/[escript]/trunk/escript/src/Data.cpp
ViewVC logotype

Diff of /trunk/escript/src/Data.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 2049 by phornby, Mon Nov 17 08:54:33 2008 UTC revision 2635 by jfenwick, Thu Aug 27 04:54:41 2009 UTC
# Line 1  Line 1 
1    
2  /*******************************************************  /*******************************************************
3  *  *
4  * Copyright (c) 2003-2008 by University of Queensland  * Copyright (c) 2003-2009 by University of Queensland
5  * Earth Systems Science Computational Center (ESSCC)  * Earth Systems Science Computational Center (ESSCC)
6  * http://www.uq.edu.au/esscc  * http://www.uq.edu.au/esscc
7  *  *
# Line 26  Line 26 
26  #include "EscriptParams.h"  #include "EscriptParams.h"
27    
28  extern "C" {  extern "C" {
29  #include "escript/blocktimer.h"  #include "esysUtils/blocktimer.h"
30  }  }
31    
32  #include <fstream>  #include <fstream>
33  #include <algorithm>  #include <algorithm>
34  #include <vector>  #include <vector>
35  #include <functional>  #include <functional>
36    #include <sstream>  // so we can throw messages about ranks
37    
38  #include <boost/python/dict.hpp>  #include <boost/python/dict.hpp>
39  #include <boost/python/extract.hpp>  #include <boost/python/extract.hpp>
40  #include <boost/python/long.hpp>  #include <boost/python/long.hpp>
41    #include "WrappedArray.h"
42    
43  using namespace std;  using namespace std;
44  using namespace boost::python;  using namespace boost::python;
# Line 45  using namespace escript; Line 47  using namespace escript;
47    
48  // ensure the current object is not a DataLazy  // ensure the current object is not a DataLazy
49  // The idea was that we could add an optional warning whenever a resolve is forced  // The idea was that we could add an optional warning whenever a resolve is forced
50  #define FORCERESOLVE if (isLazy()) {resolve();}  // #define forceResolve() if (isLazy()) {#resolve();}
51    
52    #define AUTOLAZYON escriptParams.getAUTOLAZY()
53    #define MAKELAZYOP(X)   if (isLazy() || (AUTOLAZYON && m_data->isExpanded())) \
54      {\
55        DataLazy* c=new DataLazy(borrowDataPtr(),X);\
56        return Data(c);\
57      }
58    #define MAKELAZYOPOFF(X,Y) if (isLazy() || (AUTOLAZYON && m_data->isExpanded())) \
59      {\
60        DataLazy* c=new DataLazy(borrowDataPtr(),X,Y);\
61        return Data(c);\
62      }
63    
64    #define MAKELAZYOP2(X,Y,Z) if (isLazy() || (AUTOLAZYON && m_data->isExpanded())) \
65      {\
66        DataLazy* c=new DataLazy(borrowDataPtr(),X,Y,Z);\
67        return Data(c);\
68      }
69    
70    #define MAKELAZYBINSELF(R,X)   if (isLazy() || R.isLazy() || (AUTOLAZYON && (isExpanded() || R.isExpanded()))) \
71      {\
72        DataLazy* c=new DataLazy(m_data,R.borrowDataPtr(),X);\
73    /*         m_data=c->getPtr();*/     set_m_data(c->getPtr());\
74        return (*this);\
75      }
76    
77    // like the above but returns a new data rather than *this
78    #define MAKELAZYBIN(R,X)   if (isLazy() || R.isLazy() || (AUTOLAZYON && (isExpanded() || R.isExpanded()))) \
79      {\
80        DataLazy* c=new DataLazy(m_data,R.borrowDataPtr(),X);\
81        return Data(c);\
82      }
83    
84    #define MAKELAZYBIN2(L,R,X)   if (L.isLazy() || R.isLazy() || (AUTOLAZYON && (L.isExpanded() || R.isExpanded()))) \
85      {\
86        DataLazy* c=new DataLazy(L.borrowDataPtr(),R.borrowDataPtr(),X);\
87        return Data(c);\
88      }
89    
90    // Do not use the following unless you want to make copies on assignment rather than
91    // share data.  CopyOnWrite should make this unnescessary.
92    // #define ASSIGNMENT_MEANS_DEEPCOPY
93    
94    namespace
95    {
96    
97    template <class ARR>
98    inline
99    boost::python::tuple
100    pointToTuple1(const DataTypes::ShapeType& shape, ARR v, unsigned long offset)
101    {
102        using namespace boost::python;
103        using boost::python::tuple;
104        using boost::python::list;
105    
106        list l;
107        unsigned int dim=shape[0];
108        for (size_t i=0;i<dim;++i)
109        {
110        l.append(v[i+offset]);
111        }
112        return tuple(l);
113    }
114    
115    template <class ARR>
116    inline
117    boost::python::tuple
118    pointToTuple2(const DataTypes::ShapeType& shape, ARR v, unsigned long offset)
119    {
120        using namespace boost::python;
121        using boost::python::tuple;
122        using boost::python::list;
123    
124        unsigned int shape0=shape[0];
125        unsigned int shape1=shape[1];
126        list lj;
127        for (size_t j=0;j<shape0;++j)
128        {
129            list li;
130        for (size_t i=0;i<shape1;++i)
131        {
132            li.append(v[offset+DataTypes::getRelIndex(shape,j,i)]);
133        }
134        lj.append(tuple(li));
135        }
136        return tuple(lj);
137    }
138    
139    template <class ARR>
140    inline
141    boost::python::tuple
142    pointToTuple3(const DataTypes::ShapeType& shape, ARR v, unsigned long offset)
143    {
144        using namespace boost::python;
145        using boost::python::tuple;
146        using boost::python::list;
147    
148        unsigned int shape0=shape[0];
149        unsigned int shape1=shape[1];
150        unsigned int shape2=shape[2];
151    
152        list lk;
153        for (size_t k=0;k<shape0;++k)
154        {
155            list lj;
156        for (size_t j=0;j<shape1;++j)
157        {
158            list li;
159            for (size_t i=0;i<shape2;++i)
160            {
161                    li.append(v[offset+DataTypes::getRelIndex(shape,k,j,i)]);
162                }
163            lj.append(tuple(li));
164            }
165            lk.append(tuple(lj));
166        }
167        return tuple(lk);
168    }
169    
170    template <class ARR>
171    inline
172    boost::python::tuple
173    pointToTuple4(const DataTypes::ShapeType& shape, ARR v, unsigned long offset)
174    {
175        using namespace boost::python;
176        using boost::python::tuple;
177        using boost::python::list;
178    
179        unsigned int shape0=shape[0];
180        unsigned int shape1=shape[1];
181        unsigned int shape2=shape[2];
182        unsigned int shape3=shape[3];
183    
184        list ll;
185        for (size_t l=0;l<shape0;++l)
186        {
187            list lk;
188        for (size_t k=0;k<shape1;++k)
189        {
190                list lj;
191                for (size_t j=0;j<shape2;++j)
192                {
193                    list li;
194                    for (size_t i=0;i<shape3;++i)
195                    {
196                        li.append(v[offset+DataTypes::getRelIndex(shape,l,k,j,i)]);
197                    }
198                    lj.append(tuple(li));
199                }
200                lk.append(tuple(lj));
201        }
202            ll.append(tuple(lk));
203        }
204        return tuple(ll);
205    }
206    
207    
208    // This should be safer once the DataC RO changes have been brought in
209    template <class ARR>
210    boost::python::tuple
211    pointToTuple( const DataTypes::ShapeType& shape,ARR v)
212    {
213       using namespace boost::python;
214       using boost::python::list;
215       int rank=shape.size();
216       if (rank==0)
217       {
218        return make_tuple(v[0]);
219       }
220       else if (rank==1)
221       {
222            return pointToTuple1(shape,v,0);
223       }
224       else if (rank==2)
225       {
226        return pointToTuple2(shape,v,0);
227       }
228       else if (rank==3)
229       {
230        return pointToTuple3(shape,v,0);
231       }
232       else if (rank==4)
233       {
234        return pointToTuple4(shape,v,0);
235       }
236       else
237         throw DataException("Unknown rank in pointToTuple.");
238    }
239    
240    }  // anonymous namespace
241    
242  Data::Data()  Data::Data()
243        : m_shared(false), m_lazy(false)
244  {  {
245    //    //
246    // Default data is type DataEmpty    // Default data is type DataEmpty
247    DataAbstract* temp=new DataEmpty();    DataAbstract* temp=new DataEmpty();
248    m_data=temp->getPtr();  //   m_data=temp->getPtr();
249      set_m_data(temp->getPtr());
250    m_protected=false;    m_protected=false;
251  }  }
252    
# Line 60  Data::Data(double value, Line 254  Data::Data(double value,
254             const tuple& shape,             const tuple& shape,
255             const FunctionSpace& what,             const FunctionSpace& what,
256             bool expanded)             bool expanded)
257        : m_shared(false), m_lazy(false)
258  {  {
259    DataTypes::ShapeType dataPointShape;    DataTypes::ShapeType dataPointShape;
260    for (int i = 0; i < shape.attr("__len__")(); ++i) {    for (int i = 0; i < shape.attr("__len__")(); ++i) {
# Line 76  Data::Data(double value, Line 271  Data::Data(double value,
271         const DataTypes::ShapeType& dataPointShape,         const DataTypes::ShapeType& dataPointShape,
272         const FunctionSpace& what,         const FunctionSpace& what,
273             bool expanded)             bool expanded)
274        : m_shared(false), m_lazy(false)
275  {  {
276    int len = DataTypes::noValues(dataPointShape);    int len = DataTypes::noValues(dataPointShape);
   
277    DataVector temp_data(len,value,len);    DataVector temp_data(len,value,len);
 //   DataArrayView temp_dataView(temp_data, dataPointShape);  
   
 //   initialise(temp_dataView, what, expanded);  
278    initialise(temp_data, dataPointShape, what, expanded);    initialise(temp_data, dataPointShape, what, expanded);
   
279    m_protected=false;    m_protected=false;
280  }  }
281    
282  Data::Data(const Data& inData)  Data::Data(const Data& inData)
283        : m_shared(false), m_lazy(false)
284  {  {
285    m_data=inData.m_data;    set_m_data(inData.m_data);
286    m_protected=inData.isProtected();    m_protected=inData.isProtected();
287  }  }
288    
289    
290  Data::Data(const Data& inData,  Data::Data(const Data& inData,
291             const DataTypes::RegionType& region)             const DataTypes::RegionType& region)
292        : m_shared(false), m_lazy(false)
293  {  {
294    DataAbstract_ptr dat=inData.m_data;    DataAbstract_ptr dat=inData.m_data;
295    if (inData.isLazy())    if (inData.isLazy())
# Line 110  Data::Data(const Data& inData, Line 303  Data::Data(const Data& inData,
303    //    //
304    // Create Data which is a slice of another Data    // Create Data which is a slice of another Data
305    DataAbstract* tmp = dat->getSlice(region);    DataAbstract* tmp = dat->getSlice(region);
306    m_data=DataAbstract_ptr(tmp);    set_m_data(DataAbstract_ptr(tmp));
307    m_protected=false;    m_protected=false;
308    
309  }  }
310    
311  Data::Data(const Data& inData,  Data::Data(const Data& inData,
312             const FunctionSpace& functionspace)             const FunctionSpace& functionspace)
313        : m_shared(false), m_lazy(false)
314  {  {
315    if (inData.isEmpty())    if (inData.isEmpty())
316    {    {
317      throw DataException("Error - will not interpolate for instances of DataEmpty.");      throw DataException("Error - will not interpolate for instances of DataEmpty.");
318    }    }
319    if (inData.getFunctionSpace()==functionspace) {    if (inData.getFunctionSpace()==functionspace) {
320      m_data=inData.m_data;      set_m_data(inData.m_data);
321    }    }
322    else    else
323    {    {
# Line 130  Data::Data(const Data& inData, Line 325  Data::Data(const Data& inData,
325      if (inData.isConstant()) {  // for a constant function, we just need to use the new function space      if (inData.isConstant()) {  // for a constant function, we just need to use the new function space
326        if (!inData.probeInterpolation(functionspace))        if (!inData.probeInterpolation(functionspace))
327        {           // Even though this is constant, we still need to check whether interpolation is allowed        {           // Even though this is constant, we still need to check whether interpolation is allowed
328      throw FunctionSpaceException("Call to probeInterpolation returned false for DataConstant.");      throw FunctionSpaceException("Cannot interpolate across to the domain of the specified FunctionSpace. (DataConstant)");
329        }        }
330        // if the data is not lazy, this will just be a cast to DataReady        // if the data is not lazy, this will just be a cast to DataReady
331        DataReady_ptr dr=inData.m_data->resolve();        DataReady_ptr dr=inData.m_data->resolve();
332        DataConstant* dc=new DataConstant(functionspace,inData.m_data->getShape(),dr->getVector());          DataConstant* dc=new DataConstant(functionspace,inData.m_data->getShape(),dr->getVectorRO());
333        m_data=DataAbstract_ptr(dc);  //       m_data=DataAbstract_ptr(dc);
334          set_m_data(DataAbstract_ptr(dc));
335      } else {      } else {
336        Data tmp(0,inData.getDataPointShape(),functionspace,true);        Data tmp(0,inData.getDataPointShape(),functionspace,true);
337        // Note: Must use a reference or pointer to a derived object        // Note: Must use a reference or pointer to a derived object
# Line 149  Data::Data(const Data& inData, Line 345  Data::Data(const Data& inData,
345        } else {        } else {
346          inDataDomain->interpolateACross(tmp,inData);          inDataDomain->interpolateACross(tmp,inData);
347        }        }
348        m_data=tmp.m_data;  //       m_data=tmp.m_data;
349          set_m_data(tmp.m_data);
350      }      }
351    }    }
352    m_protected=false;    m_protected=false;
353  }  }
354    
355  Data::Data(DataAbstract* underlyingdata)  Data::Data(DataAbstract* underlyingdata)
356        : m_shared(false), m_lazy(false)
357  {  {
358  //  m_data=shared_ptr<DataAbstract>(underlyingdata);      set_m_data(underlyingdata->getPtr());
     m_data=underlyingdata->getPtr();  
359      m_protected=false;      m_protected=false;
360  }  }
361    
362  Data::Data(DataAbstract_ptr underlyingdata)  Data::Data(DataAbstract_ptr underlyingdata)
363        : m_shared(false), m_lazy(false)
364  {  {
365      m_data=underlyingdata;      set_m_data(underlyingdata);
366      m_protected=false;      m_protected=false;
367  }  }
368    
   
 Data::Data(const numeric::array& value,  
        const FunctionSpace& what,  
            bool expanded)  
 {  
   initialise(value,what,expanded);  
   m_protected=false;  
 }  
 /*  
 Data::Data(const DataArrayView& value,  
        const FunctionSpace& what,  
            bool expanded)  
 {  
   initialise(value,what,expanded);  
   m_protected=false;  
 }*/  
   
369  Data::Data(const DataTypes::ValueType& value,  Data::Data(const DataTypes::ValueType& value,
370           const DataTypes::ShapeType& shape,           const DataTypes::ShapeType& shape,
371                   const FunctionSpace& what,                   const FunctionSpace& what,
372                   bool expanded)                   bool expanded)
373        : m_shared(false), m_lazy(false)
374  {  {
375     initialise(value,shape,what,expanded);     initialise(value,shape,what,expanded);
376     m_protected=false;     m_protected=false;
# Line 198  Data::Data(const DataTypes::ValueType& v Line 380  Data::Data(const DataTypes::ValueType& v
380  Data::Data(const object& value,  Data::Data(const object& value,
381         const FunctionSpace& what,         const FunctionSpace& what,
382             bool expanded)             bool expanded)
383        : m_shared(false), m_lazy(false)
384  {  {
385    numeric::array asNumArray(value);    WrappedArray w(value);
386    initialise(asNumArray,what,expanded);    initialise(w,what,expanded);
387    m_protected=false;    m_protected=false;
388  }  }
389    
390    
391  Data::Data(const object& value,  Data::Data(const object& value,
392             const Data& other)             const Data& other)
393        : m_shared(false), m_lazy(false)
394  {  {
395    numeric::array asNumArray(value);    WrappedArray w(value);
   
   // extract the shape of the numarray  
   DataTypes::ShapeType tempShape=DataTypes::shapeFromNumArray(asNumArray);  
 // /*  for (int i=0; i < asNumArray.getrank(); i++) {  
 //     tempShape.push_back(extract<int>(asNumArray.getshape()[i]));  
 //   }*/  
 //   // get the space for the data vector  
 //   int len = DataTypes::noValues(tempShape);  
 //   DataVector temp_data(len, 0.0, len);  
 // /*  DataArrayView temp_dataView(temp_data, tempShape);  
 //   temp_dataView.copy(asNumArray);*/  
 //   temp_data.copyFromNumArray(asNumArray);  
   
   //  
   // Create DataConstant using the given value and all other parameters  
   // copied from other. If value is a rank 0 object this Data  
   // will assume the point data shape of other.  
396    
397    if (DataTypes::getRank(tempShape)/*temp_dataView.getRank()*/==0) {    // extract the shape of the array
398      const DataTypes::ShapeType& tempShape=w.getShape();
399      if (w.getRank()==0) {
400    
401    
402      // get the space for the data vector      // get the space for the data vector
403      int len1 = DataTypes::noValues(tempShape);      int len1 = DataTypes::noValues(tempShape);
404      DataVector temp_data(len1, 0.0, len1);      DataVector temp_data(len1, 0.0, len1);
405      temp_data.copyFromNumArray(asNumArray);      temp_data.copyFromArray(w,1);
406    
407      int len = DataTypes::noValues(other.getDataPointShape());      int len = DataTypes::noValues(other.getDataPointShape());
408    
409      DataVector temp2_data(len, temp_data[0]/*temp_dataView()*/, len);      DataVector temp2_data(len, temp_data[0], len);
     //DataArrayView temp2_dataView(temp2_data, other.getPointDataView().getShape());  
 //     initialise(temp2_dataView, other.getFunctionSpace(), false);  
   
410      DataConstant* t=new DataConstant(other.getFunctionSpace(),other.getDataPointShape(),temp2_data);      DataConstant* t=new DataConstant(other.getFunctionSpace(),other.getDataPointShape(),temp2_data);
411  //     boost::shared_ptr<DataAbstract> sp(t);  //     m_data=DataAbstract_ptr(t);
412  //     m_data=sp;      set_m_data(DataAbstract_ptr(t));
     m_data=DataAbstract_ptr(t);  
413    
414    } else {    } else {
415      //      //
416      // Create a DataConstant with the same sample shape as other      // Create a DataConstant with the same sample shape as other
417  //     initialise(temp_dataView, other.getFunctionSpace(), false);      DataConstant* t=new DataConstant(w,other.getFunctionSpace());
418      DataConstant* t=new DataConstant(asNumArray,other.getFunctionSpace());  //     m_data=DataAbstract_ptr(t);
419  //     boost::shared_ptr<DataAbstract> sp(t);      set_m_data(DataAbstract_ptr(t));
 //     m_data=sp;  
     m_data=DataAbstract_ptr(t);  
420    }    }
421    m_protected=false;    m_protected=false;
422  }  }
423    
424  Data::~Data()  Data::~Data()
425  {  {
426      set_m_data(DataAbstract_ptr());
427  }  }
428    
429    
430    // only call in thread safe contexts.
431    // This method should be atomic
432    void Data::set_m_data(DataAbstract_ptr p)
433    {
434      if (m_data.get()!=0)  // release old ownership
435      {
436        m_data->removeOwner(this);
437      }
438      if (p.get()!=0)
439      {
440        m_data=p;
441        m_data->addOwner(this);
442        m_shared=m_data->isShared();
443        m_lazy=m_data->isLazy();
444      }
445    }
446    
447  void  void Data::initialise(const WrappedArray& value,
 Data::initialise(const boost::python::numeric::array& value,  
448                   const FunctionSpace& what,                   const FunctionSpace& what,
449                   bool expanded)                   bool expanded)
450  {  {
# Line 277  Data::initialise(const boost::python::nu Line 455  Data::initialise(const boost::python::nu
455    // within the shared_ptr constructor.    // within the shared_ptr constructor.
456    if (expanded) {    if (expanded) {
457      DataAbstract* temp=new DataExpanded(value, what);      DataAbstract* temp=new DataExpanded(value, what);
458  //     boost::shared_ptr<DataAbstract> temp_data(temp);  //     m_data=temp->getPtr();
459  //     m_data=temp_data;      set_m_data(temp->getPtr());
     m_data=temp->getPtr();  
460    } else {    } else {
461      DataAbstract* temp=new DataConstant(value, what);      DataAbstract* temp=new DataConstant(value, what);
462  //     boost::shared_ptr<DataAbstract> temp_data(temp);  //     m_data=temp->getPtr();
463  //     m_data=temp_data;      set_m_data(temp->getPtr());
     m_data=temp->getPtr();  
464    }    }
465  }  }
466    
# Line 302  Data::initialise(const DataTypes::ValueT Line 478  Data::initialise(const DataTypes::ValueT
478    // within the shared_ptr constructor.    // within the shared_ptr constructor.
479    if (expanded) {    if (expanded) {
480      DataAbstract* temp=new DataExpanded(what, shape, value);      DataAbstract* temp=new DataExpanded(what, shape, value);
481  //     boost::shared_ptr<DataAbstract> temp_data(temp);  //     m_data=temp->getPtr();
482  //     m_data=temp_data;      set_m_data(temp->getPtr());
     m_data=temp->getPtr();  
483    } else {    } else {
484      DataAbstract* temp=new DataConstant(what, shape, value);      DataAbstract* temp=new DataConstant(what, shape, value);
485  //     boost::shared_ptr<DataAbstract> temp_data(temp);  //     m_data=temp->getPtr();
486  //     m_data=temp_data;      set_m_data(temp->getPtr());
     m_data=temp->getPtr();  
487    }    }
488  }  }
489    
490    
 // void  
 // Data::CompareDebug(const Data& rd)  
 // {  
 //  using namespace std;  
 //  bool mismatch=false;  
 //  std::cout << "Comparing left and right" << endl;  
 //  const DataTagged* left=dynamic_cast<DataTagged*>(m_data.get());  
 //  const DataTagged* right=dynamic_cast<DataTagged*>(rd.m_data.get());  
 //    
 //  if (left==0)  
 //  {  
 //      cout << "left arg is not a DataTagged\n";  
 //      return;  
 //  }  
 //    
 //  if (right==0)  
 //  {  
 //      cout << "right arg is not a DataTagged\n";  
 //      return;  
 //  }  
 //  cout << "Num elements=" << left->getVector().size() << ":" << right->getVector().size() << std::endl;  
 //  cout << "Shapes ";  
 //  if (left->getShape()==right->getShape())  
 //  {  
 //      cout << "ok\n";  
 //  }  
 //  else  
 //  {  
 //      cout << "Problem: shapes do not match\n";  
 //      mismatch=true;  
 //  }  
 //  int lim=left->getVector().size();  
 //  if (right->getVector().size()) lim=right->getVector().size();  
 //  for (int i=0;i<lim;++i)  
 //  {  
 //      if (left->getVector()[i]!=right->getVector()[i])  
 //      {  
 //          cout << "[" << i << "] value mismatch " << left->getVector()[i] << ":" << right->getVector()[i] << endl;  
 //          mismatch=true;  
 //      }  
 //  }  
 //  
 //  // still need to check the tag map  
 //  // also need to watch what is happening to function spaces, are they copied or what?  
 //  
 //  const DataTagged::DataMapType& mapleft=left->getTagLookup();  
 //  const DataTagged::DataMapType& mapright=right->getTagLookup();  
 //  
 //  if (mapleft.size()!=mapright.size())  
 //  {  
 //      cout << "Maps are different sizes " << mapleft.size() << ":" << mapright.size() << endl;  
 //      mismatch=true;  
 //      cout << "Left map\n";  
 //      DataTagged::DataMapType::const_iterator i,j;  
 //      for (i=mapleft.begin();i!=mapleft.end();++i) {  
 //          cout << "(" << i->first << "=>" << i->second << ")\n";  
 //      }  
 //      cout << "Right map\n";  
 //      for (i=mapright.begin();i!=mapright.end();++i) {  
 //          cout << "(" << i->first << "=>" << i->second << ")\n";  
 //      }  
 //      cout << "End map\n";  
 //  
 //  }  
 //  
 //  DataTagged::DataMapType::const_iterator i,j;  
 //  for (i=mapleft.begin(),j=mapright.begin();i!=mapleft.end() && j!=mapright.end();++i,++j) {  
 //     if ((i->first!=j->first) || (i->second!=j->second))  
 //     {  
 //      cout << "(" << i->first << "=>" << i->second << ")";  
 //      cout << ":(" << j->first << "=>" << j->second << ") ";  
 //      mismatch=true;  
 //            }  
 //  }  
 //  if (mismatch)  
 //  {  
 //      cout << "#Mismatch\n";  
 //  }  
 // }  
   
491  escriptDataC  escriptDataC
492  Data::getDataC()  Data::getDataC()
493  {  {
# Line 410  Data::getDataC() const Line 504  Data::getDataC() const
504    return temp;    return temp;
505  }  }
506    
507    size_t
508    Data::getSampleBufferSize() const
509    {
510      return m_data->getSampleBufferSize();
511    }
512    
513    
514  const boost::python::tuple  const boost::python::tuple
515  Data::getShapeTuple() const  Data::getShapeTuple() const
516  {  {
# Line 435  Data::getShapeTuple() const Line 536  Data::getShapeTuple() const
536  // It can't work out what type the function is based soley on its name.  // It can't work out what type the function is based soley on its name.
537  // There are ways to fix this involving creating function pointer variables for each form  // There are ways to fix this involving creating function pointer variables for each form
538  // but there doesn't seem to be a need given that the methods have the same name from the python point of view  // but there doesn't seem to be a need given that the methods have the same name from the python point of view
539  Data*  Data
540  Data::copySelf()  Data::copySelf()
541  {  {
542     DataAbstract* temp=m_data->deepCopy();     DataAbstract* temp=m_data->deepCopy();
543     return new Data(temp);     return Data(temp);
544  }  }
545    
546  void  void
# Line 447  Data::copy(const Data& other) Line 548  Data::copy(const Data& other)
548  {  {
549    DataAbstract* temp=other.m_data->deepCopy();    DataAbstract* temp=other.m_data->deepCopy();
550    DataAbstract_ptr p=temp->getPtr();    DataAbstract_ptr p=temp->getPtr();
551    m_data=p;  //   m_data=p;
552      set_m_data(p);
553  }  }
554    
555    
# Line 463  Data::delaySelf() Line 565  Data::delaySelf()
565  {  {
566    if (!isLazy())    if (!isLazy())
567    {    {
568      m_data=(new DataLazy(m_data))->getPtr();  //  m_data=(new DataLazy(m_data))->getPtr();
569        set_m_data((new DataLazy(m_data))->getPtr());
570    }    }
571  }  }
572    
573    
574    // For lazy data, it would seem that DataTagged will need to be treated differently since even after setting all tags
575    // to zero, all the tags from all the DataTags would be in the result.
576    // However since they all have the same value (0) whether they are there or not should not matter.
577    // So I have decided that for all types this method will create a constant 0.
578    // It can be promoted up as required.
579    // A possible efficiency concern might be expanded->constant->expanded which has an extra memory management
580    // but we can deal with that if it arises.
581    //
582  void  void
583  Data::setToZero()  Data::setToZero()
584  {  {
# Line 474  Data::setToZero() Line 586  Data::setToZero()
586    {    {
587       throw DataException("Error - Operations not permitted on instances of DataEmpty.");       throw DataException("Error - Operations not permitted on instances of DataEmpty.");
588    }    }
589    m_data->setToZero();    if (isLazy())
590      {
591         DataTypes::ValueType v(getNoValues(),0);
592         DataConstant* dc=new DataConstant(getFunctionSpace(),getDataPointShape(),v);
593         DataLazy* dl=new DataLazy(dc->getPtr());
594         set_m_data(dl->getPtr());
595      }
596      else
597      {
598         exclusiveWrite();
599         m_data->setToZero();
600      }
601  }  }
602    
603    
604  void  void
605  Data::copyWithMask(const Data& other,  Data::copyWithMask(const Data& other,
606                     const Data& mask)                     const Data& mask)
# Line 538  Data::copyWithMask(const Data& other, Line 662  Data::copyWithMask(const Data& other,
662    {    {
663      throw DataException("Error - Unknown DataAbstract passed to copyWithMask.");      throw DataException("Error - Unknown DataAbstract passed to copyWithMask.");
664    }    }
665      unsigned int selfrank=getDataPointRank();
666      unsigned int otherrank=other2.getDataPointRank();
667      unsigned int maskrank=mask2.getDataPointRank();
668      if ((selfrank==0) && (otherrank>0 || maskrank>0))
669      {
670        // to get here we must be copying from a large object into a scalar
671        // I am not allowing this.
672        // If you are calling copyWithMask then you are considering keeping some existing values
673        // and so I'm going to assume that you don't want your data objects getting a new shape.
674        throw DataException("Attempt to copyWithMask into a scalar from an object or mask with rank>0.");
675      }
676      exclusiveWrite();
677    // Now we iterate over the elements    // Now we iterate over the elements
678    DataVector& self=getReadyPtr()->getVector();    DataVector& self=getReady()->getVectorRW();;
679    const DataVector& ovec=other2.getReadyPtr()->getVector();    const DataVector& ovec=other2.getReadyPtr()->getVectorRO();
680    const DataVector& mvec=mask2.getReadyPtr()->getVector();    const DataVector& mvec=mask2.getReadyPtr()->getVectorRO();
681    if ((self.size()!=ovec.size()) || (self.size()!=mvec.size()))  
682      if ((selfrank>0) && (otherrank==0) &&(maskrank==0))
683      {
684        // Not allowing this combination.
685        // it is not clear what the rank of the target should be.
686        // Should it be filled with the scalar (rank stays the same);
687        // or should the target object be reshaped to be a scalar as well.
688        throw DataException("Attempt to copyWithMask from scalar mask and data into non-scalar target.");
689      }
690      if ((selfrank>0) && (otherrank>0) &&(maskrank==0))
691      {
692        if (mvec[0]>0)      // copy whole object if scalar is >0
693        {
694            copy(other);
695        }
696        return;
697      }
698      if (isTagged())       // so all objects involved will also be tagged
699      {
700        // note the !
701        if (!((getDataPointShape()==mask2.getDataPointShape()) &&
702            ((other2.getDataPointShape()==mask2.getDataPointShape()) || (otherrank==0))))
703        {
704            throw DataException("copyWithMask, shape mismatch.");
705        }
706    
707        // We need to consider the possibility that tags are missing or in the wrong order
708        // My guiding assumption here is: All tagged Datas are assumed to have the default value for
709        // all tags which are not explicitly defined
710    
711        const DataTagged* mptr=dynamic_cast<const DataTagged*>(mask2.m_data.get());
712        const DataTagged* optr=dynamic_cast<const DataTagged*>(other2.m_data.get());
713        DataTagged* tptr=dynamic_cast<DataTagged*>(m_data.get());
714    
715        // first, add any tags missing from other or mask
716        const DataTagged::DataMapType& olookup=optr->getTagLookup();
717            const DataTagged::DataMapType& mlookup=mptr->getTagLookup();
718        const DataTagged::DataMapType& tlookup=tptr->getTagLookup();
719        DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory
720        for (i=olookup.begin();i!=olookup.end();i++)
721        {
722               tptr->addTag(i->first);
723            }
724            for (i=mlookup.begin();i!=mlookup.end();i++) {
725               tptr->addTag(i->first);
726            }
727        // now we know that *this has all the required tags but they aren't guaranteed to be in
728        // the same order
729    
730        // There are two possibilities: 1. all objects have the same rank. 2. other is a scalar
731        if ((selfrank==otherrank) && (otherrank==maskrank))
732        {
733            for (i=tlookup.begin();i!=tlookup.end();i++)
734            {
735                // get the target offset
736                DataTypes::ValueType::size_type toff=tptr->getOffsetForTag(i->first);
737                    DataTypes::ValueType::size_type moff=mptr->getOffsetForTag(i->first);
738                DataTypes::ValueType::size_type ooff=optr->getOffsetForTag(i->first);
739                for (int j=0;j<getDataPointSize();++j)
740                {
741                    if (mvec[j+moff]>0)
742                    {
743                        self[j+toff]=ovec[j+ooff];
744                    }
745                }
746                }
747            // now for the default value
748            for (int j=0;j<getDataPointSize();++j)
749            {
750                if (mvec[j+mptr->getDefaultOffset()]>0)
751                {
752                    self[j+tptr->getDefaultOffset()]=ovec[j+optr->getDefaultOffset()];
753                }
754            }
755        }
756        else    // other is a scalar
757        {
758            for (i=tlookup.begin();i!=tlookup.end();i++)
759            {
760                // get the target offset
761                DataTypes::ValueType::size_type toff=tptr->getOffsetForTag(i->first);
762                    DataTypes::ValueType::size_type moff=mptr->getOffsetForTag(i->first);
763                DataTypes::ValueType::size_type ooff=optr->getOffsetForTag(i->first);
764                for (int j=0;j<getDataPointSize();++j)
765                {
766                    if (mvec[j+moff]>0)
767                    {
768                        self[j+toff]=ovec[ooff];
769                    }
770                }
771                }
772            // now for the default value
773            for (int j=0;j<getDataPointSize();++j)
774            {
775                if (mvec[j+mptr->getDefaultOffset()]>0)
776                {
777                    self[j+tptr->getDefaultOffset()]=ovec[0];
778                }
779            }
780        }
781    
782        return;         // ugly
783      }
784      // mixed scalar and non-scalar operation
785      if ((selfrank>0) && (otherrank==0) && (mask2.getDataPointShape()==getDataPointShape()))
786    {    {
787      throw DataException("Error - size mismatch in arguments to copyWithMask.");          size_t num_points=self.size();
788        // OPENMP 3.0 allows unsigned loop vars.
789        #if defined(_OPENMP) && (_OPENMP < 200805)
790        long i;
791        #else
792        size_t i;
793        #endif  
794        size_t psize=getDataPointSize();    
795        #pragma omp parallel for private(i) schedule(static)
796        for (i=0;i<num_points;++i)
797        {
798            if (mvec[i]>0)
799            {
800                self[i]=ovec[i/psize];      // since this is expanded there is one scalar
801            }                   // dest point
802        }
803        return;         // ugly!
804      }
805      // tagged data is already taken care of so we only need to worry about shapes
806      // special cases with scalars are already dealt with so all we need to worry about is shape
807      if ((getDataPointShape()!=other2.getDataPointShape()) || getDataPointShape()!=mask2.getDataPointShape())
808      {
809        ostringstream oss;
810        oss <<"Error - size mismatch in arguments to copyWithMask.";
811        oss << "\nself_shape=" << DataTypes::shapeToString(getDataPointShape());
812        oss << " other2_shape=" << DataTypes::shapeToString(other2.getDataPointShape());
813        oss << " mask2_shape=" << DataTypes::shapeToString(mask2.getDataPointShape());
814        throw DataException(oss.str());
815    }    }
816    size_t num_points=self.size();    size_t num_points=self.size();
817    
# Line 564  Data::copyWithMask(const Data& other, Line 831  Data::copyWithMask(const Data& other,
831    }    }
832  }  }
833    
   
   
834  bool  bool
835  Data::isExpanded() const  Data::isExpanded() const
836  {  {
# Line 574  Data::isExpanded() const Line 839  Data::isExpanded() const
839  }  }
840    
841  bool  bool
842    Data::actsExpanded() const
843    {
844      return m_data->actsExpanded();
845    
846    }
847    
848    
849    bool
850  Data::isTagged() const  Data::isTagged() const
851  {  {
852    DataTagged* temp=dynamic_cast<DataTagged*>(m_data.get());    DataTagged* temp=dynamic_cast<DataTagged*>(m_data.get());
# Line 595  Data::isConstant() const Line 868  Data::isConstant() const
868  }  }
869    
870  bool  bool
871    Data::actsConstant() const
872    {
873        return m_data->actsConstant();
874    }
875    
876    
877    bool
878  Data::isLazy() const  Data::isLazy() const
879  {  {
880    return m_data->isLazy();    return m_lazy;    // not asking m_data because we need to be able to ask this while m_data is changing
881  }  }
882    
883  // at the moment this is synonymous with !isLazy() but that could change  // at the moment this is synonymous with !isLazy() but that could change
# Line 628  Data::expand() Line 908  Data::expand()
908    if (isConstant()) {    if (isConstant()) {
909      DataConstant* tempDataConst=dynamic_cast<DataConstant*>(m_data.get());      DataConstant* tempDataConst=dynamic_cast<DataConstant*>(m_data.get());
910      DataAbstract* temp=new DataExpanded(*tempDataConst);      DataAbstract* temp=new DataExpanded(*tempDataConst);
911  //     shared_ptr<DataAbstract> temp_data(temp);  //     m_data=temp->getPtr();
912  //     m_data=temp_data;      set_m_data(temp->getPtr());
     m_data=temp->getPtr();  
913    } else if (isTagged()) {    } else if (isTagged()) {
914      DataTagged* tempDataTag=dynamic_cast<DataTagged*>(m_data.get());      DataTagged* tempDataTag=dynamic_cast<DataTagged*>(m_data.get());
915      DataAbstract* temp=new DataExpanded(*tempDataTag);      DataAbstract* temp=new DataExpanded(*tempDataTag);
916  //     shared_ptr<DataAbstract> temp_data(temp);  //     m_data=temp->getPtr();
917  //     m_data=temp_data;      set_m_data(temp->getPtr());
     m_data=temp->getPtr();  
918    } else if (isExpanded()) {    } else if (isExpanded()) {
919      //      //
920      // do nothing      // do nothing
# Line 656  Data::tag() Line 934  Data::tag()
934    if (isConstant()) {    if (isConstant()) {
935      DataConstant* tempDataConst=dynamic_cast<DataConstant*>(m_data.get());      DataConstant* tempDataConst=dynamic_cast<DataConstant*>(m_data.get());
936      DataAbstract* temp=new DataTagged(*tempDataConst);      DataAbstract* temp=new DataTagged(*tempDataConst);
937  //     shared_ptr<DataAbstract> temp_data(temp);  //     m_data=temp->getPtr();
938  //     m_data=temp_data;      set_m_data(temp->getPtr());
     m_data=temp->getPtr();  
939    } else if (isTagged()) {    } else if (isTagged()) {
940      // do nothing      // do nothing
941    } else if (isExpanded()) {    } else if (isExpanded()) {
# Line 671  Data::tag() Line 948  Data::tag()
948       {       {
949      throw DataException("Error - data would resolve to DataExpanded, tagging is not possible.");      throw DataException("Error - data would resolve to DataExpanded, tagging is not possible.");
950       }       }
951       m_data=res;      //      m_data=res;
952         set_m_data(res);
953       tag();       tag();
954    } else {    } else {
955      throw DataException("Error - Tagging not implemented for this Data type.");      throw DataException("Error - Tagging not implemented for this Data type.");
# Line 683  Data::resolve() Line 961  Data::resolve()
961  {  {
962    if (isLazy())    if (isLazy())
963    {    {
964       m_data=m_data->resolve();  //      m_data=m_data->resolve();
965        set_m_data(m_data->resolve());
966    }    }
967  }  }
968    
969    void
970    Data::requireWrite()
971    {
972      resolve();
973      exclusiveWrite();
974    }
975    
976  Data  Data
977  Data::oneOver() const  Data::oneOver() const
978  {  {
979    if (isLazy())    MAKELAZYOP(RECIP)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),RECIP);  
     return Data(c);  
   }  
980    return C_TensorUnaryOperation(*this, bind1st(divides<double>(),1.));    return C_TensorUnaryOperation(*this, bind1st(divides<double>(),1.));
981  }  }
982    
983  Data  Data
984  Data::wherePositive() const  Data::wherePositive() const
985  {  {
986    if (isLazy())    MAKELAZYOP(GZ)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),GZ);  
     return Data(c);  
   }  
987    return C_TensorUnaryOperation(*this, bind2nd(greater<double>(),0.0));    return C_TensorUnaryOperation(*this, bind2nd(greater<double>(),0.0));
988  }  }
989    
990  Data  Data
991  Data::whereNegative() const  Data::whereNegative() const
992  {  {
993    if (isLazy())    MAKELAZYOP(LZ)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),LZ);  
     return Data(c);  
   }  
994    return C_TensorUnaryOperation(*this, bind2nd(less<double>(),0.0));    return C_TensorUnaryOperation(*this, bind2nd(less<double>(),0.0));
995  }  }
996    
997  Data  Data
998  Data::whereNonNegative() const  Data::whereNonNegative() const
999  {  {
1000    if (isLazy())    MAKELAZYOP(GEZ)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),GEZ);  
     return Data(c);  
   }  
1001    return C_TensorUnaryOperation(*this, bind2nd(greater_equal<double>(),0.0));    return C_TensorUnaryOperation(*this, bind2nd(greater_equal<double>(),0.0));
1002  }  }
1003    
1004  Data  Data
1005  Data::whereNonPositive() const  Data::whereNonPositive() const
1006  {  {
1007    if (isLazy())    MAKELAZYOP(LEZ)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),LEZ);  
     return Data(c);  
   }  
1008    return C_TensorUnaryOperation(*this, bind2nd(less_equal<double>(),0.0));    return C_TensorUnaryOperation(*this, bind2nd(less_equal<double>(),0.0));
1009  }  }
1010    
1011  Data  Data
1012  Data::whereZero(double tol) const  Data::whereZero(double tol) const
1013  {  {
1014    Data dataAbs=abs();  //   Data dataAbs=abs();
1015    return C_TensorUnaryOperation(dataAbs, bind2nd(less_equal<double>(),tol));  //   return C_TensorUnaryOperation(dataAbs, bind2nd(less_equal<double>(),tol));
1016       MAKELAZYOPOFF(EZ,tol)
1017       return C_TensorUnaryOperation(*this, bind2nd(AbsLTE(),tol));
1018    
1019  }  }
1020    
1021  Data  Data
1022  Data::whereNonZero(double tol) const  Data::whereNonZero(double tol) const
1023  {  {
1024    Data dataAbs=abs();  //   Data dataAbs=abs();
1025    return C_TensorUnaryOperation(dataAbs, bind2nd(greater<double>(),tol));  //   return C_TensorUnaryOperation(dataAbs, bind2nd(greater<double>(),tol));
1026      MAKELAZYOPOFF(NEZ,tol)
1027      return C_TensorUnaryOperation(*this, bind2nd(AbsGT(),tol));
1028    
1029  }  }
1030    
1031  Data  Data
# Line 767  bool Line 1038  bool
1038  Data::probeInterpolation(const FunctionSpace& functionspace) const  Data::probeInterpolation(const FunctionSpace& functionspace) const
1039  {  {
1040    return getFunctionSpace().probeInterpolation(functionspace);    return getFunctionSpace().probeInterpolation(functionspace);
 //   if (getFunctionSpace()==functionspace) {  
 //     return true;  
 //   } else {  
 //     const_Domain_ptr domain=getDomain();  
 //     if  (*domain==*functionspace.getDomain()) {  
 //       return domain->probeInterpolationOnDomain(getFunctionSpace().getTypeCode(),functionspace.getTypeCode());  
 //     } else {  
 //       return domain->probeInterpolationACross(getFunctionSpace().getTypeCode(),*(functionspace.getDomain()),functionspace.getTypeCode());  
 //     }  
 //   }  
1041  }  }
1042    
1043  Data  Data
# Line 813  Data::getDataPointSize() const Line 1074  Data::getDataPointSize() const
1074    return m_data->getNoValues();    return m_data->getNoValues();
1075  }  }
1076    
1077    
1078  DataTypes::ValueType::size_type  DataTypes::ValueType::size_type
1079  Data::getLength() const  Data::getLength() const
1080  {  {
1081    return m_data->getLength();    return m_data->getLength();
1082  }  }
1083    
 const  
 boost::python::numeric::array  
 Data:: getValueOfDataPoint(int dataPointNo)  
 {  
   int i, j, k, l;  
   
   FORCERESOLVE;  
1084    
1085    //  // There is no parallelism here ... elements need to be added in the correct order.
1086    // determine the rank and shape of each data point  //   If we could presize the list and then fill in the elements it might work
1087    int dataPointRank = getDataPointRank();  //   This would need setting elements to be threadsafe.
1088    const DataTypes::ShapeType& dataPointShape = getDataPointShape();  //   Having mulitple C threads calling into one interpreter is aparently a no-no.
1089    const boost::python::object
1090    //  Data::toListOfTuples(bool scalarastuple)
1091    // create the numeric array to be returned  {
1092    boost::python::numeric::array numArray(0.0);      using namespace boost::python;
1093        using boost::python::list;
1094    //      if (get_MPISize()>1)
1095    // the shape of the returned numeric array will be the same      {
1096    // as that of the data point          throw DataException("::toListOfTuples is not available for MPI with more than one process.");
1097    int arrayRank = dataPointRank;      }
1098    const DataTypes::ShapeType& arrayShape = dataPointShape;      unsigned int rank=getDataPointRank();
1099        unsigned int size=getDataPointSize();
1100    
1101    //      int npoints=getNumDataPoints();
1102    // resize the numeric array to the shape just calculated      expand();           // This will also resolve if required
1103    if (arrayRank==0) {      const DataTypes::ValueType& vec=getReady()->getVectorRO();
1104      numArray.resize(1);      boost::python::list temp;
1105    }      temp.append(object());
1106    if (arrayRank==1) {      boost::python::list res(temp*npoints);// presize the list by the "[None] * npoints"  trick
1107      numArray.resize(arrayShape[0]);      if (rank==0)
1108    }      {
1109    if (arrayRank==2) {          long count;
1110      numArray.resize(arrayShape[0],arrayShape[1]);          if (scalarastuple)
1111    }          {
1112    if (arrayRank==3) {              for (count=0;count<npoints;++count)
1113      numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2]);              {
1114    }          res[count]=make_tuple(vec[count]);
1115    if (arrayRank==4) {              }
1116      numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2],arrayShape[3]);          }
1117    }          else
1118            {
1119                for (count=0;count<npoints;++count)
1120                {
1121                    res[count]=vec[count];
1122                }
1123            }
1124        }
1125        else if (rank==1)
1126        {
1127            size_t count;
1128            size_t offset=0;
1129            for (count=0;count<npoints;++count,offset+=size)
1130            {
1131                res[count]=pointToTuple1(getDataPointShape(), vec, offset);
1132            }
1133        }
1134        else if (rank==2)
1135        {
1136            size_t count;
1137            size_t offset=0;
1138            for (count=0;count<npoints;++count,offset+=size)
1139            {
1140            res[count]=pointToTuple2(getDataPointShape(), vec, offset);
1141            }
1142        }
1143        else if (rank==3)
1144        {
1145            size_t count;
1146            size_t offset=0;
1147            for (count=0;count<npoints;++count,offset+=size)
1148            {
1149                res[count]=pointToTuple3(getDataPointShape(), vec, offset);
1150            }
1151        }
1152        else if (rank==4)
1153        {
1154            size_t count;
1155            size_t offset=0;
1156            for (count=0;count<npoints;++count,offset+=size)
1157            {
1158                res[count]=pointToTuple4(getDataPointShape(), vec, offset);
1159            }
1160        }
1161        else
1162        {
1163            throw DataException("Unknown rank in ::toListOfTuples()");
1164        }
1165        return res;
1166    }
1167    
1168    if (getNumDataPointsPerSample()>0) {  const boost::python::object
1169    Data::getValueOfDataPointAsTuple(int dataPointNo)
1170    {
1171       forceResolve();
1172       if (getNumDataPointsPerSample()>0) {
1173         int sampleNo = dataPointNo/getNumDataPointsPerSample();         int sampleNo = dataPointNo/getNumDataPointsPerSample();
1174         int dataPointNoInSample = dataPointNo - sampleNo * getNumDataPointsPerSample();         int dataPointNoInSample = dataPointNo - sampleNo * getNumDataPointsPerSample();
1175         //         //
1176         // Check a valid sample number has been supplied         // Check a valid sample number has been supplied
1177         if ((sampleNo >= getNumSamples()) || (sampleNo < 0 )) {         if ((sampleNo >= getNumSamples()) || (sampleNo < 0 )) {
1178             throw DataException("Error - Data::convertToNumArray: invalid sampleNo.");             throw DataException("Error - Data::getValueOfDataPointAsTuple: invalid sampleNo.");
1179         }         }
1180    
1181         //         //
1182         // Check a valid data point number has been supplied         // Check a valid data point number has been supplied
1183         if ((dataPointNoInSample >= getNumDataPointsPerSample()) || (dataPointNoInSample < 0)) {         if ((dataPointNoInSample >= getNumDataPointsPerSample()) || (dataPointNoInSample < 0)) {
1184             throw DataException("Error - Data::convertToNumArray: invalid dataPointNoInSample.");             throw DataException("Error - Data::getValueOfDataPointAsTuple: invalid dataPointNoInSample.");
1185         }         }
1186         // TODO: global error handling         // TODO: global error handling
        // create a view of the data if it is stored locally  
 //       DataArrayView dataPointView = getDataPoint(sampleNo, dataPointNoInSample);  
1187         DataTypes::ValueType::size_type offset=getDataOffset(sampleNo, dataPointNoInSample);         DataTypes::ValueType::size_type offset=getDataOffset(sampleNo, dataPointNoInSample);
1188           return pointToTuple(getDataPointShape(),&(getDataAtOffsetRO(offset)));
1189      }
1190         switch( dataPointRank ){    else
1191              case 0 :    {
1192                  numArray[0] = getDataAtOffset(offset);      // The pre-numpy method would return an empty array of the given shape
1193                  break;      // I'm going to throw an exception because if we have zero points per sample we have problems
1194              case 1 :      throw DataException("Error - need at least 1 datapoint per sample.");
                 for( i=0; i<dataPointShape[0]; i++ )  
                     numArray[i]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i));  
                 break;  
             case 2 :  
                 for( i=0; i<dataPointShape[0]; i++ )  
                     for( j=0; j<dataPointShape[1]; j++)  
                         numArray[make_tuple(i,j)]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i,j));  
                 break;  
             case 3 :  
                 for( i=0; i<dataPointShape[0]; i++ )  
                     for( j=0; j<dataPointShape[1]; j++ )  
                         for( k=0; k<dataPointShape[2]; k++)  
                             numArray[make_tuple(i,j,k)]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i,j,k));  
                 break;  
             case 4 :  
                 for( i=0; i<dataPointShape[0]; i++ )  
                     for( j=0; j<dataPointShape[1]; j++ )  
                         for( k=0; k<dataPointShape[2]; k++ )  
                             for( l=0; l<dataPointShape[3]; l++)  
                                 numArray[make_tuple(i,j,k,l)]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i,j,k,l));  
                 break;  
     }  
1195    }    }
   //  
   // return the array  
   return numArray;  
1196    
1197  }  }
1198    
1199    
1200  void  void
1201  Data::setValueOfDataPointToPyObject(int dataPointNo, const boost::python::object& py_object)  Data::setValueOfDataPointToPyObject(int dataPointNo, const boost::python::object& py_object)
1202  {  {
1203      // this will throw if the value cannot be represented      // this will throw if the value cannot be represented
1204      boost::python::numeric::array num_array(py_object);      setValueOfDataPointToArray(dataPointNo,py_object);
     setValueOfDataPointToArray(dataPointNo,num_array);  
1205  }  }
1206    
1207  void  void
1208  Data::setValueOfDataPointToArray(int dataPointNo, const boost::python::numeric::array& num_array)  Data::setValueOfDataPointToArray(int dataPointNo, const boost::python::object& obj)
1209  {  {
1210    if (isProtected()) {    if (isProtected()) {
1211          throw DataException("Error - attempt to update protected Data object.");          throw DataException("Error - attempt to update protected Data object.");
1212    }    }
1213    FORCERESOLVE;    forceResolve();
1214    
1215      WrappedArray w(obj);
1216    //    //
1217    // check rank    // check rank
1218    if (static_cast<unsigned int>(num_array.getrank())<getDataPointRank())    if (static_cast<unsigned int>(w.getRank())<getDataPointRank())
1219        throw DataException("Rank of numarray does not match Data object rank");        throw DataException("Rank of array does not match Data object rank");
1220    
1221    //    //
1222    // check shape of num_array    // check shape of array
1223    for (unsigned int i=0; i<getDataPointRank(); i++) {    for (unsigned int i=0; i<getDataPointRank(); i++) {
1224      if (extract<int>(num_array.getshape()[i])!=getDataPointShape()[i])      if (w.getShape()[i]!=getDataPointShape()[i])
1225         throw DataException("Shape of numarray does not match Data object rank");         throw DataException("Shape of array does not match Data object rank");
1226    }    }
1227    //    //
1228    // make sure data is expanded:    // make sure data is expanded:
# Line 949  Data::setValueOfDataPointToArray(int dat Line 1233  Data::setValueOfDataPointToArray(int dat
1233    if (getNumDataPointsPerSample()>0) {    if (getNumDataPointsPerSample()>0) {
1234         int sampleNo = dataPointNo/getNumDataPointsPerSample();         int sampleNo = dataPointNo/getNumDataPointsPerSample();
1235         int dataPointNoInSample = dataPointNo - sampleNo * getNumDataPointsPerSample();         int dataPointNoInSample = dataPointNo - sampleNo * getNumDataPointsPerSample();
1236         m_data->copyToDataPoint(sampleNo, dataPointNoInSample,num_array);         m_data->copyToDataPoint(sampleNo, dataPointNoInSample,w);
1237    } else {    } else {
1238         m_data->copyToDataPoint(-1, 0,num_array);         m_data->copyToDataPoint(-1, 0,w);
1239    }    }
1240  }  }
1241    
# Line 963  Data::setValueOfDataPoint(int dataPointN Line 1247  Data::setValueOfDataPoint(int dataPointN
1247    }    }
1248    //    //
1249    // make sure data is expanded:    // make sure data is expanded:
1250    FORCERESOLVE;    forceResolve();
1251    if (!isExpanded()) {    if (!isExpanded()) {
1252      expand();      expand();
1253    }    }
# Line 977  Data::setValueOfDataPoint(int dataPointN Line 1261  Data::setValueOfDataPoint(int dataPointN
1261  }  }
1262    
1263  const  const
1264  boost::python::numeric::array  boost::python::object
1265  Data::getValueOfGlobalDataPoint(int procNo, int dataPointNo)  Data::getValueOfGlobalDataPointAsTuple(int procNo, int dataPointNo)
1266  {  {
1267    size_t length=0;    // This could be lazier than it is now
1268    int i, j, k, l, pos;    forceResolve();
   FORCERESOLVE;  
   //  
   // determine the rank and shape of each data point  
   int dataPointRank = getDataPointRank();  
   const DataTypes::ShapeType& dataPointShape = getDataPointShape();  
   
   //  
   // create the numeric array to be returned  
   boost::python::numeric::array numArray(0.0);  
1269    
1270    //    // copy datapoint into a buffer
1271    // the shape of the returned numeric array will be the same    // broadcast buffer to all nodes
1272    // as that of the data point    // convert buffer to tuple
1273    int arrayRank = dataPointRank;    // return tuple
   const DataTypes::ShapeType& arrayShape = dataPointShape;  
1274    
1275    //    const DataTypes::ShapeType& dataPointShape = getDataPointShape();
1276    // resize the numeric array to the shape just calculated    size_t length=DataTypes::noValues(dataPointShape);
   if (arrayRank==0) {  
     numArray.resize(1);  
   }  
   if (arrayRank==1) {  
     numArray.resize(arrayShape[0]);  
   }  
   if (arrayRank==2) {  
     numArray.resize(arrayShape[0],arrayShape[1]);  
   }  
   if (arrayRank==3) {  
     numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2]);  
   }  
   if (arrayRank==4) {  
     numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2],arrayShape[3]);  
   }  
1277    
1278    // added for the MPI communication    // added for the MPI communication
   length=1;  
   for( i=0; i<arrayRank; i++ ) length *= arrayShape[i];  
1279    double *tmpData = new double[length];    double *tmpData = new double[length];
1280    
1281    //    // updated for the MPI case
1282    // load the values for the data point into the numeric array.    if( get_MPIRank()==procNo ){
1283          if (getNumDataPointsPerSample()>0) {
1284      // updated for the MPI case      int sampleNo = dataPointNo/getNumDataPointsPerSample();
1285      if( get_MPIRank()==procNo ){      int dataPointNoInSample = dataPointNo - sampleNo * getNumDataPointsPerSample();
1286               if (getNumDataPointsPerSample()>0) {      //
1287                  int sampleNo = dataPointNo/getNumDataPointsPerSample();      // Check a valid sample number has been supplied
1288                  int dataPointNoInSample = dataPointNo - sampleNo * getNumDataPointsPerSample();      if ((sampleNo >= getNumSamples()) || (sampleNo < 0 )) {
1289                  //          throw DataException("Error - Data::getValueOfGlobalDataPointAsTuple: invalid sampleNo.");
                 // Check a valid sample number has been supplied  
                 if ((sampleNo >= getNumSamples()) || (sampleNo < 0 )) {  
                   throw DataException("Error - Data::convertToNumArray: invalid sampleNo.");  
                 }  
   
                 //  
                 // Check a valid data point number has been supplied  
                 if ((dataPointNoInSample >= getNumDataPointsPerSample()) || (dataPointNoInSample < 0)) {  
                   throw DataException("Error - Data::convertToNumArray: invalid dataPointNoInSample.");  
                 }  
                 // TODO: global error handling  
         // create a view of the data if it is stored locally  
         //DataArrayView dataPointView = getDataPoint(sampleNo, dataPointNoInSample);  
         DataTypes::ValueType::size_type offset=getDataOffset(sampleNo, dataPointNoInSample);  
   
         // pack the data from the view into tmpData for MPI communication  
         pos=0;  
         switch( dataPointRank ){  
             case 0 :  
                 tmpData[0] = getDataAtOffset(offset);  
                 break;  
             case 1 :  
                 for( i=0; i<dataPointShape[0]; i++ )  
                     tmpData[i]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i));  
                 break;  
             case 2 :  
                 for( i=0; i<dataPointShape[0]; i++ )  
                     for( j=0; j<dataPointShape[1]; j++, pos++ )  
                         tmpData[pos]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i,j));  
                 break;  
             case 3 :  
                 for( i=0; i<dataPointShape[0]; i++ )  
                     for( j=0; j<dataPointShape[1]; j++ )  
                         for( k=0; k<dataPointShape[2]; k++, pos++ )  
                             tmpData[pos]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i,j,k));  
                 break;  
             case 4 :  
                 for( i=0; i<dataPointShape[0]; i++ )  
                     for( j=0; j<dataPointShape[1]; j++ )  
                         for( k=0; k<dataPointShape[2]; k++ )  
                             for( l=0; l<dataPointShape[3]; l++, pos++ )  
                                 tmpData[pos]=getDataAtOffset(offset+DataTypes::getRelIndex(dataPointShape, i,j,k,l));  
                 break;  
         }  
             }  
1290      }      }
1291          #ifdef PASO_MPI  
1292          // broadcast the data to all other processes      //
1293      MPI_Bcast( tmpData, length, MPI_DOUBLE, procNo, get_MPIComm() );      // Check a valid data point number has been supplied
1294          #endif      if ((dataPointNoInSample >= getNumDataPointsPerSample()) || (dataPointNoInSample < 0)) {
1295            throw DataException("Error - Data::getValueOfGlobalDataPointAsTuple: invalid dataPointNoInSample.");
     // unpack the data  
     switch( dataPointRank ){  
         case 0 :  
             numArray[0]=tmpData[0];  
             break;  
         case 1 :  
             for( i=0; i<dataPointShape[0]; i++ )  
                 numArray[i]=tmpData[i];  
             break;  
         case 2 :  
             for( i=0; i<dataPointShape[0]; i++ )  
                 for( j=0; j<dataPointShape[1]; j++ )  
                    numArray[make_tuple(i,j)]=tmpData[i+j*dataPointShape[0]];  
             break;  
         case 3 :  
             for( i=0; i<dataPointShape[0]; i++ )  
                 for( j=0; j<dataPointShape[1]; j++ )  
                     for( k=0; k<dataPointShape[2]; k++ )  
                         numArray[make_tuple(i,j,k)]=tmpData[i+dataPointShape[0]*(j*+k*dataPointShape[1])];  
             break;  
         case 4 :  
             for( i=0; i<dataPointShape[0]; i++ )  
                 for( j=0; j<dataPointShape[1]; j++ )  
                     for( k=0; k<dataPointShape[2]; k++ )  
                         for( l=0; l<dataPointShape[3]; l++ )  
                                 numArray[make_tuple(i,j,k,l)]=tmpData[i+dataPointShape[0]*(j*+dataPointShape[1]*(k+l*dataPointShape[2]))];  
             break;  
1296      }      }
1297        // TODO: global error handling
1298        DataTypes::ValueType::size_type offset=getDataOffset(sampleNo, dataPointNoInSample);
1299    
1300        memcpy(tmpData,&(getDataAtOffsetRO(offset)),length*sizeof(double));
1301         }
1302      }
1303    #ifdef PASO_MPI
1304      // broadcast the data to all other processes
1305      MPI_Bcast( tmpData, length, MPI_DOUBLE, procNo, get_MPIComm() );
1306    #endif
1307    
1308      delete [] tmpData;    boost::python::tuple t=pointToTuple(dataPointShape,tmpData);
1309      delete [] tmpData;
1310    //    //
1311    // return the loaded array    // return the loaded array
1312    return numArray;    return t;
1313    
1314  }  }
1315    
1316    
1317  boost::python::numeric::array  boost::python::object
1318  Data::integrate_const() const  Data::integrateToTuple_const() const
1319  {  {
1320    if (isLazy())    if (isLazy())
1321    {    {
# Line 1127  Data::integrate_const() const Line 1324  Data::integrate_const() const
1324    return integrateWorker();    return integrateWorker();
1325  }  }
1326    
1327  boost::python::numeric::array  boost::python::object
1328  Data::integrate()  Data::integrateToTuple()
1329  {  {
1330    if (isLazy())    if (isLazy())
1331    {    {
1332      expand();      expand();
1333    }    }
1334    return integrateWorker();    return integrateWorker();
 }  
   
1335    
1336    }
1337    
1338  boost::python::numeric::array  boost::python::object
1339  Data::integrateWorker() const  Data::integrateWorker() const
1340  {  {
   int index;  
   int rank = getDataPointRank();  
1341    DataTypes::ShapeType shape = getDataPointShape();    DataTypes::ShapeType shape = getDataPointShape();
1342    int dataPointSize = getDataPointSize();    int dataPointSize = getDataPointSize();
1343    
# Line 1151  Data::integrateWorker() const Line 1345  Data::integrateWorker() const
1345    // calculate the integral values    // calculate the integral values
1346    vector<double> integrals(dataPointSize);    vector<double> integrals(dataPointSize);
1347    vector<double> integrals_local(dataPointSize);    vector<double> integrals_local(dataPointSize);
1348      const AbstractContinuousDomain* dom=dynamic_cast<const AbstractContinuousDomain*>(getDomain().get());
1349      if (dom==0)
1350      {            
1351        throw DataException("Can not integrate over non-continuous domains.");
1352      }
1353  #ifdef PASO_MPI  #ifdef PASO_MPI
1354    AbstractContinuousDomain::asAbstractContinuousDomain(*getDomain()).setToIntegrals(integrals_local,*this);    dom->setToIntegrals(integrals_local,*this);
1355    // Global sum: use an array instead of a vector because elements of array are guaranteed to be contiguous in memory    // Global sum: use an array instead of a vector because elements of array are guaranteed to be contiguous in memory
1356    double *tmp = new double[dataPointSize];    double *tmp = new double[dataPointSize];
1357    double *tmp_local = new double[dataPointSize];    double *tmp_local = new double[dataPointSize];
1358    for (int i=0; i<dataPointSize; i++) { tmp_local[i] = integrals_local[i]; }    for (int i=0; i<dataPointSize; i++) { tmp_local[i] = integrals_local[i]; }
1359    MPI_Allreduce( &tmp_local[0], &tmp[0], dataPointSize, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD );    MPI_Allreduce( &tmp_local[0], &tmp[0], dataPointSize, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD );
1360    for (int i=0; i<dataPointSize; i++) { integrals[i] = tmp[i]; }    for (int i=0; i<dataPointSize; i++) { integrals[i] = tmp[i]; }
1361      tuple result=pointToTuple(shape,tmp);
1362    delete[] tmp;    delete[] tmp;
1363    delete[] tmp_local;    delete[] tmp_local;
1364  #else  #else
1365    AbstractContinuousDomain::asAbstractContinuousDomain(*getDomain()).setToIntegrals(integrals,*this);    dom->setToIntegrals(integrals,*this);
1366    /*  double *tmp = new double[dataPointSize];
1367      for (int i=0; i<dataPointSize; i++) { tmp[i]=integrals[i]; }*/
1368      tuple result=pointToTuple(shape,integrals);
1369    //   delete tmp;
1370  #endif  #endif
1371    
   //  
   // create the numeric array to be returned  
   // and load the array with the integral values  
   boost::python::numeric::array bp_array(1.0);  
   if (rank==0) {  
     bp_array.resize(1);  
     index = 0;  
     bp_array[0] = integrals[index];  
   }  
   if (rank==1) {  
     bp_array.resize(shape[0]);  
     for (int i=0; i<shape[0]; i++) {  
       index = i;  
       bp_array[i] = integrals[index];  
     }  
   }  
   if (rank==2) {  
        bp_array.resize(shape[0],shape[1]);  
        for (int i=0; i<shape[0]; i++) {  
          for (int j=0; j<shape[1]; j++) {  
            index = i + shape[0] * j;  
            bp_array[make_tuple(i,j)] = integrals[index];  
          }  
        }  
   }  
   if (rank==3) {  
     bp_array.resize(shape[0],shape[1],shape[2]);  
     for (int i=0; i<shape[0]; i++) {  
       for (int j=0; j<shape[1]; j++) {  
         for (int k=0; k<shape[2]; k++) {  
           index = i + shape[0] * ( j + shape[1] * k );  
           bp_array[make_tuple(i,j,k)] = integrals[index];  
         }  
       }  
     }  
   }  
   if (rank==4) {  
     bp_array.resize(shape[0],shape[1],shape[2],shape[3]);  
     for (int i=0; i<shape[0]; i++) {  
       for (int j=0; j<shape[1]; j++) {  
         for (int k=0; k<shape[2]; k++) {  
           for (int l=0; l<shape[3]; l++) {  
             index = i + shape[0] * ( j + shape[1] * ( k + shape[2] * l ) );  
             bp_array[make_tuple(i,j,k,l)] = integrals[index];  
           }  
         }  
       }  
     }  
   }  
1372    
1373    //    return result;
   // return the loaded array  
   return bp_array;  
1374  }  }
1375    
1376  Data  Data
1377  Data::sin() const  Data::sin() const
1378  {  {
1379    if (isLazy())    MAKELAZYOP(SIN)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),SIN);  
     return Data(c);  
   }  
1380    return C_TensorUnaryOperation<double (*)(double)>(*this, ::sin);    return C_TensorUnaryOperation<double (*)(double)>(*this, ::sin);
1381  }  }
1382    
1383  Data  Data
1384  Data::cos() const  Data::cos() const
1385  {  {
1386    if (isLazy())    MAKELAZYOP(COS)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),COS);  
     return Data(c);  
   }  
1387    return C_TensorUnaryOperation<double (*)(double)>(*this, ::cos);    return C_TensorUnaryOperation<double (*)(double)>(*this, ::cos);
1388  }  }
1389    
1390  Data  Data
1391  Data::tan() const  Data::tan() const
1392  {  {
1393    if (isLazy())    MAKELAZYOP(TAN)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),TAN);  
     return Data(c);  
   }  
1394    return C_TensorUnaryOperation<double (*)(double)>(*this, ::tan);    return C_TensorUnaryOperation<double (*)(double)>(*this, ::tan);
1395  }  }
1396    
1397  Data  Data
1398  Data::asin() const  Data::asin() const
1399  {  {
1400    if (isLazy())    MAKELAZYOP(ASIN)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),ASIN);  
     return Data(c);  
   }  
1401    return C_TensorUnaryOperation<double (*)(double)>(*this, ::asin);    return C_TensorUnaryOperation<double (*)(double)>(*this, ::asin);
1402  }  }
1403    
1404  Data  Data
1405  Data::acos() const  Data::acos() const
1406  {  {
1407    if (isLazy())    MAKELAZYOP(ACOS)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),ACOS);  
     return Data(c);  
   }  
1408    return C_TensorUnaryOperation<double (*)(double)>(*this, ::acos);    return C_TensorUnaryOperation<double (*)(double)>(*this, ::acos);
1409  }  }
1410    
# Line 1279  Data::acos() const Line 1412  Data::acos() const
1412  Data  Data
1413  Data::atan() const  Data::atan() const
1414  {  {
1415    if (isLazy())    MAKELAZYOP(ATAN)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),ATAN);  
     return Data(c);  
   }  
1416    return C_TensorUnaryOperation<double (*)(double)>(*this, ::atan);    return C_TensorUnaryOperation<double (*)(double)>(*this, ::atan);
1417  }  }
1418    
1419  Data  Data
1420  Data::sinh() const  Data::sinh() const
1421  {  {
1422    if (isLazy())    MAKELAZYOP(SINH)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),SINH);  
     return Data(c);  
   }  
1423    return C_TensorUnaryOperation<double (*)(double)>(*this, ::sinh);    return C_TensorUnaryOperation<double (*)(double)>(*this, ::sinh);
1424  }  }
1425    
1426  Data  Data
1427  Data::cosh() const  Data::cosh() const
1428  {  {
1429    if (isLazy())    MAKELAZYOP(COSH)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),COSH);  
     return Data(c);  
   }  
1430    return C_TensorUnaryOperation<double (*)(double)>(*this, ::cosh);    return C_TensorUnaryOperation<double (*)(double)>(*this, ::cosh);
1431  }  }
1432    
1433  Data  Data
1434  Data::tanh() const  Data::tanh() const
1435  {  {
1436    if (isLazy())    MAKELAZYOP(TANH)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),TANH);  
     return Data(c);  
   }  
1437    return C_TensorUnaryOperation<double (*)(double)>(*this, ::tanh);    return C_TensorUnaryOperation<double (*)(double)>(*this, ::tanh);
1438  }  }
1439    
# Line 1327  Data::erf() const Line 1444  Data::erf() const
1444  #if defined (_WIN32) && !defined(__INTEL_COMPILER)  #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1445    throw DataException("Error - Data:: erf function is not supported on _WIN32 platforms.");    throw DataException("Error - Data:: erf function is not supported on _WIN32 platforms.");
1446  #else  #else
1447    if (isLazy())    MAKELAZYOP(ERF)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),ERF);  
     return Data(c);  
   }  
1448    return C_TensorUnaryOperation(*this, ::erf);    return C_TensorUnaryOperation(*this, ::erf);
1449  #endif  #endif
1450  }  }
# Line 1339  Data::erf() const Line 1452  Data::erf() const
1452  Data  Data
1453  Data::asinh() const  Data::asinh() const
1454  {  {
1455    if (isLazy())    MAKELAZYOP(ASINH)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),ASINH);  
     return Data(c);  
   }  
1456  #if defined (_WIN32) && !defined(__INTEL_COMPILER)  #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1457    return C_TensorUnaryOperation(*this, escript::asinh_substitute);    return C_TensorUnaryOperation(*this, escript::asinh_substitute);
1458  #else  #else
# Line 1354  Data::asinh() const Line 1463  Data::asinh() const
1463  Data  Data
1464  Data::acosh() const  Data::acosh() const
1465  {  {
1466    if (isLazy())    MAKELAZYOP(ACOSH)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),ACOSH);  
     return Data(c);  
   }  
1467  #if defined (_WIN32) && !defined(__INTEL_COMPILER)  #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1468    return C_TensorUnaryOperation(*this, escript::acosh_substitute);    return C_TensorUnaryOperation(*this, escript::acosh_substitute);
1469  #else  #else
# Line 1369  Data::acosh() const Line 1474  Data::acosh() const
1474  Data  Data
1475  Data::atanh() const  Data::atanh() const
1476  {  {
1477    if (isLazy())    MAKELAZYOP(ATANH)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),ATANH);  
     return Data(c);  
   }  
1478  #if defined (_WIN32) && !defined(__INTEL_COMPILER)  #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1479    return C_TensorUnaryOperation(*this, escript::atanh_substitute);    return C_TensorUnaryOperation(*this, escript::atanh_substitute);
1480  #else  #else
# Line 1383  Data::atanh() const Line 1484  Data::atanh() const
1484    
1485  Data  Data
1486  Data::log10() const  Data::log10() const
1487  {  if (isLazy())  {
1488    {    MAKELAZYOP(LOG10)
     DataLazy* c=new DataLazy(borrowDataPtr(),LOG10);  
     return Data(c);  
   }  
1489    return C_TensorUnaryOperation<double (*)(double)>(*this, ::log10);    return C_TensorUnaryOperation<double (*)(double)>(*this, ::log10);
1490  }  }
1491    
1492  Data  Data
1493  Data::log() const  Data::log() const
1494  {  {
1495    if (isLazy())    MAKELAZYOP(LOG)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),LOG);  
     return Data(c);  
   }  
1496    return C_TensorUnaryOperation<double (*)(double)>(*this, ::log);    return C_TensorUnaryOperation<double (*)(double)>(*this, ::log);
1497  }  }
1498    
1499  Data  Data
1500  Data::sign() const  Data::sign() const
1501  {  {
1502    if (isLazy())    MAKELAZYOP(SIGN)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),SIGN);  
     return Data(c);  
   }  
1503    return C_TensorUnaryOperation(*this, escript::fsign);    return C_TensorUnaryOperation(*this, escript::fsign);
1504  }  }
1505    
1506  Data  Data
1507  Data::abs() const  Data::abs() const
1508  {  {
1509    if (isLazy())    MAKELAZYOP(ABS)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),ABS);  
     return Data(c);  
   }  
1510    return C_TensorUnaryOperation<double (*)(double)>(*this, ::fabs);    return C_TensorUnaryOperation<double (*)(double)>(*this, ::fabs);
1511  }  }
1512    
1513  Data  Data
1514  Data::neg() const  Data::neg() const
1515  {  {
1516    if (isLazy())    MAKELAZYOP(NEG)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),NEG);  
     return Data(c);  
   }  
1517    return C_TensorUnaryOperation(*this, negate<double>());    return C_TensorUnaryOperation(*this, negate<double>());
1518  }  }
1519    
# Line 1448  Data::pos() const Line 1530  Data::pos() const
1530    
1531  Data  Data
1532  Data::exp() const  Data::exp() const
1533  {    {
1534    if (isLazy())    MAKELAZYOP(EXP)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),EXP);  
     return Data(c);  
   }  
1535    return C_TensorUnaryOperation<double (*)(double)>(*this, ::exp);    return C_TensorUnaryOperation<double (*)(double)>(*this, ::exp);
1536  }  }
1537    
1538  Data  Data
1539  Data::sqrt() const  Data::sqrt() const
1540  {  {
1541    if (isLazy())    MAKELAZYOP(SQRT)
   {  
     DataLazy* c=new DataLazy(borrowDataPtr(),SQRT);  
     return Data(c);  
   }  
1542    return C_TensorUnaryOperation<double (*)(double)>(*this, ::sqrt);    return C_TensorUnaryOperation<double (*)(double)>(*this, ::sqrt);
1543  }  }
1544    
# Line 1483  Data::Lsup() Line 1557  Data::Lsup()
1557  {  {
1558     if (isLazy())     if (isLazy())
1559     {     {
1560      expand();      resolve();
1561     }     }
1562     return LsupWorker();     return LsupWorker();
1563  }  }
# Line 1503  Data::sup() Line 1577  Data::sup()
1577  {  {
1578     if (isLazy())     if (isLazy())
1579     {     {
1580      expand();      resolve();
1581     }     }
1582     return supWorker();     return supWorker();
1583  }  }
# Line 1523  Data::inf() Line 1597  Data::inf()
1597  {  {
1598     if (isLazy())     if (isLazy())
1599     {     {
1600      expand();      resolve();
1601     }     }
1602     return infWorker();     return infWorker();
1603  }  }
# Line 1633  Data::swapaxes(const int axis0, const in Line 1707  Data::swapaxes(const int axis0, const in
1707       if (axis0 == axis1) {       if (axis0 == axis1) {
1708           throw DataException("Error - Data::swapaxes: axis indices must be different.");           throw DataException("Error - Data::swapaxes: axis indices must be different.");
1709       }       }
1710       if (axis0 > axis1) {       MAKELAZYOP2(SWAP,axis0,axis1)
1711           axis0_tmp=axis1;       if (axis0 > axis1)
1712           axis1_tmp=axis0;       {
1713       } else {      axis0_tmp=axis1;
1714           axis0_tmp=axis0;      axis1_tmp=axis0;
          axis1_tmp=axis1;  
1715       }       }
1716       for (int i=0; i<rank; i++) {       else
1717         if (i == axis0_tmp) {       {
1718            ev_shape.push_back(s[axis1_tmp]);      axis0_tmp=axis0;
1719         } else if (i == axis1_tmp) {      axis1_tmp=axis1;
1720            ev_shape.push_back(s[axis0_tmp]);       }
1721         } else {       for (int i=0; i<rank; i++)
1722            ev_shape.push_back(s[i]);       {
1723         }      if (i == axis0_tmp)
1724        {
1725            ev_shape.push_back(s[axis1_tmp]);
1726        }
1727        else if (i == axis1_tmp)
1728        {
1729            ev_shape.push_back(s[axis0_tmp]);
1730        }
1731        else
1732        {
1733            ev_shape.push_back(s[i]);
1734        }
1735       }       }
1736       Data ev(0.,ev_shape,getFunctionSpace());       Data ev(0.,ev_shape,getFunctionSpace());
1737       ev.typeMatchRight(*this);       ev.typeMatchRight(*this);
1738       m_data->swapaxes(ev.m_data.get(), axis0_tmp, axis1_tmp);       m_data->swapaxes(ev.m_data.get(), axis0_tmp, axis1_tmp);
1739       return ev;       return ev;
   
1740  }  }
1741    
1742  Data  Data
# Line 1672  Data::symmetric() const Line 1755  Data::symmetric() const
1755       else {       else {
1756          throw DataException("Error - Data::symmetric can only be calculated for rank 2 or 4 object.");          throw DataException("Error - Data::symmetric can only be calculated for rank 2 or 4 object.");
1757       }       }
1758       if (isLazy())       MAKELAZYOP(SYM)
      {  
     DataLazy* c=new DataLazy(borrowDataPtr(),SYM);  
     return Data(c);  
      }  
1759       Data ev(0.,getDataPointShape(),getFunctionSpace());       Data ev(0.,getDataPointShape(),getFunctionSpace());
1760       ev.typeMatchRight(*this);       ev.typeMatchRight(*this);
1761       m_data->symmetric(ev.m_data.get());       m_data->symmetric(ev.m_data.get());
# Line 1686  Data::symmetric() const Line 1765  Data::symmetric() const
1765  Data  Data
1766  Data::nonsymmetric() const  Data::nonsymmetric() const
1767  {  {
1768       if (isLazy())       MAKELAZYOP(NSYM)
      {  
     DataLazy* c=new DataLazy(borrowDataPtr(),NSYM);  
     return Data(c);  
      }  
1769       // check input       // check input
1770       DataTypes::ShapeType s=getDataPointShape();       DataTypes::ShapeType s=getDataPointShape();
1771       if (getDataPointRank()==2) {       if (getDataPointRank()==2) {
# Line 1722  Data::nonsymmetric() const Line 1797  Data::nonsymmetric() const
1797       }       }
1798  }  }
1799    
   
 // Doing a lazy version of this would require some thought.  
 // First it needs a parameter (which DataLazy doesn't support at the moment).  
 // (secondly although it does not apply to trace) we can't handle operations which return  
 // multiple results (like eigenvectors_values) or return values of different shapes to their input  
 // (like eigenvalues).  
1800  Data  Data
1801  Data::trace(int axis_offset) const  Data::trace(int axis_offset) const
1802  {  {    
1803       if (isLazy())       MAKELAZYOPOFF(TRACE,axis_offset)
1804         if ((axis_offset<0) || (axis_offset>getDataPointRank()))
1805       {       {
1806      Data temp(*this);   // to get around the fact that you can't resolve a const Data      throw DataException("Error - Data::trace, axis_offset must be between 0 and rank-2 inclusive.");
     temp.resolve();  
     return temp.trace(axis_offset);  
1807       }       }
1808       DataTypes::ShapeType s=getDataPointShape();       DataTypes::ShapeType s=getDataPointShape();
1809       if (getDataPointRank()==2) {       if (getDataPointRank()==2) {
# Line 1787  Data::trace(int axis_offset) const Line 1855  Data::trace(int axis_offset) const
1855  Data  Data
1856  Data::transpose(int axis_offset) const  Data::transpose(int axis_offset) const
1857  {      {    
1858       if (isLazy())       MAKELAZYOPOFF(TRANS,axis_offset)
      {  
     Data temp(*this);   // to get around the fact that you can't resolve a const Data  
     temp.resolve();  
     return temp.transpose(axis_offset);  
      }  
1859       DataTypes::ShapeType s=getDataPointShape();       DataTypes::ShapeType s=getDataPointShape();
1860       DataTypes::ShapeType ev_shape;       DataTypes::ShapeType ev_shape;
1861       // Here's the equivalent of python s_out=s[axis_offset:]+s[:axis_offset]       // Here's the equivalent of python s_out=s[axis_offset:]+s[:axis_offset]
# Line 1894  Data::calc_minGlobalDataPoint(int& ProcN Line 1957  Data::calc_minGlobalDataPoint(int& ProcN
1957    double next,local_min;    double next,local_min;
1958    int local_lowi=0,local_lowj=0;        int local_lowi=0,local_lowj=0;    
1959    
1960    #pragma omp parallel private(next,local_min,local_lowi,local_lowj)    #pragma omp parallel firstprivate(local_lowi,local_lowj) private(next,local_min)
1961    {    {
1962      local_min=min;      local_min=min;
1963      #pragma omp for private(i,j) schedule(static)      #pragma omp for private(i,j) schedule(static)
1964      for (i=0; i<numSamples; i++) {      for (i=0; i<numSamples; i++) {
1965        for (j=0; j<numDPPSample; j++) {        for (j=0; j<numDPPSample; j++) {
1966          next=temp.getDataAtOffset(temp.getDataOffset(i,j));          next=temp.getDataAtOffsetRO(temp.getDataOffset(i,j));
1967          if (next<local_min) {          if (next<local_min) {
1968            local_min=next;            local_min=next;
1969            local_lowi=i;            local_lowi=i;
# Line 1909  Data::calc_minGlobalDataPoint(int& ProcN Line 1972  Data::calc_minGlobalDataPoint(int& ProcN
1972        }        }
1973      }      }
1974      #pragma omp critical      #pragma omp critical
1975      if (local_min<min) {      if (local_min<min) {    // If we found a smaller value than our sentinel
1976        min=local_min;        min=local_min;
1977        lowi=local_lowi;        lowi=local_lowi;
1978        lowj=local_lowj;        lowj=local_lowj;
# Line 1917  Data::calc_minGlobalDataPoint(int& ProcN Line 1980  Data::calc_minGlobalDataPoint(int& ProcN
1980    }    }
1981    
1982  #ifdef PASO_MPI  #ifdef PASO_MPI
1983      // determine the processor on which the minimum occurs    // determine the processor on which the minimum occurs
1984      next = temp.getDataPoint(lowi,lowj);    next = temp.getDataPointRO(lowi,lowj);
1985      int lowProc = 0;    int lowProc = 0;
1986      double *globalMins = new double[get_MPISize()+1];    double *globalMins = new double[get_MPISize()+1];
1987      int error = MPI_Gather ( &next, 1, MPI_DOUBLE, globalMins, 1, MPI_DOUBLE, 0, get_MPIComm() );    int error;
1988      error = MPI_Gather ( &next, 1, MPI_DOUBLE, globalMins, 1, MPI_DOUBLE, 0, get_MPIComm() );
1989      if( get_MPIRank()==0 ){  
1990          next = globalMins[lowProc];    if( get_MPIRank()==0 ){
1991          for( i=1; i<get_MPISize(); i++ )      next = globalMins[lowProc];
1992              if( next>globalMins[i] ){      for( i=1; i<get_MPISize(); i++ )
1993                  lowProc = i;          if( next>globalMins[i] ){
1994                  next = globalMins[i];              lowProc = i;
1995              }              next = globalMins[i];
1996      }          }
1997      MPI_Bcast( &lowProc, 1, MPI_DOUBLE, 0, get_MPIComm() );    }
1998      MPI_Bcast( &lowProc, 1, MPI_INT, 0, get_MPIComm() );
1999    
2000      delete [] globalMins;    delete [] globalMins;
2001      ProcNo = lowProc;    ProcNo = lowProc;
2002  #else  #else
2003      ProcNo = 0;    ProcNo = 0;
2004  #endif  #endif
2005    DataPointNo = lowj + lowi * numDPPSample;    DataPointNo = lowj + lowi * numDPPSample;
2006  }  }
2007    
2008    
2009    const boost::python::tuple
2010    Data::maxGlobalDataPoint() const
2011    {
2012      int DataPointNo;
2013      int ProcNo;
2014      calc_maxGlobalDataPoint(ProcNo,DataPointNo);
2015      return make_tuple(ProcNo,DataPointNo);
2016    }
2017    
2018    void
2019    Data::calc_maxGlobalDataPoint(int& ProcNo,
2020                            int& DataPointNo) const
2021    {
2022      if (isLazy())
2023      {
2024        Data temp(*this);   // to get around the fact that you can't resolve a const Data
2025        temp.resolve();
2026        return temp.calc_maxGlobalDataPoint(ProcNo,DataPointNo);
2027      }
2028      int i,j;
2029      int highi=0,highj=0;
2030    //-------------
2031      double max=numeric_limits<double>::min();
2032    
2033      Data temp=maxval();
2034    
2035      int numSamples=temp.getNumSamples();
2036      int numDPPSample=temp.getNumDataPointsPerSample();
2037    
2038      double next,local_max;
2039      int local_highi=0,local_highj=0;  
2040    
2041      #pragma omp parallel firstprivate(local_highi,local_highj) private(next,local_max)
2042      {
2043        local_max=max;
2044        #pragma omp for private(i,j) schedule(static)
2045        for (i=0; i<numSamples; i++) {
2046          for (j=0; j<numDPPSample; j++) {
2047            next=temp.getDataAtOffsetRO(temp.getDataOffset(i,j));
2048            if (next>local_max) {
2049              local_max=next;
2050              local_highi=i;
2051              local_highj=j;
2052            }
2053          }
2054        }
2055        #pragma omp critical
2056        if (local_max>max) {    // If we found a larger value than our sentinel
2057          max=local_max;
2058          highi=local_highi;
2059          highj=local_highj;
2060        }
2061      }
2062    
2063    #ifdef PASO_MPI
2064      // determine the processor on which the maximum occurs
2065      next = temp.getDataPointRO(highi,highj);
2066      int highProc = 0;
2067      double *globalMaxs = new double[get_MPISize()+1];
2068      int error;
2069      error = MPI_Gather ( &next, 1, MPI_DOUBLE, globalMaxs, 1, MPI_DOUBLE, 0, get_MPIComm() );
2070    
2071      if( get_MPIRank()==0 ){
2072      next = globalMaxs[highProc];
2073      for( i=1; i<get_MPISize(); i++ )
2074        if( next>globalMaxs[i] ){
2075            highProc = i;
2076            next = globalMaxs[i];
2077        }
2078      }
2079      MPI_Bcast( &highProc, 1, MPI_INT, 0, get_MPIComm() );
2080      delete [] globalMaxs;
2081      ProcNo = highProc;
2082    #else
2083      ProcNo = 0;
2084    #endif
2085      DataPointNo = highj + highi * numDPPSample;
2086    }
2087    
2088  void  void
2089  Data::saveDX(std::string fileName) const  Data::saveDX(std::string fileName) const
2090  {  {
# Line 1977  Data::saveVTK(std::string fileName) cons Line 2121  Data::saveVTK(std::string fileName) cons
2121    }    }
2122    boost::python::dict args;    boost::python::dict args;
2123    args["data"]=boost::python::object(this);    args["data"]=boost::python::object(this);
2124    getDomain()->saveVTK(fileName,args);    getDomain()->saveVTK(fileName,args,"","");
2125    return;    return;
2126  }  }
2127    
2128    
2129    
2130  Data&  Data&
2131  Data::operator+=(const Data& right)  Data::operator+=(const Data& right)
2132  {  {
2133    if (isProtected()) {    if (isProtected()) {
2134          throw DataException("Error - attempt to update protected Data object.");          throw DataException("Error - attempt to update protected Data object.");
2135    }    }
2136    if (isLazy() || right.isLazy())    MAKELAZYBINSELF(right,ADD)    // for lazy + is equivalent to +=
2137    {    exclusiveWrite();         // Since Lazy data does not modify its leaves we only need to worry here
2138      DataLazy* c=new DataLazy(m_data,right.borrowDataPtr(),ADD); // for lazy + is equivalent to +=    binaryOp(right,plus<double>());
2139          m_data=c->getPtr();    return (*this);
     return (*this);  
   }  
   else  
   {  
     binaryOp(right,plus<double>());  
     return (*this);  
   }  
2140  }  }
2141    
2142  Data&  Data&
# Line 2007  Data::operator+=(const boost::python::ob Line 2146  Data::operator+=(const boost::python::ob
2146          throw DataException("Error - attempt to update protected Data object.");          throw DataException("Error - attempt to update protected Data object.");
2147    }    }
2148    Data tmp(right,getFunctionSpace(),false);    Data tmp(right,getFunctionSpace(),false);
2149    if (isLazy())    (*this)+=tmp;
2150    {    return *this;
     DataLazy* c=new DataLazy(m_data,tmp.borrowDataPtr(),ADD);   // for lazy + is equivalent to +=  
         m_data=c->getPtr();  
     return (*this);  
   }  
   else  
   {  
     binaryOp(tmp,plus<double>());  
     return (*this);  
   }  
2151  }  }
2152    
2153  // Hmmm, operator= makes a deep copy but the copy constructor does not?  // Hmmm, operator= makes a deep copy but the copy constructor does not?
2154  Data&  Data&
2155  Data::operator=(const Data& other)  Data::operator=(const Data& other)
2156  {  {
2157    #if defined ASSIGNMENT_MEANS_DEEPCOPY  
2158    // This should not be used.
2159    // Just leaving this here until I have completed transition
2160    copy(other);    copy(other);
2161    #else
2162      m_protected=false;        // since any changes should be caught by exclusiveWrite();
2163    //   m_data=other.m_data;
2164      set_m_data(other.m_data);
2165    #endif
2166    return (*this);    return (*this);
2167  }  }
2168    
# Line 2034  Data::operator-=(const Data& right) Line 2172  Data::operator-=(const Data& right)
2172    if (isProtected()) {    if (isProtected()) {
2173          throw DataException("Error - attempt to update protected Data object.");          throw DataException("Error - attempt to update protected Data object.");
2174    }    }
2175    if (isLazy() || right.isLazy())    MAKELAZYBINSELF(right,SUB)
2176    {    exclusiveWrite();
2177      DataLazy* c=new DataLazy(m_data,right.borrowDataPtr(),SUB); // for lazy - is equivalent to -=    binaryOp(right,minus<double>());
2178          m_data=c->getPtr();    return (*this);
     return (*this);  
   }  
   else  
   {  
     binaryOp(right,minus<double>());  
     return (*this);  
   }  
2179  }  }
2180    
2181  Data&  Data&
# Line 2054  Data::operator-=(const boost::python::ob Line 2185  Data::operator-=(const boost::python::ob
2185          throw DataException("Error - attempt to update protected Data object.");          throw DataException("Error - attempt to update protected Data object.");
2186    }    }
2187    Data tmp(right,getFunctionSpace(),false);    Data tmp(right,getFunctionSpace(),false);
2188    if (isLazy())    (*this)-=tmp;
2189    {    return (*this);
     DataLazy* c=new DataLazy(m_data,tmp.borrowDataPtr(),SUB);   // for lazy - is equivalent to -=  
         m_data=c->getPtr();  
     return (*this);  
   }  
   else  
   {  
     binaryOp(tmp,minus<double>());  
     return (*this);  
   }  
2190  }  }
2191    
2192  Data&  Data&
# Line 2073  Data::operator*=(const Data& right) Line 2195  Data::operator*=(const Data& right)
2195    if (isProtected()) {    if (isProtected()) {
2196          throw DataException("Error - attempt to update protected Data object.");          throw DataException("Error - attempt to update protected Data object.");
2197    }    }
2198    if (isLazy() || right.isLazy())    MAKELAZYBINSELF(right,MUL)
2199    {    exclusiveWrite();
2200      DataLazy* c=new DataLazy(m_data,right.borrowDataPtr(),MUL); // for lazy * is equivalent to *=    binaryOp(right,multiplies<double>());
2201          m_data=c->getPtr();    return (*this);
     return (*this);  
   }  
   else  
   {  
     binaryOp(right,multiplies<double>());  
     return (*this);  
   }  
2202  }  }
2203    
2204  Data&  Data&
# Line 2093  Data::operator*=(const boost::python::ob Line 2208  Data::operator*=(const boost::python::ob
2208          throw DataException("Error - attempt to update protected Data object.");          throw DataException("Error - attempt to update protected Data object.");
2209    }    }
2210    Data tmp(right,getFunctionSpace(),false);    Data tmp(right,getFunctionSpace(),false);
2211    if (isLazy())    (*this)*=tmp;
2212    {    return (*this);
     DataLazy* c=new DataLazy(m_data,tmp.borrowDataPtr(),MUL);   // for lazy * is equivalent to *=  
         m_data=c->getPtr();  
     return (*this);  
   }  
   else  
   {  
     binaryOp(tmp,multiplies<double>());  
     return (*this);  
   }  
2213  }  }
2214    
2215  Data&  Data&
# Line 2112  Data::operator/=(const Data& right) Line 2218  Data::operator/=(const Data& right)
2218    if (isProtected()) {    if (isProtected()) {
2219          throw DataException("Error - attempt to update protected Data object.");          throw DataException("Error - attempt to update protected Data object.");
2220    }    }
2221    if (isLazy() || right.isLazy())    MAKELAZYBINSELF(right,DIV)
2222    {    exclusiveWrite();
2223      DataLazy* c=new DataLazy(m_data,right.borrowDataPtr(),DIV); // for lazy / is equivalent to /=    binaryOp(right,divides<double>());
2224          m_data=c->getPtr();    return (*this);
     return (*this);  
   }  
   else  
   {  
     binaryOp(right,divides<double>());  
     return (*this);  
   }  
2225  }  }
2226    
2227  Data&  Data&
# Line 2132  Data::operator/=(const boost::python::ob Line 2231  Data::operator/=(const boost::python::ob
2231          throw DataException("Error - attempt to update protected Data object.");          throw DataException("Error - attempt to update protected Data object.");
2232    }    }
2233    Data tmp(right,getFunctionSpace(),false);    Data tmp(right,getFunctionSpace(),false);
2234    if (isLazy())    (*this)/=tmp;
2235    {    return (*this);
     DataLazy* c=new DataLazy(m_data,tmp.borrowDataPtr(),DIV);   // for lazy / is equivalent to /=  
         m_data=c->getPtr();  
     return (*this);  
   }  
   else  
   {  
     binaryOp(tmp,divides<double>());  
     return (*this);  
   }  
2236  }  }
2237    
2238  Data  Data
# Line 2162  Data::powO(const boost::python::object& Line 2252  Data::powO(const boost::python::object&
2252  Data  Data
2253  Data::powD(const Data& right) const  Data::powD(const Data& right) const
2254  {  {
2255    if (isLazy() || right.isLazy())    MAKELAZYBIN(right,POW)
   {  
     DataLazy* c=new DataLazy(m_data,right.borrowDataPtr(),POW);  
     return Data(c);  
   }  
2256    return C_TensorBinaryOperation<double (*)(double, double)>(*this, right, ::pow);    return C_TensorBinaryOperation<double (*)(double, double)>(*this, right, ::pow);
2257  }  }
2258    
# Line 2175  Data::powD(const Data& right) const Line 2261  Data::powD(const Data& right) const
2261  Data  Data
2262  escript::operator+(const Data& left, const Data& right)  escript::operator+(const Data& left, const Data& right)
2263  {  {
2264    if (left.isLazy() || right.isLazy())    MAKELAZYBIN2(left,right,ADD)
   {  
     DataLazy* c=new DataLazy(left.borrowDataPtr(),right.borrowDataPtr(),ADD);  
     return Data(c);  
   }  
2265    return C_TensorBinaryOperation(left, right, plus<double>());    return C_TensorBinaryOperation(left, right, plus<double>());
2266  }  }
2267    
# Line 2188  escript::operator+(const Data& left, con Line 2270  escript::operator+(const Data& left, con
2270  Data  Data
2271  escript::operator-(const Data& left, const Data& right)  escript::operator-(const Data& left, const Data& right)
2272  {  {
2273    if (left.isLazy() || right.isLazy())    MAKELAZYBIN2(left,right,SUB)
   {  
     DataLazy* c=new DataLazy(left.borrowDataPtr(),right.borrowDataPtr(),SUB);  
     return Data(c);  
   }  
2274    return C_TensorBinaryOperation(left, right, minus<double>());    return C_TensorBinaryOperation(left, right, minus<double>());
2275  }  }
2276    
# Line 2201  escript::operator-(const Data& left, con Line 2279  escript::operator-(const Data& left, con
2279  Data  Data
2280  escript::operator*(const Data& left, const Data& right)  escript::operator*(const Data& left, const Data& right)
2281  {  {
2282    if (left.isLazy() || right.isLazy())    MAKELAZYBIN2(left,right,MUL)
   {  
     DataLazy* c=new DataLazy(left.borrowDataPtr(),right.borrowDataPtr(),MUL);  
     return Data(c);  
   }  
2283    return C_TensorBinaryOperation(left, right, multiplies<double>());    return C_TensorBinaryOperation(left, right, multiplies<double>());
2284  }  }
2285    
# Line 2214  escript::operator*(const Data& left, con Line 2288  escript::operator*(const Data& left, con
2288  Data  Data
2289  escript::operator/(const Data& left, const Data& right)  escript::operator/(const Data& left, const Data& right)
2290  {  {
2291    if (left.isLazy() || right.isLazy())    MAKELAZYBIN2(left,right,DIV)
   {  
     DataLazy* c=new DataLazy(left.borrowDataPtr(),right.borrowDataPtr(),DIV);  
     return Data(c);  
   }  
2292    return C_TensorBinaryOperation(left, right, divides<double>());    return C_TensorBinaryOperation(left, right, divides<double>());
2293  }  }
2294    
# Line 2227  escript::operator/(const Data& left, con Line 2297  escript::operator/(const Data& left, con
2297  Data  Data
2298  escript::operator+(const Data& left, const boost::python::object& right)  escript::operator+(const Data& left, const boost::python::object& right)
2299  {  {
2300    if (left.isLazy())    Data tmp(right,left.getFunctionSpace(),false);
2301    {    MAKELAZYBIN2(left,tmp,ADD)
2302      DataLazy* c=new DataLazy(left.borrowDataPtr(),Data(right,left.getFunctionSpace(),false).borrowDataPtr(),ADD);    return left+tmp;
     return Data(c);  
   }  
   return left+Data(right,left.getFunctionSpace(),false);  
2303  }  }
2304    
2305  //  //
# Line 2240  escript::operator+(const Data& left, con Line 2307  escript::operator+(const Data& left, con
2307  Data  Data
2308  escript::operator-(const Data& left, const boost::python::object& right)  escript::operator-(const Data& left, const boost::python::object& right)
2309  {  {
2310    if (left.isLazy())    Data tmp(right,left.getFunctionSpace(),false);
2311    {    MAKELAZYBIN2(left,tmp,SUB)
2312      DataLazy* c=new DataLazy(left.borrowDataPtr(),Data(right,left.getFunctionSpace(),false).borrowDataPtr(),SUB);    return left-tmp;
     return Data(c);  
   }  
   return left-Data(right,left.getFunctionSpace(),false);  
2313  }  }
2314    
2315  //  //
# Line 2253  escript::operator-(const Data& left, con Line 2317  escript::operator-(const Data& left, con
2317  Data  Data
2318  escript::operator*(const Data& left, const boost::python::object& right)  escript::operator*(const Data& left, const boost::python::object& right)
2319  {  {
2320    if (left.isLazy())    Data tmp(right,left.getFunctionSpace(),false);
2321    {    MAKELAZYBIN2(left,tmp,MUL)
2322      DataLazy* c=new DataLazy(left.borrowDataPtr(),Data(right,left.getFunctionSpace(),false).borrowDataPtr(),MUL);    return left*tmp;
     return Data(c);  
   }  
   return left*Data(right,left.getFunctionSpace(),false);  
2323  }  }
2324    
2325  //  //
# Line 2266  escript::operator*(const Data& left, con Line 2327  escript::operator*(const Data& left, con
2327  Data  Data
2328  escript::operator/(const Data& left, const boost::python::object& right)  escript::operator/(const Data& left, const boost::python::object& right)
2329  {  {
2330    if (left.isLazy())    Data tmp(right,left.getFunctionSpace(),false);
2331    {    MAKELAZYBIN2(left,tmp,DIV)
2332      DataLazy* c=new DataLazy(left.borrowDataPtr(),Data(right,left.getFunctionSpace(),false).borrowDataPtr(),DIV);    return left/tmp;
     return Data(c);  
   }  
   return left/Data(right,left.getFunctionSpace(),false);  
2333  }  }
2334    
2335  //  //
# Line 2279  escript::operator/(const Data& left, con Line 2337  escript::operator/(const Data& left, con
2337  Data  Data
2338  escript::operator+(const boost::python::object& left, const Data& right)  escript::operator+(const boost::python::object& left, const Data& right)
2339  {  {
2340    if (right.isLazy())    Data tmp(left,right.getFunctionSpace(),false);
2341    {    MAKELAZYBIN2(tmp,right,ADD)
2342      DataLazy* c=new DataLazy(Data(left,right.getFunctionSpace(),false).borrowDataPtr(),right.borrowDataPtr(),ADD);    return tmp+right;
     return Data(c);  
   }  
   return Data(left,right.getFunctionSpace(),false)+right;  
2343  }  }
2344    
2345  //  //
# Line 2292  escript::operator+(const boost::python:: Line 2347  escript::operator+(const boost::python::
2347  Data  Data
2348  escript::operator-(const boost::python::object& left, const Data& right)  escript::operator-(const boost::python::object& left, const Data& right)
2349  {  {
2350    if (right.isLazy())    Data tmp(left,right.getFunctionSpace(),false);
2351    {    MAKELAZYBIN2(tmp,right,SUB)
2352      DataLazy* c=new DataLazy(Data(left,right.getFunctionSpace(),false).borrowDataPtr(),right.borrowDataPtr(),SUB);    return tmp-right;
     return Data(c);  
   }  
   return Data(left,right.getFunctionSpace(),false)-right;  
2353  }  }
2354    
2355  //  //
# Line 2305  escript::operator-(const boost::python:: Line 2357  escript::operator-(const boost::python::
2357  Data  Data
2358  escript::operator*(const boost::python::object& left, const Data& right)  escript::operator*(const boost::python::object& left, const Data& right)
2359  {  {
2360    if (right.isLazy())    Data tmp(left,right.getFunctionSpace(),false);
2361    {    MAKELAZYBIN2(tmp,right,MUL)
2362      DataLazy* c=new DataLazy(Data(left,right.getFunctionSpace(),false).borrowDataPtr(),right.borrowDataPtr(),MUL);    return tmp*right;
     return Data(c);  
   }  
   return Data(left,right.getFunctionSpace(),false)*right;  
2363  }  }
2364    
2365  //  //
# Line 2318  escript::operator*(const boost::python:: Line 2367  escript::operator*(const boost::python::
2367  Data  Data
2368  escript::operator/(const boost::python::object& left, const Data& right)  escript::operator/(const boost::python::object& left, const Data& right)
2369  {  {
2370    if (right.isLazy())    Data tmp(left,right.getFunctionSpace(),false);
2371    {    MAKELAZYBIN2(tmp,right,DIV)
2372      DataLazy* c=new DataLazy(Data(left,right.getFunctionSpace(),false).borrowDataPtr(),right.borrowDataPtr(),DIV);    return tmp/right;
     return Data(c);  
   }  
   return Data(left,right.getFunctionSpace(),false)/right;  
2373  }  }
2374    
2375    
# Line 2364  void Line 2410  void
2410  Data::setItemD(const boost::python::object& key,  Data::setItemD(const boost::python::object& key,
2411                 const Data& value)                 const Data& value)
2412  {  {
 //  const DataArrayView& view=getPointDataView();  
   
2413    DataTypes::RegionType slice_region=DataTypes::getSliceRegion(getDataPointShape(),key);    DataTypes::RegionType slice_region=DataTypes::getSliceRegion(getDataPointShape(),key);
2414    if (slice_region.size()!=getDataPointRank()) {    if (slice_region.size()!=getDataPointRank()) {
2415      throw DataException("Error - slice size does not match Data rank.");      throw DataException("Error - slice size does not match Data rank.");
2416    }    }
2417      exclusiveWrite();
2418    if (getFunctionSpace()!=value.getFunctionSpace()) {    if (getFunctionSpace()!=value.getFunctionSpace()) {
2419       setSlice(Data(value,getFunctionSpace()),slice_region);       setSlice(Data(value,getFunctionSpace()),slice_region);
2420    } else {    } else {
# Line 2384  Data::setSlice(const Data& value, Line 2429  Data::setSlice(const Data& value,
2429    if (isProtected()) {    if (isProtected()) {
2430          throw DataException("Error - attempt to update protected Data object.");          throw DataException("Error - attempt to update protected Data object.");
2431    }    }
2432    FORCERESOLVE;    forceResolve();
2433  /*  if (isLazy())    exclusiveWrite();     // In case someone finds a way to call this without going through setItemD
   {  
     throw DataException("Error - setSlice not permitted on lazy data.");  
   }*/  
2434    Data tempValue(value);    Data tempValue(value);
2435    typeMatchLeft(tempValue);    typeMatchLeft(tempValue);
2436    typeMatchRight(tempValue);    typeMatchRight(tempValue);
# Line 2431  Data::typeMatchRight(const Data& right) Line 2473  Data::typeMatchRight(const Data& right)
2473    }    }
2474  }  }
2475    
2476    // The normal TaggedValue adds the tag if it is not already present
2477    // This form does not. It throws instead.
2478    // This is because the names are maintained by the domain and cannot be added
2479    // without knowing the tag number to map it to.
2480  void  void
2481  Data::setTaggedValueByName(std::string name,  Data::setTaggedValueByName(std::string name,
2482                             const boost::python::object& value)                             const boost::python::object& value)
2483  {  {
2484       if (getFunctionSpace().getDomain()->isValidTagName(name)) {       if (getFunctionSpace().getDomain()->isValidTagName(name)) {
2485      FORCERESOLVE;      forceResolve();
2486        exclusiveWrite();
2487          int tagKey=getFunctionSpace().getDomain()->getTag(name);          int tagKey=getFunctionSpace().getDomain()->getTag(name);
2488          setTaggedValue(tagKey,value);          setTaggedValue(tagKey,value);
2489       }       }
2490         else
2491         {                  // The
2492        throw DataException("Error - unknown tag in setTaggedValueByName.");
2493         }
2494  }  }
2495    
2496  void  void
2497  Data::setTaggedValue(int tagKey,  Data::setTaggedValue(int tagKey,
2498                       const boost::python::object& value)                       const boost::python::object& value)
# Line 2450  Data::setTaggedValue(int tagKey, Line 2502  Data::setTaggedValue(int tagKey,
2502    }    }
2503    //    //
2504    // Ensure underlying data object is of type DataTagged    // Ensure underlying data object is of type DataTagged
2505    FORCERESOLVE;    forceResolve();
2506      exclusiveWrite();
2507    if (isConstant()) tag();    if (isConstant()) tag();
2508    numeric::array asNumArray(value);    WrappedArray w(value);
   
   // extract the shape of the numarray  
   DataTypes::ShapeType tempShape;  
   for (int i=0; i < asNumArray.getrank(); i++) {  
     tempShape.push_back(extract<int>(asNumArray.getshape()[i]));  
   }  
2509    
2510    DataVector temp_data2;    DataVector temp_data2;
2511    temp_data2.copyFromNumArray(asNumArray);    temp_data2.copyFromArray(w,1);
2512    
2513    m_data->setTaggedValue(tagKey,tempShape, temp_data2);    m_data->setTaggedValue(tagKey,w.getShape(), temp_data2);
2514  }  }
2515    
2516    
# Line 2478  Data::setTaggedValueFromCPP(int tagKey, Line 2525  Data::setTaggedValueFromCPP(int tagKey,
2525    }    }
2526    //    //
2527    // Ensure underlying data object is of type DataTagged    // Ensure underlying data object is of type DataTagged
2528    FORCERESOLVE;    forceResolve();
2529    if (isConstant()) tag();    if (isConstant()) tag();
2530      exclusiveWrite();
2531    //    //
2532    // Call DataAbstract::setTaggedValue    // Call DataAbstract::setTaggedValue
2533    m_data->setTaggedValue(tagKey,pointshape, value, dataOffset);    m_data->setTaggedValue(tagKey,pointshape, value, dataOffset);
# Line 2512  escript::C_GeneralTensorProduct(Data& ar Line 2560  escript::C_GeneralTensorProduct(Data& ar
2560    // SM is the product of the last axis_offset entries in arg_0.getShape().    // SM is the product of the last axis_offset entries in arg_0.getShape().
2561    
2562    // deal with any lazy data    // deal with any lazy data
2563    if (arg_0.isLazy()) {arg_0.resolve();}  //   if (arg_0.isLazy()) {arg_0.resolve();}
2564    if (arg_1.isLazy()) {arg_1.resolve();}  //   if (arg_1.isLazy()) {arg_1.resolve();}
2565      if (arg_0.isLazy() || arg_1.isLazy() || (AUTOLAZYON && (arg_0.isExpanded() || arg_1.isExpanded())))
2566      {
2567        DataLazy* c=new DataLazy(arg_0.borrowDataPtr(), arg_1.borrowDataPtr(), PROD, axis_offset,transpose);
2568        return Data(c);
2569      }
2570    
2571    // Interpolate if necessary and find an appropriate function space    // Interpolate if necessary and find an appropriate function space
2572    Data arg_0_Z, arg_1_Z;    Data arg_0_Z, arg_1_Z;
# Line 2590  escript::C_GeneralTensorProduct(Data& ar Line 2643  escript::C_GeneralTensorProduct(Data& ar
2643       for (int i=axis_offset; i<rank1; i++, ++out_index)   { shape2[out_index]=tmpShape1[i]; } // Last part of arg_1_Z       for (int i=axis_offset; i<rank1; i++, ++out_index)   { shape2[out_index]=tmpShape1[i]; } // Last part of arg_1_Z
2644    }    }
2645    
2646      if (shape2.size()>ESCRIPT_MAX_DATA_RANK)
2647      {
2648         ostringstream os;
2649         os << "C_GeneralTensorProduct: Error - Attempt to create a rank " << shape2.size() << " object. The maximum rank is " << ESCRIPT_MAX_DATA_RANK << ".";
2650         throw DataException(os.str());
2651      }
2652    
2653    // Declare output Data object    // Declare output Data object
2654    Data res;    Data res;
2655    
2656    if      (arg_0_Z.isConstant()   && arg_1_Z.isConstant()) {    if      (arg_0_Z.isConstant()   && arg_1_Z.isConstant()) {
2657      res = Data(0.0, shape2, arg_1_Z.getFunctionSpace());    // DataConstant output      res = Data(0.0, shape2, arg_1_Z.getFunctionSpace());    // DataConstant output
2658      double *ptr_0 = &(arg_0_Z.getDataAtOffset(0));      const double *ptr_0 = &(arg_0_Z.getDataAtOffsetRO(0));
2659      double *ptr_1 = &(arg_1_Z.getDataAtOffset(0));      const double *ptr_1 = &(arg_1_Z.getDataAtOffsetRO(0));
2660      double *ptr_2 = &(res.getDataAtOffset(0));      double *ptr_2 = &(res.getDataAtOffsetRW(0));
2661      matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);      matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2662    }    }
2663    else if (arg_0_Z.isConstant()   && arg_1_Z.isTagged()) {    else if (arg_0_Z.isConstant()   && arg_1_Z.isTagged()) {
# Line 2618  escript::C_GeneralTensorProduct(Data& ar Line 2678  escript::C_GeneralTensorProduct(Data& ar
2678    
2679      // Prepare offset into DataConstant      // Prepare offset into DataConstant
2680      int offset_0 = tmp_0->getPointOffset(0,0);      int offset_0 = tmp_0->getPointOffset(0,0);
2681      double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0));      const double *ptr_0 = &(arg_0_Z.getDataAtOffsetRO(offset_0));
     // Get the views  
 //     DataArrayView view_1 = tmp_1->getDefaultValue();  
 //     DataArrayView view_2 = tmp_2->getDefaultValue();  
 //     // Get the pointers to the actual data  
 //     double *ptr_1 = &((view_1.getData())[0]);  
 //     double *ptr_2 = &((view_2.getData())[0]);  
   
     double *ptr_1 = &(tmp_1->getDefaultValue(0));  
     double *ptr_2 = &(tmp_2->getDefaultValue(0));  
2682    
2683        const double *ptr_1 = &(tmp_1->getDefaultValueRO(0));
2684        double *ptr_2 = &(tmp_2->getDefaultValueRW(0));
2685    
2686      // Compute an MVP for the default      // Compute an MVP for the default
2687      matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);      matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
# Line 2637  escript::C_GeneralTensorProduct(Data& ar Line 2690  escript::C_GeneralTensorProduct(Data& ar
2690      DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory      DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory
2691      for (i=lookup_1.begin();i!=lookup_1.end();i++) {      for (i=lookup_1.begin();i!=lookup_1.end();i++) {
2692        tmp_2->addTag(i->first);        tmp_2->addTag(i->first);
 //       DataArrayView view_1 = tmp_1->getDataPointByTag(i->first);  
 //       DataArrayView view_2 = tmp_2->getDataPointByTag(i->first);  
 //       double *ptr_1 = &view_1.getData(0);  
 //       double *ptr_2 = &view_2.getData(0);  
2693    
2694        double *ptr_1 = &(tmp_1->getDataByTag(i->first,0));        const double *ptr_1 = &(tmp_1->getDataByTagRO(i->first,0));
2695        double *ptr_2 = &(tmp_2->getDataByTag(i->first,0));        double *ptr_2 = &(tmp_2->getDataByTagRW(i->first,0));
2696            
2697        matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);        matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2698      }      }
# Line 2667  escript::C_GeneralTensorProduct(Data& ar Line 2716  escript::C_GeneralTensorProduct(Data& ar
2716        for (dataPointNo_1 = 0; dataPointNo_1 < numDataPointsPerSample_1; dataPointNo_1++) {        for (dataPointNo_1 = 0; dataPointNo_1 < numDataPointsPerSample_1; dataPointNo_1++) {
2717          int offset_1 = tmp_1->getPointOffset(sampleNo_1,dataPointNo_1);          int offset_1 = tmp_1->getPointOffset(sampleNo_1,dataPointNo_1);
2718          int offset_2 = tmp_2->getPointOffset(sampleNo_1,dataPointNo_1);          int offset_2 = tmp_2->getPointOffset(sampleNo_1,dataPointNo_1);
2719          double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0));          const double *ptr_0 = &(arg_0_Z.getDataAtOffsetRO(offset_0));
2720          double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1));          const double *ptr_1 = &(arg_1_Z.getDataAtOffsetRO(offset_1));
2721          double *ptr_2 = &(res.getDataAtOffset(offset_2));          double *ptr_2 = &(res.getDataAtOffsetRW(offset_2));
2722          matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);          matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2723        }        }
2724      }      }
# Line 2693  escript::C_GeneralTensorProduct(Data& ar Line 2742  escript::C_GeneralTensorProduct(Data& ar
2742    
2743      // Prepare offset into DataConstant      // Prepare offset into DataConstant
2744      int offset_1 = tmp_1->getPointOffset(0,0);      int offset_1 = tmp_1->getPointOffset(0,0);
2745      double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1));      const double *ptr_1 = &(arg_1_Z.getDataAtOffsetRO(offset_1));
2746      // Get the views      const double *ptr_0 = &(tmp_0->getDefaultValueRO(0));
2747  //     DataArrayView view_0 = tmp_0->getDefaultValue();      double *ptr_2 = &(tmp_2->getDefaultValueRW(0));
 //     DataArrayView view_2 = tmp_2->getDefaultValue();  
 //     // Get the pointers to the actual data  
 //     double *ptr_0 = &((view_0.getData())[0]);  
 //     double *ptr_2 = &((view_2.getData())[0]);  
   
     double *ptr_0 = &(tmp_0->getDefaultValue(0));  
     double *ptr_2 = &(tmp_2->getDefaultValue(0));  
2748    
2749      // Compute an MVP for the default      // Compute an MVP for the default
2750      matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);      matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
# Line 2710  escript::C_GeneralTensorProduct(Data& ar Line 2752  escript::C_GeneralTensorProduct(Data& ar
2752      const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup();      const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup();
2753      DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory      DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory
2754      for (i=lookup_0.begin();i!=lookup_0.end();i++) {      for (i=lookup_0.begin();i!=lookup_0.end();i++) {
 //      tmp_2->addTaggedValue(i->first,tmp_2->getDefaultValue());  
 //       DataArrayView view_0 = tmp_0->getDataPointByTag(i->first);  
 //       DataArrayView view_2 = tmp_2->getDataPointByTag(i->first);  
 //       double *ptr_0 = &view_0.getData(0);  
 //       double *ptr_2 = &view_2.getData(0);  
2755    
2756        tmp_2->addTag(i->first);        tmp_2->addTag(i->first);
2757        double *ptr_0 = &(tmp_0->getDataByTag(i->first,0));        const double *ptr_0 = &(tmp_0->getDataByTagRO(i->first,0));
2758        double *ptr_2 = &(tmp_2->getDataByTag(i->first,0));        double *ptr_2 = &(tmp_2->getDataByTagRW(i->first,0));
2759        matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);        matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2760      }      }
2761    
# Line 2739  escript::C_GeneralTensorProduct(Data& ar Line 2776  escript::C_GeneralTensorProduct(Data& ar
2776      DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData());      DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData());
2777      if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataTagged."); }      if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataTagged."); }
2778    
2779  //     // Get the views      const double *ptr_0 = &(tmp_0->getDefaultValueRO(0));
2780  //     DataArrayView view_0 = tmp_0->getDefaultValue();      const double *ptr_1 = &(tmp_1->getDefaultValueRO(0));
2781  //     DataArrayView view_1 = tmp_1->getDefaultValue();      double *ptr_2 = &(tmp_2->getDefaultValueRW(0));
 //     DataArrayView view_2 = tmp_2->getDefaultValue();  
 //     // Get the pointers to the actual data  
 //     double *ptr_0 = &((view_0.getData())[0]);  
 //     double *ptr_1 = &((view_1.getData())[0]);  
 //     double *ptr_2 = &((view_2.getData())[0]);  
   
     double *ptr_0 = &(tmp_0->getDefaultValue(0));  
     double *ptr_1 = &(tmp_1->getDefaultValue(0));  
     double *ptr_2 = &(tmp_2->getDefaultValue(0));  
   
2782    
2783      // Compute an MVP for the default      // Compute an MVP for the default
2784      matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);      matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
# Line 2768  escript::C_GeneralTensorProduct(Data& ar Line 2795  escript::C_GeneralTensorProduct(Data& ar
2795      // Compute an MVP for each tag      // Compute an MVP for each tag
2796      const DataTagged::DataMapType& lookup_2=tmp_2->getTagLookup();      const DataTagged::DataMapType& lookup_2=tmp_2->getTagLookup();
2797      for (i=lookup_2.begin();i!=lookup_2.end();i++) {      for (i=lookup_2.begin();i!=lookup_2.end();i++) {
2798  //       DataArrayView view_0 = tmp_0->getDataPointByTag(i->first);        const double *ptr_0 = &(tmp_0->getDataByTagRO(i->first,0));
2799  //       DataArrayView view_1 = tmp_1->getDataPointByTag(i->first);        const double *ptr_1 = &(tmp_1->getDataByTagRO(i->first,0));
2800  //       DataArrayView view_2 = tmp_2->getDataPointByTag(i->first);        double *ptr_2 = &(tmp_2->getDataByTagRW(i->first,0));
 //       double *ptr_0 = &view_0.getData(0);  
 //       double *ptr_1 = &view_1.getData(0);  
 //       double *ptr_2 = &view_2.getData(0);  
   
       double *ptr_0 = &(tmp_0->getDataByTag(i->first,0));  
       double *ptr_1 = &(tmp_1->getDataByTag(i->first,0));  
       double *ptr_2 = &(tmp_2->getDataByTag(i->first,0));  
2801    
2802        matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);        matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2803      }      }
# Line 2799  escript::C_GeneralTensorProduct(Data& ar Line 2819  escript::C_GeneralTensorProduct(Data& ar
2819      #pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static)      #pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static)
2820      for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) {      for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) {
2821        int offset_0 = tmp_0->getPointOffset(sampleNo_0,0); // They're all the same, so just use #0        int offset_0 = tmp_0->getPointOffset(sampleNo_0,0); // They're all the same, so just use #0
2822        double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0));        const double *ptr_0 = &(arg_0_Z.getDataAtOffsetRO(offset_0));
2823        for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) {        for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) {
2824          int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0);          int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0);
2825          int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0);          int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0);
2826          double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1));          const double *ptr_1 = &(arg_1_Z.getDataAtOffsetRO(offset_1));
2827          double *ptr_2 = &(res.getDataAtOffset(offset_2));          double *ptr_2 = &(res.getDataAtOffsetRW(offset_2));
2828          matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);          matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2829        }        }
2830      }      }
# Line 2828  escript::C_GeneralTensorProduct(Data& ar Line 2848  escript::C_GeneralTensorProduct(Data& ar
2848        for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) {        for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) {
2849          int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0);          int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0);
2850          int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0);          int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0);
2851          double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0));          const double *ptr_0 = &(arg_0_Z.getDataAtOffsetRO(offset_0));
2852          double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1));          const double *ptr_1 = &(arg_1_Z.getDataAtOffsetRO(offset_1));
2853          double *ptr_2 = &(res.getDataAtOffset(offset_2));          double *ptr_2 = &(res.getDataAtOffsetRW(offset_2));
2854          matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);          matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2855        }        }
2856      }      }
# Line 2853  escript::C_GeneralTensorProduct(Data& ar Line 2873  escript::C_GeneralTensorProduct(Data& ar
2873      #pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static)      #pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static)
2874      for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) {      for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) {
2875        int offset_1 = tmp_1->getPointOffset(sampleNo_0,0);        int offset_1 = tmp_1->getPointOffset(sampleNo_0,0);
2876        double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1));        const double *ptr_1 = &(arg_1_Z.getDataAtOffsetRO(offset_1));
2877        for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) {        for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) {
2878          int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0);          int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0);
2879          int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0);          int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0);
2880          double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0));          const double *ptr_0 = &(arg_0_Z.getDataAtOffsetRO(offset_0));
2881          double *ptr_2 = &(res.getDataAtOffset(offset_2));          double *ptr_2 = &(res.getDataAtOffsetRW(offset_2));
2882          matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);          matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2883        }        }
2884      }      }
# Line 2883  escript::C_GeneralTensorProduct(Data& ar Line 2903  escript::C_GeneralTensorProduct(Data& ar
2903          int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0);          int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0);
2904          int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0);          int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0);
2905          int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0);          int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0);
2906          double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0));          const double *ptr_0 = &(arg_0_Z.getDataAtOffsetRO(offset_0));
2907          double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1));          const double *ptr_1 = &(arg_1_Z.getDataAtOffsetRO(offset_1));
2908          double *ptr_2 = &(res.getDataAtOffset(offset_2));          double *ptr_2 = &(res.getDataAtOffsetRW(offset_2));
2909          matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);          matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose);
2910        }        }
2911      }      }
# Line 2923  Data::borrowReadyPtr() const Line 2943  Data::borrowReadyPtr() const
2943  std::string  std::string
2944  Data::toString() const  Data::toString() const
2945  {  {
2946      if (!m_data->isEmpty() &&      if (!m_data->isEmpty() &&
2947      getNumDataPoints()*getDataPointSize()>escriptParams.getInt("TOO_MANY_LINES"))      !m_data->isLazy() &&
2948        getLength()>escriptParams.getInt("TOO_MANY_LINES"))
2949      {      {
2950      stringstream temp;      stringstream temp;
2951      temp << "Summary: inf="<< inf_const() << " sup=" << sup_const() << " data points=" << getNumDataPoints();      temp << "Summary: inf="<< inf_const() << " sup=" << sup_const() << " data points=" << getNumDataPoints();
# Line 2934  Data::toString() const Line 2955  Data::toString() const
2955  }  }
2956    
2957    
2958    // This method is not thread-safe
2959    DataTypes::ValueType::reference
2960    Data::getDataAtOffsetRW(DataTypes::ValueType::size_type i)
2961    {
2962        checkExclusiveWrite();
2963        return getReady()->getDataAtOffsetRW(i);
2964    }
2965    
2966    // This method is not thread-safe
2967  DataTypes::ValueType::const_reference  DataTypes::ValueType::const_reference
2968  Data::getDataAtOffset(DataTypes::ValueType::size_type i) const  Data::getDataAtOffsetRO(DataTypes::ValueType::size_type i)
2969  {  {
2970      if (isLazy())      forceResolve();
2971      {      return getReady()->getDataAtOffsetRO(i);
     throw DataException("Programmer error - getDataAtOffset not permitted on lazy data (object is const which prevents resolving).");  
     }  
     return getReady()->getDataAtOffset(i);  
2972  }  }
2973    
2974    
2975  DataTypes::ValueType::reference  // DataTypes::ValueType::const_reference
2976  Data::getDataAtOffset(DataTypes::ValueType::size_type i)  // Data::getDataAtOffsetRO(DataTypes::ValueType::size_type i) const
2977  {  // {
2978  //     if (isLazy())  //     if (isLazy())
2979  //     {  //     {
2980  //  throw DataException("getDataAtOffset not permitted on lazy data.");  //  throw DataException("Programmer error - getDataAtOffsetRO() not permitted on Lazy Data (object is const which prevents resolving).");
2981  //     }  //     }
2982      FORCERESOLVE;  //     return getReady()->getDataAtOffsetRO(i);
2983      return getReady()->getDataAtOffset(i);  // }
2984  }  
2985    
2986  DataTypes::ValueType::const_reference  DataTypes::ValueType::const_reference
2987  Data::getDataPoint(int sampleNo, int dataPointNo) const  Data::getDataPointRO(int sampleNo, int dataPointNo)
2988  {  {
2989      forceResolve();
2990    if (!isReady())    if (!isReady())
2991    {    {
2992      throw DataException("Programmer error - getDataPoint() not permitted on Lazy Data (object is const which prevents resolving).");      throw DataException("Programmer error -getDataPointRO() not permitted on Lazy Data.");
2993    }    }
2994    else    else
2995    {    {
2996      const DataReady* dr=getReady();      const DataReady* dr=getReady();
2997      return dr->getDataAtOffset(dr->getPointOffset(sampleNo, dataPointNo));      return dr->getDataAtOffsetRO(dr->getPointOffset(sampleNo, dataPointNo));
2998    }    }
2999  }  }
3000    
3001    
3002    
3003    
3004  DataTypes::ValueType::reference  DataTypes::ValueType::reference
3005  Data::getDataPoint(int sampleNo, int dataPointNo)  Data::getDataPointRW(int sampleNo, int dataPointNo)
3006  {  {
3007    FORCERESOLVE;    checkExclusiveWrite();
3008    if (!isReady())    DataReady* dr=getReady();
3009    {    return dr->getDataAtOffsetRW(dr->getPointOffset(sampleNo, dataPointNo));
3010      throw DataException("Programmer error - getDataPoint() not permitted on Lazy Data.");  }
3011    }  
3012    else  BufferGroup*
3013    {  Data::allocSampleBuffer() const
3014      DataReady* dr=getReady();  {
3015      return dr->getDataAtOffset(dr->getPointOffset(sampleNo, dataPointNo));       if (isLazy())
3016    }       {
3017        #ifdef _OPENMP
3018        int tnum=omp_get_max_threads();
3019        #else
3020        int tnum=1;
3021        #endif
3022        return new BufferGroup(getSampleBufferSize(),tnum);
3023         }
3024         else
3025         {
3026        return NULL;
3027         }
3028    }
3029    
3030    void
3031    Data::freeSampleBuffer(BufferGroup* bufferg)
3032    {
3033         if (bufferg!=0)
3034         {
3035        delete bufferg;
3036         }
3037    }
3038    
3039    
3040    Data
3041    Data::interpolateFromTable(boost::python::object table, double Amin, double Astep,
3042             double undef, Data& B, double Bmin, double Bstep)
3043    {
3044        WrappedArray t(table);
3045        return interpolateFromTable2D(t, Amin, Astep, undef, B, Bmin, Bstep);
3046    }
3047    
3048            
3049    Data
3050    Data::interpolateFromTable2D(const WrappedArray& table, double Amin, double Astep,
3051                           double undef, Data& B, double Bmin, double Bstep)
3052    {
3053        int error=0;
3054        if ((getDataPointRank()!=0) || (B.getDataPointRank()!=0))
3055        {
3056            throw DataException("Inputs to 2D interpolation must be scalar");
3057        }
3058        if (table.getRank()!=2)
3059        {
3060        throw DataException("Table for 2D interpolation must be 2D");
3061        }
3062        if (getFunctionSpace()!=B.getFunctionSpace())
3063        {
3064        Data n=B.interpolate(getFunctionSpace());
3065        return interpolateFromTable2D(table, Amin, Astep, undef,
3066            n , Bmin, Bstep);
3067        }
3068        if (!isExpanded())
3069        {
3070        expand();
3071        }
3072        if (!B.isExpanded())
3073        {
3074        B.expand();
3075        }
3076        Data res(0, DataTypes::scalarShape, getFunctionSpace(), true);
3077        do                                   // to make breaks useful
3078        {
3079        try
3080        {
3081            int numpts=getNumDataPoints();
3082            const DataVector& adat=getReady()->getVectorRO();
3083            const DataVector& bdat=B.getReady()->getVectorRO();
3084            DataVector& rdat=res.getReady()->getVectorRW();
3085            const DataTypes::ShapeType& ts=table.getShape();
3086            for (int l=0; l<numpts; ++l)
3087            {
3088            double a=adat[l];
3089            double b=bdat[l];
3090            int x=static_cast<int>((a-Amin)/Astep);
3091            int y=static_cast<int>((b-Bmin)/Bstep);
3092            if ((a<Amin) || (b<Bmin))
3093            {
3094                error=1;
3095                break;  
3096            }
3097            if ((x>=(ts[0]-1)) || (y>=(ts[1]-1)))
3098            {
3099                error=1;
3100                break;
3101            }
3102            else        // x and y are in bounds
3103            {
3104                double sw=table.getElt(x,y);
3105                double nw=table.getElt(x,y+1);
3106                double se=table.getElt(x+1,y);
3107                double ne=table.getElt(x+1,y+1);
3108                if ((sw>undef) || (nw>undef) || (se>undef) || (ne>undef))
3109                {
3110                error=2;
3111                break;
3112                }
3113                // map x*Astep <= a << (x+1)*Astep to [-1,1]
3114                // same with b
3115                double la = 2.0*(a-(x*Astep))/Astep-1;
3116                double lb = 2.0*(b-(y*Bstep))/Bstep-1;
3117                rdat[l]=((1-la)*(1-lb)*sw + (1-la)*(1+lb)*nw +
3118                     (1+la)*(1-lb)*se + (1+la)*(1+lb)*ne)/4;
3119            }
3120            }
3121        } catch (DataException d)
3122        {
3123            error=3;
3124            break;
3125        }
3126        } while (false);
3127    #ifdef PASO_MPI
3128        int rerror=0;
3129        MPI_Allreduce( &error, &rerror, 1, MPI_INT, MPI_MAX, get_MPIComm() );
3130        error=rerror;
3131    #endif
3132        if (error)
3133        {
3134        switch (error)
3135        {
3136        case 1: throw DataException("Point out of bounds");
3137        case 2: throw DataException("Interpolated value too large");
3138        default:
3139            throw DataException("Unknown error in interpolation");      
3140        }
3141        }
3142        return res;
3143  }  }
3144    
3145    
# Line 3000  Data::print() Line 3155  Data::print()
3155    {    {
3156      printf( "[%6d]", i );      printf( "[%6d]", i );
3157      for( j=0; j<getNumDataPointsPerSample(); j++ )      for( j=0; j<getNumDataPointsPerSample(); j++ )
3158        printf( "\t%10.7g", (getSampleData(i))[j] );        printf( "\t%10.7g", (getSampleDataRW(i))[j] );    // doesn't really need RW access
3159      printf( "\n" );      printf( "\n" );
3160    }    }
3161  }  }
# Line 3020  Data::dump(const std::string fileName) c Line 3175  Data::dump(const std::string fileName) c
3175            return m_data->dump(fileName);            return m_data->dump(fileName);
3176      }      }
3177    }    }
3178    catch (exception& e)    catch (std::exception& e)
3179    {    {
3180          cout << e.what() << endl;          cout << e.what() << endl;
3181    }    }
# Line 3062  Data::get_MPIComm() const Line 3217  Data::get_MPIComm() const
3217  #endif  #endif
3218  }  }
3219    
   

Legend:
Removed from v.2049  
changed lines
  Added in v.2635

  ViewVC Help
Powered by ViewVC 1.1.26