes::ShapeType ev_shape(1,s[0]);
1853         Data ev(0.,ev_shape,getFunctionSpace());
1854         ev.typeMatchRight(*this);
1855         DataTypes::ShapeType V_shape(2,s[0]);
1856         Data V(0.,V_shape,getFunctionSpace());
1857         V.typeMatchRight(*this);
1858         m_data->eigenvalues_and_eigenvectors(ev.m_data.get(),V.m_data.get(),tol);
1859         return make_tuple(boost::python::object(ev),boost::python::object(V));
1860  }  }
1861    
1862  const boost::python::tuple  const boost::python::tuple
1863  Data::mindp() const  Data::minGlobalDataPoint() const
1864  {  {
1865    // NB: calc_mindp had to be split off from mindp as boost::make_tuple causes an    // NB: calc_minGlobalDataPoint( had to be split off from minGlobalDataPoint( as boost::make_tuple causes an
1866    // abort (for unknown reasons) if there are openmp directives with it in the    // abort (for unknown reasons) if there are openmp directives with it in the
1867    // surrounding function    // surrounding function
1868    
   int SampleNo;  
1869    int DataPointNo;    int DataPointNo;
1870      int ProcNo;
1871    calc_mindp(SampleNo,DataPointNo);    calc_minGlobalDataPoint(ProcNo,DataPointNo);
1872      return make_tuple(ProcNo,DataPointNo);
   return make_tuple(SampleNo,DataPointNo);  
1873  }  }
1874    
1875  void  void
1876  Data::calc_mindp(int& SampleNo,  Data::calc_minGlobalDataPoint(int& ProcNo,
1877                   int& DataPointNo) const                          int& DataPointNo) const
1878  {  {
1879      if (isLazy())
1880      {
1881        Data temp(*this);   // to get around the fact that you can't resolve a const Data
1882        temp.resolve();
1883        return temp.calc_minGlobalDataPoint(ProcNo,DataPointNo);
1884      }
1885    int i,j;    int i,j;
1886    int lowi=0,lowj=0;    int lowi=0,lowj=0;
1887    double min=numeric_limits<double>::max();    double min=numeric_limits<double>::max();
# Line 1233  Data::calc_mindp(int& SampleNo, Line 1892  Data::calc_mindp(int& SampleNo,
1892    int numDPPSample=temp.getNumDataPointsPerSample();    int numDPPSample=temp.getNumDataPointsPerSample();
1893    
1894    double next,local_min;    double next,local_min;
1895    int local_lowi,local_lowj;    int local_lowi=0,local_lowj=0;    
1896    
1897    #pragma omp parallel private(next,local_min,local_lowi,local_lowj)    #pragma omp parallel private(next,local_min,local_lowi,local_lowj)
1898    {    {
# Line 1241  Data::calc_mindp(int& SampleNo, Line 1900  Data::calc_mindp(int& SampleNo,
1900      #pragma omp for private(i,j) schedule(static)      #pragma omp for private(i,j) schedule(static)
1901      for (i=0; i<numSamples; i++) {      for (i=0; i<numSamples; i++) {
1902        for (j=0; j<numDPPSample; j++) {        for (j=0; j<numDPPSample; j++) {
1903          next=temp.getDataPoint(i,j)();          next=temp.getDataAtOffset(temp.getDataOffset(i,j));
1904          if (next<local_min) {          if (next<local_min) {
1905            local_min=next;            local_min=next;
1906            local_lowi=i;            local_lowi=i;
# Line 1257  Data::calc_mindp(int& SampleNo, Line 1916  Data::calc_mindp(int& SampleNo,
1916      }      }
1917    }    }
1918    
1919    SampleNo = lowi;  #ifdef PASO_MPI
1920    DataPointNo = lowj;      // determine the processor on which the minimum occurs
1921        next = temp.getDataPoint(lowi,lowj);
1922        int lowProc = 0;
1923        double *globalMins = new double[get_MPISize()+1];
1924        int error = MPI_Gather ( &next, 1, MPI_DOUBLE, globalMins, 1, MPI_DOUBLE, 0, get_MPIComm() );
1925    
1926        if( get_MPIRank()==0 ){
1927            next = globalMins[lowProc];
1928            for( i=1; i<get_MPISize(); i++ )
1929                if( next>globalMins[i] ){
1930                    lowProc = i;
1931                    next = globalMins[i];
1932                }
1933        }
1934        MPI_Bcast( &lowProc, 1, MPI_DOUBLE, 0, get_MPIComm() );
1935    
1936        delete [] globalMins;
1937        ProcNo = lowProc;
1938    #else
1939        ProcNo = 0;
1940    #endif
1941      DataPointNo = lowj + lowi * numDPPSample;
1942  }  }
1943    
1944  void  void
1945  Data::saveDX(std::string fileName) const  Data::saveDX(std::string fileName) const
1946  {  {
1947      if (isEmpty())
1948      {
1949        throw DataException("Error - Operations not permitted on instances of DataEmpty.");
1950      }
1951      if (isLazy())
1952      {
1953         Data temp(*this);  // to get around the fact that you can't resolve a const Data
1954         temp.resolve();
1955         temp.saveDX(fileName);
1956         return;
1957      }
1958    boost::python::dict args;    boost::python::dict args;
1959    args["data"]=boost::python::object(this);    args["data"]=boost::python::object(this);
1960    getDomain().saveDX(fileName,args);    getDomain()->saveDX(fileName,args);
1961    return;    return;
1962  }  }
1963    
1964  void  void
1965  Data::saveVTK(std::string fileName) const  Data::saveVTK(std::string fileName) const
1966  {  {
1967      if (isEmpty())
1968      {
1969        throw DataException("Error - Operations not permitted on instances of DataEmpty.");
1970      }
1971      if (isLazy())
1972      {
1973         Data temp(*this);  // to get around the fact that you can't resolve a const Data
1974         temp.resolve();
1975         temp.saveVTK(fileName);
1976         return;
1977      }
1978    boost::python::dict args;    boost::python::dict args;
1979    args["data"]=boost::python::object(this);    args["data"]=boost::python::object(this);
1980    getDomain().saveVTK(fileName,args);    getDomain()->saveVTK(fileName,args);
1981    return;    return;
1982  }  }
1983    
1984  Data&  Data&
1985  Data::operator+=(const Data& right)  Data::operator+=(const Data& right)
1986  {  {
1987  #if defined DOPROF    if (isProtected()) {
1988    profData->binary++;          throw DataException("Error - attempt to update protected Data object.");
1989  #endif    }
1990    binaryOp(right,plus<double>());    if (isLazy() || right.isLazy())
1991    return (*this);    {
1992        DataLazy* c=new DataLazy(m_data,right.borrowDataPtr(),ADD); // for lazy + is equivalent to +=
1993            m_data=c->getPtr();
1994        return (*this);
1995      }
1996      else
1997      {
1998        binaryOp(right,plus<double>());
1999        return (*this);
2000      }
2001  }  }
2002    
2003  Data&  Data&
2004  Data::operator+=(const boost::python::object& right)  Data::operator+=(const boost::python::object& right)
2005  {  {
2006  #if defined DOPROF    if (isProtected()) {
2007    profData->binary++;          throw DataException("Error - attempt to update protected Data object.");
2008  #endif    }
2009    binaryOp(right,plus<double>());    Data tmp(right,getFunctionSpace(),false);
2010      if (isLazy())
2011      {
2012        DataLazy* c=new DataLazy(m_data,tmp.borrowDataPtr(),ADD);   // for lazy + is equivalent to +=
2013            m_data=c->getPtr();
2014        return (*this);
2015      }
2016      else
2017      {
2018        binaryOp(tmp,plus<double>());
2019        return (*this);
2020      }
2021    }
2022    
2023    // Hmmm, operator= makes a deep copy but the copy constructor does not?
2024    Data&
2025    Data::operator=(const Data& other)
2026    {
2027      copy(other);
2028    return (*this);    return (*this);
2029  }  }
2030    
2031  Data&  Data&
2032  Data::operator-=(const Data& right)  Data::operator-=(const Data& right)
2033  {  {
2034  #if defined DOPROF    if (isProtected()) {
2035    profData->binary++;          throw DataException("Error - attempt to update protected Data object.");
2036  #endif    }
2037    binaryOp(right,minus<double>());    if (isLazy() || right.isLazy())
2038    return (*this);    {
2039        DataLazy* c=new DataLazy(m_data,right.borrowDataPtr(),SUB); // for lazy - is equivalent to -=
2040            m_data=c->getPtr();
2041        return (*this);
2042      }
2043      else
2044      {
2045        binaryOp(right,minus<double>());
2046        return (*this);
2047      }
2048  }  }
2049    
2050  Data&  Data&
2051  Data::operator-=(const boost::python::object& right)  Data::operator-=(const boost::python::object& right)
2052  {  {
2053  #if defined DOPROF    if (isProtected()) {
2054    profData->binary++;          throw DataException("Error - attempt to update protected Data object.");
2055  #endif    }
2056    binaryOp(right,minus<double>());    Data tmp(right,getFunctionSpace(),false);
2057    return (*this);    if (isLazy())
2058      {
2059        DataLazy* c=new DataLazy(m_data,tmp.borrowDataPtr(),SUB);   // for lazy - is equivalent to -=
2060            m_data=c->getPtr();
2061        return (*this);
2062      }
2063      else
2064      {
2065        binaryOp(tmp,minus<double>());
2066        return (*this);
2067      }
2068  }  }
2069    
2070  Data&  Data&
2071  Data::operator*=(const Data& right)  Data::operator*=(const Data& right)
2072  {  {
2073  #if defined DOPROF    if (isProtected()) {
2074    profData->binary++;          throw DataException("Error - attempt to update protected Data object.");
2075  #endif    }
2076    binaryOp(right,multiplies<double>());    if (isLazy() || right.isLazy())
2077    return (*this);    {
2078        DataLazy* c=new DataLazy(m_data,right.borrowDataPtr(),MUL); // for lazy * is equivalent to *=
2079            m_data=c->getPtr();
2080        return (*this);
2081      }
2082      else
2083      {
2084        binaryOp(right,multiplies<double>());
2085        return (*this);
2086      }
2087  }  }
2088    
2089  Data&  Data&
2090  Data::operator*=(const boost::python::object& right)  Data::operator*=(const boost::python::object& right)
2091  {  {  
2092  #if defined DOPROF    if (isProtected()) {
2093    profData->binary++;          throw DataException("Error - attempt to update protected Data object.");
2094  #endif    }
2095    binaryOp(right,multiplies<double>());    Data tmp(right,getFunctionSpace(),false);
2096    return (*this);    if (isLazy())
2097      {
2098        DataLazy* c=new DataLazy(m_data,tmp.borrowDataPtr(),MUL);   // for lazy * is equivalent to *=
2099            m_data=c->getPtr();
2100        return (*this);
2101      }
2102      else
2103      {
2104        binaryOp(tmp,multiplies<double>());
2105        return (*this);
2106      }
2107  }  }
2108    
2109  Data&  Data&
2110  Data::operator/=(const Data& right)  Data::operator/=(const Data& right)
2111  {  {
2112  #if defined DOPROF    if (isProtected()) {
2113    profData->binary++;          throw DataException("Error - attempt to update protected Data object.");
2114  #endif    }
2115    binaryOp(right,divides<double>());    if (isLazy() || right.isLazy())
2116    return (*this);    {
2117        DataLazy* c=new DataLazy(m_data,right.borrowDataPtr(),DIV); // for lazy / is equivalent to /=
2118            m_data=c->getPtr();
2119        return (*this);
2120      }
2121      else
2122      {
2123        binaryOp(right,divides<double>());
2124        return (*this);
2125      }
2126  }  }
2127    
2128  Data&  Data&
2129  Data::operator/=(const boost::python::object& right)  Data::operator/=(const boost::python::object& right)
2130  {  {
2131  #if defined DOPROF    if (isProtected()) {
2132    profData->binary++;          throw DataException("Error - attempt to update protected Data object.");
2133  #endif    }
2134    binaryOp(right,divides<double>());    Data tmp(right,getFunctionSpace(),false);
2135    return (*this);    if (isLazy())
2136      {
2137        DataLazy* c=new DataLazy(m_data,tmp.borrowDataPtr(),DIV);   // for lazy / is equivalent to /=
2138            m_data=c->getPtr();
2139        return (*this);
2140      }
2141      else
2142      {
2143        binaryOp(tmp,divides<double>());
2144        return (*this);
2145      }
2146    }
2147    
2148    Data
2149    Data::rpowO(const boost::python::object& left) const
2150    {
2151      Data left_d(left,*this);
2152      return left_d.powD(*this);
2153  }  }
2154    
2155  Data  Data
2156  Data::powO(const boost::python::object& right) const  Data::powO(const boost::python::object& right) const
2157  {  {
2158  #if defined DOPROF    Data tmp(right,getFunctionSpace(),false);
2159    profData->binary++;    return powD(tmp);
 #endif  
   Data result;  
   result.copy(*this);  
   result.binaryOp(right,(Data::BinaryDFunPtr)::pow);  
   return result;  
2160  }  }
2161    
2162  Data  Data
2163  Data::powD(const Data& right) const  Data::powD(const Data& right) const
2164  {  {
2165  #if defined DOPROF    if (isLazy() || right.isLazy())
2166    profData->binary++;    {
2167  #endif      DataLazy* c=new DataLazy(m_data,right.borrowDataPtr(),POW);
2168    Data result;      return Data(c);
2169    result.copy(*this);    }
2170    result.binaryOp(right,(Data::BinaryDFunPtr)::pow);    return C_TensorBinaryOperation<double (*)(double, double)>(*this, right, ::pow);
   return result;  
2171  }  }
2172    
2173  //  //
# Line 1388  Data::powD(const Data& right) const Line 2175  Data::powD(const Data& right) const
2175  Data  Data
2176  escript::operator+(const Data& left, const Data& right)  escript::operator+(const Data& left, const Data& right)
2177  {  {
2178    Data result;    if (left.isLazy() || right.isLazy())
2179    //    {
2180    // perform a deep copy      DataLazy* c=new DataLazy(left.borrowDataPtr(),right.borrowDataPtr(),ADD);
2181    result.copy(left);      return Data(c);
2182    result+=right;    }
2183    return result;    return C_TensorBinaryOperation(left, right, plus<double>());
2184  }  }
2185    
2186  //  //
# Line 1401  escript::operator+(const Data& left, con Line 2188  escript::operator+(const Data& left, con
2188  Data  Data
2189  escript::operator-(const Data& left, const Data& right)  escript::operator-(const Data& left, const Data& right)
2190  {  {
2191    Data result;    if (left.isLazy() || right.isLazy())
2192    //    {
2193    // perform a deep copy      DataLazy* c=new DataLazy(left.borrowDataPtr(),right.borrowDataPtr(),SUB);
2194    result.copy(left);      return Data(c);
2195    result-=right;    }
2196    return result;    return C_TensorBinaryOperation(left, right, minus<double>());
2197  }  }
2198    
2199  //  //
# Line 1414  escript::operator-(const Data& left, con Line 2201  escript::operator-(const Data& left, con
2201  Data  Data
2202  escript::operator*(const Data& left, const Data& right)  escript::operator*(const Data& left, const Data& right)
2203  {  {
2204    Data result;    if (left.isLazy() || right.isLazy())
2205    //    {
2206    // perform a deep copy      DataLazy* c=new DataLazy(left.borrowDataPtr(),right.borrowDataPtr(),MUL);
2207    result.copy(left);      return Data(c);
2208    result*=right;    }
2209    return result;    return C_TensorBinaryOperation(left, right, multiplies<double>());
2210  }  }
2211    
2212  //  //
# Line 1427  escript::operator*(const Data& left, con Line 2214  escript::operator*(const Data& left, con
2214  Data  Data
2215  escript::operator/(const Data& left, const Data& right)  escript::operator/(const Data& left, const Data& right)
2216  {  {
2217    Data result;    if (left.isLazy() || right.isLazy())
2218    //    {
2219    // perform a deep copy      DataLazy* c=new DataLazy(left.borrowDataPtr(),right.borrowDataPtr(),DIV);
2220    result.copy(left);      return Data(c);
2221    result/=right;    }
2222    return result;    return C_TensorBinaryOperation(left, right, divides<double>());
2223  }  }
2224    
2225  //  //
# Line 1440  escript::operator/(const Data& left, con Line 2227  escript::operator/(const Data& left, con
2227  Data  Data
2228  escript::operator+(const Data& left, const boost::python::object& right)  escript::operator+(const Data& left, const boost::python::object& right)
2229  {  {
2230    //    if (left.isLazy())
2231    // Convert to DataArray format if possible    {
2232    DataArray temp(right);      DataLazy* c=new DataLazy(left.borrowDataPtr(),Data(right,left.getFunctionSpace(),false).borrowDataPtr(),ADD);
2233    Data result;      return Data(c);
2234    //    }
2235    // perform a deep copy    return left+Data(right,left.getFunctionSpace(),false);
   result.copy(left);  
   result+=right;  
   return result;  
2236  }  }
2237    
2238  //  //
# Line 1456  escript::operator+(const Data& left, con Line 2240  escript::operator+(const Data& left, con
2240  Data  Data
2241  escript::operator-(const Data& left, const boost::python::object& right)  escript::operator-(const Data& left, const boost::python::object& right)
2242  {  {
2243    //    if (left.isLazy())
2244    // Convert to DataArray format if possible    {
2245    DataArray temp(right);      DataLazy* c=new DataLazy(left.borrowDataPtr(),Data(right,left.getFunctionSpace(),false).borrowDataPtr(),SUB);
2246    Data result;      return Data(c);
2247    //    }
2248    // perform a deep copy    return left-Data(right,left.getFunctionSpace(),false);
   result.copy(left);  
   result-=right;  
   return result;  
2249  }  }
2250    
2251  //  //
# Line 1472  escript::operator-(const Data& left, con Line 2253  escript::operator-(const Data& left, con
2253  Data  Data
2254  escript::operator*(const Data& left, const boost::python::object& right)  escript::operator*(const Data& left, const boost::python::object& right)
2255  {  {
2256    //    if (left.isLazy())
2257    // Convert to DataArray format if possible    {
2258    DataArray temp(right);      DataLazy* c=new DataLazy(left.borrowDataPtr(),Data(right,left.getFunctionSpace(),false).borrowDataPtr(),MUL);
2259    Data result;      return Data(c);
2260    //    }
2261    // perform a deep copy    return left*Data(right,left.getFunctionSpace(),false);
   result.copy(left);  
   result*=right;  
   return result;  
2262  }  }
2263    
2264  //  //
# Line 1488  escript::operator*(const Data& left, con Line 2266  escript::operator*(const Data& left, con
2266  Data  Data
2267  escript::operator/(const Data& left, const boost::python::object& right)  escript::operator/(const Data& left, const boost::python::object& right)
2268  {  {
2269    //    if (left.isLazy())
2270    // Convert to DataArray format if possible    {
2271    DataArray temp(right);      DataLazy* c=new DataLazy(left.borrowDataPtr(),Data(right,left.getFunctionSpace(),false).borrowDataPtr(),DIV);
2272    Data result;      return Data(c);
2273    //    }
2274    // perform a deep copy    return left/Data(right,left.getFunctionSpace(),false);
   result.copy(left);  
   result/=right;  
   return result;  
2275  }  }
2276    
2277  //  //
# Line 1504  escript::operator/(const Data& left, con Line 2279  escript::operator/(const Data& left, con
2279  Data  Data
2280  escript::operator+(const boost::python::object& left, const Data& right)  escript::operator+(const boost::python::object& left, const Data& right)
2281  {  {
2282    //    if (right.isLazy())
2283    // Construct the result using the given value and the other parameters    {
2284    // from right      DataLazy* c=new DataLazy(Data(left,right.getFunctionSpace(),false).borrowDataPtr(),right.borrowDataPtr(),ADD);
2285    Data result(left,right);      return Data(c);
2286    result+=right;    }
2287    return result;    return Data(left,right.getFunctionSpace(),false)+right;
2288  }  }
2289    
2290  //  //
# Line 1517  escript::operator+(const boost::python:: Line 2292  escript::operator+(const boost::python::
2292  Data  Data
2293  escript::operator-(const boost::python::object& left, const Data& right)  escript::operator-(const boost::python::object& left, const Data& right)
2294  {  {
2295    //    if (right.isLazy())
2296    // Construct the result using the given value and the other parameters    {
2297    // from right      DataLazy* c=new DataLazy(Data(left,right.getFunctionSpace(),false).borrowDataPtr(),right.borrowDataPtr(),SUB);
2298    Data result(left,right);      return Data(c);
2299    result-=right;    }
2300    return result;    return Data(left,right.getFunctionSpace(),false)-right;
2301  }  }
2302    
2303  //  //
# Line 1530  escript::operator-(const boost::python:: Line 2305  escript::operator-(const boost::python::
2305  Data  Data
2306  escript::operator*(const boost::python::object& left, const Data& right)  escript::operator*(const boost::python::object& left, const Data& right)
2307  {  {
2308    //    if (right.isLazy())
2309    // Construct the result using the given value and the other parameters    {
2310    // from right      DataLazy* c=new DataLazy(Data(left,right.getFunctionSpace(),false).borrowDataPtr(),right.borrowDataPtr(),MUL);
2311    Data result(left,right);      return Data(c);
2312    result*=right;    }
2313    return result;    return Data(left,right.getFunctionSpace(),false)*right;
2314  }  }
2315    
2316  //  //
# Line 1543  escript::operator*(const boost::python:: Line 2318  escript::operator*(const boost::python::
2318  Data  Data
2319  escript::operator/(const boost::python::object& left, const Data& right)  escript::operator/(const boost::python::object& left, const Data& right)
2320  {  {
2321    //    if (right.isLazy())
2322    // Construct the result using the given value and the other parameters    {
2323    // from right      DataLazy* c=new DataLazy(Data(left,right.getFunctionSpace(),false).borrowDataPtr(),right.borrowDataPtr(),DIV);
2324    Data result(left,right);      return Data(c);
2325    result/=right;    }
2326    return result;    return Data(left,right.getFunctionSpace(),false)/right;
2327  }  }
2328    
 //  
 //bool escript::operator==(const Data& left, const Data& right)  
 //{  
 //  /*  
 //  NB: this operator does very little at this point, and isn't to  
 //  be relied on. Requires further implementation.  
 //  */  
 //  
 //  bool ret;  
 //  
 //  if (left.isEmpty()) {  
 //    if(!right.isEmpty()) {  
 //      ret = false;  
 //    } else {  
 //      ret = true;  
 //    }  
 //  }  
 //  
 //  if (left.isConstant()) {  
 //    if(!right.isConstant()) {  
 //      ret = false;  
 //    } else {  
 //      ret = true;  
 //    }  
 // }  
 //  
 //  if (left.isTagged()) {  
 //   if(!right.isTagged()) {  
 //      ret = false;  
 //    } else {  
 //      ret = true;  
 //    }  
 //  }  
 //  
 //  if (left.isExpanded()) {  
 //    if(!right.isExpanded()) {  
 //      ret = false;  
 //    } else {  
 //      ret = true;  
 //    }  
 //  }  
 //  
 //  return ret;  
 //}  
2329    
2330    /* TODO */
2331    /* global reduction */
2332  Data  Data
2333  Data::getItem(const boost::python::object& key) const  Data::getItem(const boost::python::object& key) const
2334  {  {
   const DataArrayView& view=getPointDataView();  
2335    
2336    DataArrayView::RegionType slice_region=view.getSliceRegion(key);    DataTypes::RegionType slice_region=DataTypes::getSliceRegion(getDataPointShape(),key);
2337    
2338    if (slice_region.size()!=view.getRank()) {    if (slice_region.size()!=getDataPointRank()) {
2339      throw DataException("Error - slice size does not match Data rank.");      throw DataException("Error - slice size does not match Data rank.");
2340    }    }
2341    
2342    return getSlice(slice_region);    return getSlice(slice_region);
2343  }  }
2344    
2345    /* TODO */
2346    /* global reduction */
2347  Data  Data
2348  Data::getSlice(const DataArrayView::RegionType& region) const  Data::getSlice(const DataTypes::RegionType& region) const
2349  {  {
 #if defined DOPROF  
   profData->slicing++;  
 #endif  
2350    return Data(*this,region);    return Data(*this,region);
2351  }  }
2352    
2353    /* TODO */
2354    /* global reduction */
2355  void  void
2356  Data::setItemO(const boost::python::object& key,  Data::setItemO(const boost::python::object& key,
2357                 const boost::python::object& value)                 const boost::python::object& value)
# Line 1631  void Line 2364  void
2364  Data::setItemD(const boost::python::object& key,  Data::setItemD(const boost::python::object& key,
2365                 const Data& value)                 const Data& value)
2366  {  {
2367    const DataArrayView& view=getPointDataView();  //  const DataArrayView& view=getPointDataView();
2368    
2369    DataArrayView::RegionType slice_region=view.getSliceRegion(key);    DataTypes::RegionType slice_region=DataTypes::getSliceRegion(getDataPointShape(),key);
2370    if (slice_region.size()!=view.getRank()) {    if (slice_region.size()!=getDataPointRank()) {
2371      throw DataException("Error - slice size does not match Data rank.");      throw DataException("Error - slice size does not match Data rank.");
2372    }    }
2373    if (getFunctionSpace()!=value.getFunctionSpace()) {    if (getFunctionSpace()!=value.getFunctionSpace()) {
# Line 1646  Data::setItemD(const boost::python::obje Line 2379  Data::setItemD(const boost::python::obje
2379    
2380  void  void
2381  Data::setSlice(const Data& value,  Data::setSlice(const Data& value,
2382                 const DataArrayView::RegionType& region)                 const DataTypes::RegionType& region)
2383  {  {
2384  #if defined DOPROF    if (isProtected()) {
2385    profData->slicing++;          throw DataException("Error - attempt to update protected Data object.");
2386  #endif    }
2387      FORCERESOLVE;
2388    /*  if (isLazy())
2389      {
2390        throw DataException("Error - setSlice not permitted on lazy data.");
2391      }*/
2392    Data tempValue(value);    Data tempValue(value);
2393    typeMatchLeft(tempValue);    typeMatchLeft(tempValue);
2394    typeMatchRight(tempValue);    typeMatchRight(tempValue);
2395    m_data->setSlice(tempValue.m_data.get(),region);    getReady()->setSlice(tempValue.m_data.get(),region);
2396  }  }
2397    
2398  void  void
2399  Data::typeMatchLeft(Data& right) const  Data::typeMatchLeft(Data& right) const
2400  {  {
2401      if (right.isLazy() && !isLazy())
2402      {
2403        right.resolve();
2404      }
2405    if (isExpanded()){    if (isExpanded()){
2406      right.expand();      right.expand();
2407    } else if (isTagged()) {    } else if (isTagged()) {
# Line 1672  Data::typeMatchLeft(Data& right) const Line 2414  Data::typeMatchLeft(Data& right) const
2414  void  void
2415  Data::typeMatchRight(const Data& right)  Data::typeMatchRight(const Data& right)
2416  {  {
2417      if (isLazy() && !right.isLazy())
2418      {
2419        resolve();
2420      }
2421    if (isTagged()) {    if (isTagged()) {
2422      if (right.isExpanded()) {      if (right.isExpanded()) {
2423        expand();        expand();
# Line 1686  Data::typeMatchRight(const Data& right) Line 2432  Data::typeMatchRight(const Data& right)
2432  }  }
2433    
2434  void  void
2435    Data::setTaggedValueByName(std::string name,
2436                               const boost::python::object& value)
2437    {
2438         if (getFunctionSpace().getDomain()->isValidTagName(name)) {
2439        FORCERESOLVE;
2440            int tagKey=getFunctionSpace().getDomain()->getTag(name);
2441            setTaggedValue(tagKey,value);
2442         }
2443    }
2444    void
2445  Data::setTaggedValue(int tagKey,  Data::setTaggedValue(int tagKey,
2446                       const boost::python::object& value)                       const boost::python::object& value)
2447  {  {
2448      if (isProtected()) {
2449            throw DataException("Error - attempt to update protected Data object.");
2450      }
2451    //    //
2452    // Ensure underlying data object is of type DataTagged    // Ensure underlying data object is of type DataTagged
2453    tag();    FORCERESOLVE;
2454      if (isConstant()) tag();
2455      numeric::array asNumArray(value);
2456    
2457    if (!isTagged()) {    // extract the shape of the numarray
2458      throw DataException("Error - DataTagged conversion failed!!");    DataTypes::ShapeType tempShape;
2459      for (int i=0; i < asNumArray.getrank(); i++) {
2460        tempShape.push_back(extract<int>(asNumArray.getshape()[i]));
2461    }    }
2462    
2463    //    DataVector temp_data2;
2464    // Construct DataArray from boost::python::object input value    temp_data2.copyFromNumArray(asNumArray);
   DataArray valueDataArray(value);  
2465    
2466    //    m_data->setTaggedValue(tagKey,tempShape, temp_data2);
   // Call DataAbstract::setTaggedValue  
   m_data->setTaggedValue(tagKey,valueDataArray.getView());  
2467  }  }
2468    
2469    
2470  void  void
2471  Data::setTaggedValueFromCPP(int tagKey,  Data::setTaggedValueFromCPP(int tagKey,
2472                              const DataArrayView& value)                  const DataTypes::ShapeType& pointshape,
2473                                const DataTypes::ValueType& value,
2474                    int dataOffset)
2475  {  {
2476      if (isProtected()) {
2477            throw DataException("Error - attempt to update protected Data object.");
2478      }
2479    //    //
2480    // Ensure underlying data object is of type DataTagged    // Ensure underlying data object is of type DataTagged
2481    tag();    FORCERESOLVE;
2482      if (isConstant()) tag();
   if (!isTagged()) {  
     throw DataException("Error - DataTagged conversion failed!!");  
   }  
                                                                                                                 
2483    //    //
2484    // Call DataAbstract::setTaggedValue    // Call DataAbstract::setTaggedValue
2485    m_data->setTaggedValue(tagKey,value);    m_data->setTaggedValue(tagKey,pointshape, value, dataOffset);
2486  }  }
2487    
2488  int  int
2489  Data::getTagNumber(int dpno)  Data::getTagNumber(int dpno)
2490  {  {
2491    return m_data->getTagNumber(dpno);    if (isEmpty())
2492      {
2493        throw DataException("Error - operation not permitted on instances of DataEmpty.");
2494      }
2495      return getFunctionSpace().getTagFromDataPointNo(dpno);
2496  }  }
2497    
 void  
 Data::setRefValue(int ref,  
                   const boost::python::numeric::array& value)  
 {  
   //  
   // Construct DataArray from boost::python::object input value  
   DataArray valueDataArray(value);  
2498    
2499    //  ostream& escript::operator<<(ostream& o, const Data& data)
   // Call DataAbstract::setRefValue  
   m_data->setRefValue(ref,valueDataArray);  
 }  
   
 void  
 Data::getRefValue(int ref,  
                   boost::python::numeric::array& value)  
2500  {  {
2501    //    o << data.toString();
2502    // Construct DataArray for boost::python::object return value    return o;
2503    DataArray valueDataArray(value);  }
   
   //  
   // Load DataArray with values from data-points specified by ref  
   m_data->getRefValue(ref,valueDataArray);  
   
   //  
   // Load values from valueDataArray into return numarray  
   
   // extract the shape of the numarray  
   int rank = value.getrank();  
   DataArrayView::ShapeType shape;  
   for (int i=0; i < rank; i++) {  
     shape.push_back(extract<int>(value.getshape()[i]));  
   }  
   
   // and load the numarray with the data from the DataArray  
   DataArrayView valueView = valueDataArray.getView();  
2504    
2505    if (rank==0) {  Data
2506        boost::python::numeric::array temp_numArray(valueView());  escript::C_GeneralTensorProduct(Data& arg_0,
2507        value = temp_numArray;                       Data& arg_1,
2508    }                       int axis_offset,
2509    if (rank==1) {                       int transpose)
2510      for (int i=0; i < shape[0]; i++) {  {
2511        value[i] = valueView(i);    // General tensor product: res(SL x SR) = arg_0(SL x SM) * arg_1(SM x SR)
2512      }    // SM is the product of the last axis_offset entries in arg_0.getShape().
2513    }  
2514    if (rank==2) {    // deal with any lazy data
2515      for (int i=0; i < shape[0]; i++) {    if (arg_0.isLazy()) {arg_0.resolve();}
2516        for (int j=0; j < shape[1]; j++) {    if (arg_1.isLazy()) {arg_1.resolve();}
2517          value[i][j] = valueView(i,j);  
2518        }    // Interpolate if necessary and find an appropriate function space
2519      }    Data arg_0_Z, arg_1_Z;
2520    }    if (arg_0.getFunctionSpace()!=arg_1.getFunctionSpace()) {
2521    if (rank==3) {      if (arg_0.probeInterpolation(arg_1.getFunctionSpace())) {
2522      for (int i=0; i < shape[0]; i++) {        arg_0_Z = arg_0.interpolate(arg_1.getFunctionSpace());
2523        for (int j=0; j < shape[1]; j++) {        arg_1_Z = Data(arg_1);
2524          for (int k=0; k < shape[2]; k++) {      }
2525            value[i][j][k] = valueView(i,j,k);      else if (arg_1.probeInterpolation(arg_0.getFunctionSpace())) {
2526          }        arg_1_Z=arg_1.interpolate(arg_0.getFunctionSpace());
2527        }        arg_0_Z =Data(arg_0);
2528      }      }
2529    }      else {
2530    if (rank==4) {        throw DataException("Error - C_GeneralTensorProduct: arguments have incompatible function spaces.");
     for (int i=0; i < shape[0]; i++) {  
       for (int j=0; j < shape[1]; j++) {  
         for (int k=0; k < shape[2]; k++) {  
           for (int l=0; l < shape[3]; l++) {  
             value[i][j][k][l] = valueView(i,j,k,l);  
           }  
         }  
       }  
2531      }      }
2532      } else {
2533          arg_0_Z = Data(arg_0);
2534          arg_1_Z = Data(arg_1);
2535    }    }
2536      // Get rank and shape of inputs
2537      int rank0 = arg_0_Z.getDataPointRank();
2538      int rank1 = arg_1_Z.getDataPointRank();
2539      const DataTypes::ShapeType& shape0 = arg_0_Z.getDataPointShape();
2540      const DataTypes::ShapeType& shape1 = arg_1_Z.getDataPointShape();
2541    
2542      // Prepare for the loops of the product and verify compatibility of shapes
2543      int start0=0, start1=0;
2544      if (transpose == 0)       {}
2545      else if (transpose == 1)  { start0 = axis_offset; }
2546      else if (transpose == 2)  { start1 = rank1-axis_offset; }
2547      else              { throw DataException("C_GeneralTensorProduct: Error - transpose should be 0, 1 or 2"); }
2548    
2549    
2550      // Adjust the shapes for transpose
2551      DataTypes::ShapeType tmpShape0(rank0);    // pre-sizing the vectors rather
2552      DataTypes::ShapeType tmpShape1(rank1);    // than using push_back
2553      for (int i=0; i<rank0; i++)   { tmpShape0[i]=shape0[(i+start0)%rank0]; }
2554      for (int i=0; i<rank1; i++)   { tmpShape1[i]=shape1[(i+start1)%rank1]; }
2555    
2556    #if 0
2557      // For debugging: show shape after transpose
2558      char tmp[100];
2559      std::string shapeStr;
2560      shapeStr = "(";
2561      for (int i=0; i<rank0; i++)   { sprintf(tmp, "%d,", tmpShape0[i]); shapeStr += tmp; }
2562      shapeStr += ")";
2563      cout << "C_GeneralTensorProduct: Shape of arg0 is " << shapeStr << endl;
2564      shapeStr = "(";
2565      for (int i=0; i<rank1; i++)   { sprintf(tmp, "%d,", tmpShape1[i]); shapeStr += tmp; }
2566      shapeStr += ")";
2567      cout << "C_GeneralTensorProduct: Shape of arg1 is " << shapeStr << endl;
2568    #endif
2569    
2570      // Prepare for the loops of the product
2571      int SL=1, SM=1, SR=1;
2572      for (int i=0; i<rank0-axis_offset; i++)   {
2573        SL *= tmpShape0[i];
2574      }
2575      for (int i=rank0-axis_offset; i<rank0; i++)   {
2576        if (tmpShape0[i] != tmpShape1[i-(rank0-axis_offset)]) {
2577          throw DataException("C_GeneralTensorProduct: Error - incompatible shapes");
2578        }
2579        SM *= tmpShape0[i];
2580      }
2581      for (int i=axis_offset; i<rank1; i++)     {
2582        SR *= tmpShape1[i];
2583      }
2584    
2585      // Define the shape of the output (rank of shape is the sum of the loop ranges below)
2586      DataTypes::ShapeType shape2(rank0+rank1-2*axis_offset);  
2587      {         // block to limit the scope of out_index
2588         int out_index=0;
2589         for (int i=0; i<rank0-axis_offset; i++, ++out_index) { shape2[out_index]=tmpShape0[i]; } // First part of arg_0_Z
2590         for (int i=axis_offset; i<rank1; i++, ++out_index)   { shape2[out_index]=tmpShape1[i]; } // Last part of arg_1_Z
2591      }
2592    
2593      // Declare output Data object
2594      Data res;
2595    
2596      if      (arg_0_Z.isConstant()   && arg_1_Z.isConstant()) {
2597        res = Data(0.0, shape2, arg_1_Z.getFunctionSpace());    // DataConstant output
2598        double *ptr_0 = &(arg_0_Z.getDataAtOffset(0));
2599        double *ptr_1 = &(arg_1_Z.getDataAtOffset(0));
2600        double *ptr_2 = &(res.getDataAtOffset(0));
2601        matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2602      }
2603      else if (arg_0_Z.isConstant()   && arg_1_Z.isTagged()) {
2604    
2605        // Prepare the DataConstant input
2606        DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData());
2607        if (tmp_0==0) { throw DataException("GTP Programming error - casting to DataConstant."); }
2608    
2609        // Borrow DataTagged input from Data object
2610        DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData());
2611        if (tmp_1==0) { throw DataException("GTP_1 Programming error - casting to DataTagged."); }
2612    
2613        // Prepare a DataTagged output 2
2614        res = Data(0.0, shape2, arg_1_Z.getFunctionSpace());    // DataTagged output
2615        res.tag();
2616        DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData());
2617        if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataTagged."); }
2618    
2619        // Prepare offset into DataConstant
2620        int offset_0 = tmp_0->getPointOffset(0,0);
2621        double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0));
2622        // Get the views
2623    //     DataArrayView view_1 = tmp_1->getDefaultValue();
2624    //     DataArrayView view_2 = tmp_2->getDefaultValue();
2625    //     // Get the pointers to the actual data
2626    //     double *ptr_1 = &((view_1.getData())[0]);
2627    //     double *ptr_2 = &((view_2.getData())[0]);
2628    
2629        double *ptr_1 = &(tmp_1->getDefaultValue(0));
2630        double *ptr_2 = &(tmp_2->getDefaultValue(0));
2631    
2632    
2633        // Compute an MVP for the default
2634        matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2635        // Compute an MVP for each tag
2636        const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup();
2637        DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory
2638        for (i=lookup_1.begin();i!=lookup_1.end();i++) {
2639          tmp_2->addTag(i->first);
2640    //       DataArrayView view_1 = tmp_1->getDataPointByTag(i->first);
2641    //       DataArrayView view_2 = tmp_2->getDataPointByTag(i->first);
2642    //       double *ptr_1 = &view_1.getData(0);
2643    //       double *ptr_2 = &view_2.getData(0);
2644    
2645          double *ptr_1 = &(tmp_1->getDataByTag(i->first,0));
2646          double *ptr_2 = &(tmp_2->getDataByTag(i->first,0));
2647        
2648          matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2649        }
2650    
2651      }
2652      else if (arg_0_Z.isConstant()   && arg_1_Z.isExpanded()) {
2653    
2654        res = Data(0.0, shape2, arg_1_Z.getFunctionSpace(),true); // DataExpanded output
2655        DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData());
2656        DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData());
2657        DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData());
2658        if (tmp_0==0) { throw DataException("GTP Programming error - casting to DataConstant."); }
2659        if (tmp_1==0) { throw DataException("GTP Programming error - casting to DataExpanded."); }
2660        if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataExpanded."); }
2661        int sampleNo_1,dataPointNo_1;
2662        int numSamples_1 = arg_1_Z.getNumSamples();
2663        int numDataPointsPerSample_1 = arg_1_Z.getNumDataPointsPerSample();
2664        int offset_0 = tmp_0->getPointOffset(0,0);
2665        #pragma omp parallel for private(sampleNo_1,dataPointNo_1) schedule(static)
2666        for (sampleNo_1 = 0; sampleNo_1 < numSamples_1; sampleNo_1++) {
2667          for (dataPointNo_1 = 0; dataPointNo_1 < numDataPointsPerSample_1; dataPointNo_1++) {
2668            int offset_1 = tmp_1->getPointOffset(sampleNo_1,dataPointNo_1);
2669            int offset_2 = tmp_2->getPointOffset(sampleNo_1,dataPointNo_1);
2670            double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0));
2671            double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1));
2672            double *ptr_2 = &(res.getDataAtOffset(offset_2));
2673            matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2674          }
2675        }
2676    
2677      }
2678      else if (arg_0_Z.isTagged()     && arg_1_Z.isConstant()) {
2679    
2680        // Borrow DataTagged input from Data object
2681        DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData());
2682        if (tmp_0==0) { throw DataException("GTP_0 Programming error - casting to DataTagged."); }
2683    
2684        // Prepare the DataConstant input
2685        DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData());
2686        if (tmp_1==0) { throw DataException("GTP Programming error - casting to DataConstant."); }
2687    
2688        // Prepare a DataTagged output 2
2689        res = Data(0.0, shape2, arg_0_Z.getFunctionSpace());    // DataTagged output
2690        res.tag();
2691        DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData());
2692        if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataTagged."); }
2693    
2694        // Prepare offset into DataConstant
2695        int offset_1 = tmp_1->getPointOffset(0,0);
2696        double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1));
2697        // Get the views
2698    //     DataArrayView view_0 = tmp_0->getDefaultValue();
2699    //     DataArrayView view_2 = tmp_2->getDefaultValue();
2700    //     // Get the pointers to the actual data
2701    //     double *ptr_0 = &((view_0.getData())[0]);
2702    //     double *ptr_2 = &((view_2.getData())[0]);
2703    
2704        double *ptr_0 = &(tmp_0->getDefaultValue(0));
2705        double *ptr_2 = &(tmp_2->getDefaultValue(0));
2706    
2707        // Compute an MVP for the default
2708        matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2709        // Compute an MVP for each tag
2710        const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup();
2711        DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory
2712        for (i=lookup_0.begin();i!=lookup_0.end();i++) {
2713    //      tmp_2->addTaggedValue(i->first,tmp_2->getDefaultValue());
2714    //       DataArrayView view_0 = tmp_0->getDataPointByTag(i->first);
2715    //       DataArrayView view_2 = tmp_2->getDataPointByTag(i->first);
2716    //       double *ptr_0 = &view_0.getData(0);
2717    //       double *ptr_2 = &view_2.getData(0);
2718    
2719          tmp_2->addTag(i->first);
2720          double *ptr_0 = &(tmp_0->getDataByTag(i->first,0));
2721          double *ptr_2 = &(tmp_2->getDataByTag(i->first,0));
2722          matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2723        }
2724    
2725      }
2726      else if (arg_0_Z.isTagged()     && arg_1_Z.isTagged()) {
2727    
2728        // Borrow DataTagged input from Data object
2729        DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData());
2730        if (tmp_0==0) { throw DataException("GTP Programming error - casting to DataTagged."); }
2731    
2732        // Borrow DataTagged input from Data object
2733        DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData());
2734        if (tmp_1==0) { throw DataException("GTP Programming error - casting to DataTagged."); }
2735    
2736        // Prepare a DataTagged output 2
2737        res = Data(0.0, shape2, arg_1_Z.getFunctionSpace());
2738        res.tag();  // DataTagged output
2739        DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData());
2740        if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataTagged."); }
2741    
2742    //     // Get the views
2743    //     DataArrayView view_0 = tmp_0->getDefaultValue();
2744    //     DataArrayView view_1 = tmp_1->getDefaultValue();
2745    //     DataArrayView view_2 = tmp_2->getDefaultValue();
2746    //     // Get the pointers to the actual data
2747    //     double *ptr_0 = &((view_0.getData())[0]);
2748    //     double *ptr_1 = &((view_1.getData())[0]);
2749    //     double *ptr_2 = &((view_2.getData())[0]);
2750    
2751        double *ptr_0 = &(tmp_0->getDefaultValue(0));
2752        double *ptr_1 = &(tmp_1->getDefaultValue(0));
2753        double *ptr_2 = &(tmp_2->getDefaultValue(0));
2754    
2755    
2756        // Compute an MVP for the default
2757        matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2758        // Merge the tags
2759        DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory
2760        const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup();
2761        const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup();
2762        for (i=lookup_0.begin();i!=lookup_0.end();i++) {
2763          tmp_2->addTag(i->first); // use tmp_2 to get correct shape
2764        }
2765        for (i=lookup_1.begin();i!=lookup_1.end();i++) {
2766          tmp_2->addTag(i->first);
2767        }
2768        // Compute an MVP for each tag
2769        const DataTagged::DataMapType& lookup_2=tmp_2->getTagLookup();
2770        for (i=lookup_2.begin();i!=lookup_2.end();i++) {
2771    //       DataArrayView view_0 = tmp_0->getDataPointByTag(i->first);
2772    //       DataArrayView view_1 = tmp_1->getDataPointByTag(i->first);
2773    //       DataArrayView view_2 = tmp_2->getDataPointByTag(i->first);
2774    //       double *ptr_0 = &view_0.getData(0);
2775    //       double *ptr_1 = &view_1.getData(0);
2776    //       double *ptr_2 = &view_2.getData(0);
2777    
2778          double *ptr_0 = &(tmp_0->getDataByTag(i->first,0));
2779          double *ptr_1 = &(tmp_1->getDataByTag(i->first,0));
2780          double *ptr_2 = &(tmp_2->getDataByTag(i->first,0));
2781    
2782          matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2783        }
2784    
2785      }
2786      else if (arg_0_Z.isTagged()     && arg_1_Z.isExpanded()) {
2787    
2788        // After finding a common function space above the two inputs have the same numSamples and num DPPS
2789        res = Data(0.0, shape2, arg_1_Z.getFunctionSpace(),true); // DataExpanded output
2790        DataTagged*   tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData());
2791        DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData());
2792        DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData());
2793        if (tmp_0==0) { throw DataException("GTP Programming error - casting to DataTagged."); }
2794        if (tmp_1==0) { throw DataException("GTP Programming error - casting to DataExpanded."); }
2795        if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataExpanded."); }
2796        int sampleNo_0,dataPointNo_0;
2797        int numSamples_0 = arg_0_Z.getNumSamples();
2798        int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample();
2799        #pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static)
2800        for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) {
2801          int offset_0 = tmp_0->getPointOffset(sampleNo_0,0); // They're all the same, so just use #0
2802          double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0));
2803          for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) {
2804            int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0);
2805            int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0);
2806            double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1));
2807            double *ptr_2 = &(res.getDataAtOffset(offset_2));
2808            matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2809          }
2810        }
2811    
2812      }
2813      else if (arg_0_Z.isExpanded()   && arg_1_Z.isConstant()) {
2814    
2815        res = Data(0.0, shape2, arg_1_Z.getFunctionSpace(),true); // DataExpanded output
2816        DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData());
2817        DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData());
2818        DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData());
2819        if (tmp_0==0) { throw DataException("GTP Programming error - casting to DataExpanded."); }
2820        if (tmp_1==0) { throw DataException("GTP Programming error - casting to DataConstant."); }
2821        if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataExpanded."); }
2822        int sampleNo_0,dataPointNo_0;
2823        int numSamples_0 = arg_0_Z.getNumSamples();
2824        int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample();
2825        int offset_1 = tmp_1->getPointOffset(0,0);
2826        #pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static)
2827        for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) {
2828          for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) {
2829            int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0);
2830            int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0);
2831            double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0));
2832            double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1));
2833            double *ptr_2 = &(res.getDataAtOffset(offset_2));
2834            matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2835          }
2836        }
2837    
2838    
2839      }
2840      else if (arg_0_Z.isExpanded()   && arg_1_Z.isTagged()) {
2841    
2842        // After finding a common function space above the two inputs have the same numSamples and num DPPS
2843        res = Data(0.0, shape2, arg_1_Z.getFunctionSpace(),true); // DataExpanded output
2844        DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData());
2845        DataTagged*   tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData());
2846        DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData());
2847        if (tmp_0==0) { throw DataException("GTP Programming error - casting to DataExpanded."); }
2848        if (tmp_1==0) { throw DataException("GTP Programming error - casting to DataTagged."); }
2849        if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataExpanded."); }
2850        int sampleNo_0,dataPointNo_0;
2851        int numSamples_0 = arg_0_Z.getNumSamples();
2852        int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample();
2853        #pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static)
2854        for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) {
2855          int offset_1 = tmp_1->getPointOffset(sampleNo_0,0);
2856          double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1));
2857          for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) {
2858            int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0);
2859            int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0);
2860            double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0));
2861            double *ptr_2 = &(res.getDataAtOffset(offset_2));
2862            matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2863          }
2864        }
2865    
2866      }
2867      else if (arg_0_Z.isExpanded()   && arg_1_Z.isExpanded()) {
2868    
2869        // After finding a common function space above the two inputs have the same numSamples and num DPPS
2870        res = Data(0.0, shape2, arg_1_Z.getFunctionSpace(),true); // DataExpanded output
2871        DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData());
2872        DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData());
2873        DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData());
2874        if (tmp_0==0) { throw DataException("GTP Programming error - casting to DataExpanded."); }
2875        if (tmp_1==0) { throw DataException("GTP Programming error - casting to DataExpanded."); }
2876        if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataExpanded."); }
2877        int sampleNo_0,dataPointNo_0;
2878        int numSamples_0 = arg_0_Z.getNumSamples();
2879        int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample();
2880        #pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static)
2881        for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) {
2882          for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) {
2883            int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0);
2884            int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0);
2885            int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0);
2886            double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0));
2887            double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1));
2888            double *ptr_2 = &(res.getDataAtOffset(offset_2));
2889            matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2890          }
2891        }
2892    
2893      }
2894      else {
2895        throw DataException("Error - C_GeneralTensorProduct: unknown combination of inputs");
2896      }
2897    
2898      return res;
2899    }
2900    
2901    DataAbstract*
2902    Data::borrowData() const
2903    {
2904      return m_data.get();
2905    }
2906    
2907    // Not all that happy about returning a non-const from a const
2908    DataAbstract_ptr
2909    Data::borrowDataPtr() const
2910    {
2911      return m_data;
2912    }
2913    
2914    // Not all that happy about returning a non-const from a const
2915    DataReady_ptr
2916    Data::borrowReadyPtr() const
2917    {
2918       DataReady_ptr dr=dynamic_pointer_cast<DataReady>(m_data);
2919       EsysAssert((dr!=0), "Error - casting to DataReady.");
2920       return dr;
2921    }
2922    
2923    std::string
2924    Data::toString() const
2925    {
2926        if (!m_data->isEmpty() &&
2927        getNumDataPoints()*getDataPointSize()>escriptParams.getInt("TOO_MANY_LINES"))
2928        {
2929        stringstream temp;
2930        temp << "Summary: inf="<< inf_const() << " sup=" << sup_const() << " data points=" << getNumDataPoints();
2931        return  temp.str();
2932        }
2933        return m_data->toString();
2934    }
2935    
2936    
2937    
2938    DataTypes::ValueType::const_reference
2939    Data::getDataAtOffset(DataTypes::ValueType::size_type i) const
2940    {
2941        if (isLazy())
2942        {
2943        throw DataException("Programmer error - getDataAtOffset not permitted on lazy data (object is const which prevents resolving).");
2944        }
2945        return getReady()->getDataAtOffset(i);
2946    }
2947    
2948    
2949    DataTypes::ValueType::reference
2950    Data::getDataAtOffset(DataTypes::ValueType::size_type i)
2951    {
2952    //     if (isLazy())
2953    //     {
2954    //  throw DataException("getDataAtOffset not permitted on lazy data.");
2955    //     }
2956        FORCERESOLVE;
2957        return getReady()->getDataAtOffset(i);
2958  }  }
2959    
2960  void  DataTypes::ValueType::const_reference
2961  Data::archiveData(const std::string fileName)  Data::getDataPoint(int sampleNo, int dataPointNo) const
2962  {  {
2963    cout << "Archiving Data object to: " << fileName << endl;    if (!isReady())
2964      {
2965    //      throw DataException("Programmer error - getDataPoint() not permitted on Lazy Data (object is const which prevents resolving).");
   // Determine type of this Data object  
   int dataType = -1;  
   
   if (isEmpty()) {  
     dataType = 0;  
     cout << "\tdataType: DataEmpty" << endl;  
   }  
   if (isConstant()) {  
     dataType = 1;  
     cout << "\tdataType: DataConstant" << endl;  
   }  
   if (isTagged()) {  
     dataType = 2;  
     cout << "\tdataType: DataTagged" << endl;  
   }  
   if (isExpanded()) {  
     dataType = 3;  
     cout << "\tdataType: DataExpanded" << endl;  
   }  
   
   if (dataType == -1) {  
     throw DataException("archiveData Error: undefined dataType");  
   }  
   
   //  
   // Collect data items common to all Data types  
   int noSamples = getNumSamples();  
   int noDPPSample = getNumDataPointsPerSample();  
   int functionSpaceType = getFunctionSpace().getTypeCode();  
   int dataPointRank = getDataPointRank();  
   int dataPointSize = getDataPointSize();  
   int dataLength = getLength();  
   DataArrayView::ShapeType dataPointShape = getDataPointShape();  
   int referenceNumbers[noSamples];  
   for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {  
     referenceNumbers[sampleNo] = getFunctionSpace().getReferenceNoFromSampleNo(sampleNo);  
   }  
   int tagNumbers[noSamples];  
   if (isTagged()) {  
     for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {  
       tagNumbers[sampleNo] = getFunctionSpace().getTagFromSampleNo(sampleNo);  
     }  
2966    }    }
2967      else
2968    cout << "\tnoSamples: " << noSamples << " noDPPSample: " << noDPPSample << endl;    {
2969    cout << "\tfunctionSpaceType: " << functionSpaceType << endl;      const DataReady* dr=getReady();
2970    cout << "\trank: " << dataPointRank << " size: " << dataPointSize << " length: " << dataLength << endl;      return dr->getDataAtOffset(dr->getPointOffset(sampleNo, dataPointNo));
   
   //  
   // Flatten Shape to an array of integers suitable for writing to file  
   int flatShape[4] = {0,0,0,0};  
   cout << "\tshape: < ";  
   for (int dim=0; dim<dataPointRank; dim++) {  
     flatShape[dim] = dataPointShape[dim];  
     cout << dataPointShape[dim] << " ";  
2971    }    }
2972    cout << ">" << endl;  }
   
   //  
   // Open archive file  
   ofstream archiveFile;  
   archiveFile.open(fileName.data(), ios::out);  
2973    
   if (!archiveFile.good()) {  
     throw DataException("archiveData Error: problem opening archive file");  
   }  
2974    
2975    //  DataTypes::ValueType::reference
2976    // Write common data items to archive file  Data::getDataPoint(int sampleNo, int dataPointNo)
2977    archiveFile.write(reinterpret_cast<char *>(&dataType),sizeof(int));  {
2978    archiveFile.write(reinterpret_cast<char *>(&noSamples),sizeof(int));    FORCERESOLVE;
2979    archiveFile.write(reinterpret_cast<char *>(&noDPPSample),sizeof(int));    if (!isReady())
2980    archiveFile.write(reinterpret_cast<char *>(&functionSpaceType),sizeof(int));    {
2981    archiveFile.write(reinterpret_cast<char *>(&dataPointRank),sizeof(int));      throw DataException("Programmer error - getDataPoint() not permitted on Lazy Data.");
   archiveFile.write(reinterpret_cast<char *>(&dataPointSize),sizeof(int));  
   archiveFile.write(reinterpret_cast<char *>(&dataLength),sizeof(int));  
   for (int dim = 0; dim < 4; dim++) {  
     archiveFile.write(reinterpret_cast<char *>(&flatShape[dim]),sizeof(int));  
   }  
   for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {  
     archiveFile.write(reinterpret_cast<char *>(&referenceNumbers[sampleNo]),sizeof(int));  
   }  
   if (isTagged()) {  
     for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {  
       archiveFile.write(reinterpret_cast<char *>(&tagNumbers[sampleNo]),sizeof(int));  
     }  
2982    }    }
2983      else
2984    if (!archiveFile.good()) {    {
2985      throw DataException("archiveData Error: problem writing to archive file");      DataReady* dr=getReady();
2986        return dr->getDataAtOffset(dr->getPointOffset(sampleNo, dataPointNo));
2987    }    }
2988    }
2989    
   //  
   // Archive underlying data values for each Data type  
   int noValues;  
   switch (dataType) {  
     case 0:  
       // DataEmpty  
       noValues = 0;  
       archiveFile.write(reinterpret_cast<char *>(&noValues),sizeof(int));  
       cout << "\tnoValues: " << noValues << endl;  
       break;  
     case 1:  
       // DataConstant  
       noValues = m_data->getLength();  
       archiveFile.write(reinterpret_cast<char *>(&noValues),sizeof(int));  
       cout << "\tnoValues: " << noValues << endl;  
       if (m_data->archiveData(archiveFile,noValues)) {  
         throw DataException("archiveData Error: problem writing data to archive file");  
       }  
       break;  
     case 2:  
       // DataTagged  
       noValues = m_data->getLength();  
       archiveFile.write(reinterpret_cast<char *>(&noValues),sizeof(int));  
       cout << "\tnoValues: " << noValues << endl;  
       if (m_data->archiveData(archiveFile,noValues)) {  
         throw DataException("archiveData Error: problem writing data to archive file");  
       }  
       break;  
     case 3:  
       // DataExpanded  
       noValues = m_data->getLength();  
       archiveFile.write(reinterpret_cast<char *>(&noValues),sizeof(int));  
       cout << "\tnoValues: " << noValues << endl;  
       if (m_data->archiveData(archiveFile,noValues)) {  
         throw DataException("archiveData Error: problem writing data to archive file");  
       }  
       break;  
   }  
2990    
2991    if (!archiveFile.good()) {  /* Member functions specific to the MPI implementation */
     throw DataException("archiveData Error: problem writing data to archive file");  
   }  
2992    
2993    //  void
2994    // Close archive file  Data::print()
2995    archiveFile.close();  {
2996      int i,j;
2997    
2998    if (!archiveFile.good()) {    printf( "Data is %dX%d\n", getNumSamples(), getNumDataPointsPerSample() );
2999      throw DataException("archiveData Error: problem closing archive file");    for( i=0; i<getNumSamples(); i++ )
3000      {
3001        printf( "[%6d]", i );
3002        for( j=0; j<getNumDataPointsPerSample(); j++ )
3003          printf( "\t%10.7g", (getSampleData(i))[j] );
3004        printf( "\n" );
3005    }    }
   
3006  }  }
   
3007  void  void
3008  Data::extractData(const std::string fileName,  Data::dump(const std::string fileName) const
                   const FunctionSpace& fspace)  
3009  {  {
3010    //    try
3011    // Can only extract Data to an object which is initially DataEmpty    {
3012    if (!isEmpty()) {      if (isLazy())
3013      throw DataException("extractData Error: can only extract to DataEmpty object");      {
3014    }        Data temp(*this); // this is to get a non-const object which we can resolve
3015          temp.resolve();
3016    cout << "Extracting Data object from: " << fileName << endl;        temp.dump(fileName);
3017        }
3018    int dataType;      else
3019    int noSamples;      {
3020    int noDPPSample;            return m_data->dump(fileName);
3021    int functionSpaceType;      }
   int dataPointRank;  
   int dataPointSize;  
   int dataLength;  
   DataArrayView::ShapeType dataPointShape;  
   int flatShape[4];  
   
   //  
   // Open the archive file  
   ifstream archiveFile;  
   archiveFile.open(fileName.data(), ios::in);  
   
   if (!archiveFile.good()) {  
     throw DataException("extractData Error: problem opening archive file");  
   }  
   
   //  
   // Read common data items from archive file  
   archiveFile.read(reinterpret_cast<char *>(&dataType),sizeof(int));  
   archiveFile.read(reinterpret_cast<char *>(&noSamples),sizeof(int));  
   archiveFile.read(reinterpret_cast<char *>(&noDPPSample),sizeof(int));  
   archiveFile.read(reinterpret_cast<char *>(&functionSpaceType),sizeof(int));  
   archiveFile.read(reinterpret_cast<char *>(&dataPointRank),sizeof(int));  
   archiveFile.read(reinterpret_cast<char *>(&dataPointSize),sizeof(int));  
   archiveFile.read(reinterpret_cast<char *>(&dataLength),sizeof(int));  
   for (int dim = 0; dim < 4; dim++) {  
     archiveFile.read(reinterpret_cast<char *>(&flatShape[dim]),sizeof(int));  
     if (flatShape[dim]>0) {  
       dataPointShape.push_back(flatShape[dim]);  
     }  
   }  
   int referenceNumbers[noSamples];  
   for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {  
     archiveFile.read(reinterpret_cast<char *>(&referenceNumbers[sampleNo]),sizeof(int));  
   }  
   int tagNumbers[noSamples];  
   if (dataType==2) {  
     for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {  
       archiveFile.read(reinterpret_cast<char *>(&tagNumbers[sampleNo]),sizeof(int));  
     }  
   }  
   
   if (!archiveFile.good()) {  
     throw DataException("extractData Error: problem reading from archive file");  
   }  
   
   //  
   // Verify the values just read from the archive file  
   switch (dataType) {  
     case 0:  
       cout << "\tdataType: DataEmpty" << endl;  
       break;  
     case 1:  
       cout << "\tdataType: DataConstant" << endl;  
       break;  
     case 2:  
       cout << "\tdataType: DataTagged" << endl;  
       break;  
     case 3:  
       cout << "\tdataType: DataExpanded" << endl;  
       break;  
     default:  
       throw DataException("extractData Error: undefined dataType read from archive file");  
       break;  
   }  
   
   cout << "\tnoSamples: " << noSamples << " noDPPSample: " << noDPPSample << endl;  
   cout << "\tfunctionSpaceType: " << functionSpaceType << endl;  
   cout << "\trank: " << dataPointRank << " size: " << dataPointSize << " length: " << dataLength << endl;  
   cout << "\tshape: < ";  
   for (int dim = 0; dim < dataPointRank; dim++) {  
     cout << dataPointShape[dim] << " ";  
   }  
   cout << ">" << endl;  
   
   //  
   // Verify that supplied FunctionSpace object is compatible with this Data object.  
   if ( (fspace.getTypeCode()!=functionSpaceType) ||  
        (fspace.getNumSamples()!=noSamples) ||  
        (fspace.getNumDPPSample()!=noDPPSample)  
      ) {  
     throw DataException("extractData Error: incompatible FunctionSpace");  
   }  
   for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {  
     if (referenceNumbers[sampleNo] != fspace.getReferenceNoFromSampleNo(sampleNo)) {  
       throw DataException("extractData Error: incompatible FunctionSpace");  
     }  
   }  
   if (dataType==2) {  
     for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {  
       if (tagNumbers[sampleNo] != fspace.getTagFromSampleNo(sampleNo)) {  
         throw DataException("extractData Error: incompatible FunctionSpace");  
       }  
     }  
   }  
   
   //  
   // Construct a DataVector to hold underlying data values  
   DataVector dataVec(dataLength);  
   
   //  
   // Load this DataVector with the appropriate values  
   int noValues;