/[escript]/trunk/escript/src/Data.cpp
ViewVC logotype

Contents of /trunk/escript/src/Data.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 149 - (show annotations)
Thu Sep 1 03:31:39 2005 UTC (14 years, 2 months ago) by jgs
Original Path: trunk/esys2/escript/src/Data/Data.cpp
File size: 49419 byte(s)
Merge of development branch dev-02 back to main trunk on 2005-09-01

1 // $Id$
2 /*=============================================================================
3
4 ******************************************************************************
5 * *
6 * COPYRIGHT ACcESS 2004 - All Rights Reserved *
7 * *
8 * This software is the property of ACcESS. No part of this code *
9 * may be copied in any form or by any means without the expressed written *
10 * consent of ACcESS. Copying, use or modification of this software *
11 * by any unauthorised person is illegal unless that *
12 * person has a software license agreement with ACcESS. *
13 * *
14 ******************************************************************************
15
16 ******************************************************************************/
17
18 #include "escript/Data/Data.h"
19
20 #include <iostream>
21 #include <fstream>
22 #include <algorithm>
23 #include <vector>
24 #include <exception>
25 #include <functional>
26 #include <math.h>
27
28 #include <boost/python/str.hpp>
29 #include <boost/python/extract.hpp>
30 #include <boost/python/long.hpp>
31
32 #include "escript/Data/DataException.h"
33 #include "escript/Data/DataExpanded.h"
34 #include "escript/Data/DataConstant.h"
35 #include "escript/Data/DataTagged.h"
36 #include "escript/Data/DataEmpty.h"
37 #include "escript/Data/DataArray.h"
38 #include "escript/Data/DataProf.h"
39 #include "escript/Data/FunctionSpaceFactory.h"
40 #include "escript/Data/AbstractContinuousDomain.h"
41 #include "escript/Data/UnaryFuncs.h"
42
43 using namespace std;
44 using namespace boost::python;
45 using namespace boost;
46 using namespace escript;
47
48 //
49 // global table of profiling data for all Data objects
50 DataProf dataProfTable;
51
52 Data::Data()
53 {
54 //
55 // Default data is type DataEmpty
56 DataAbstract* temp=new DataEmpty();
57 shared_ptr<DataAbstract> temp_data(temp);
58 m_data=temp_data;
59 // create entry in global profiling table for this object
60 profData = dataProfTable.newData();
61 }
62
63 Data::Data(double value,
64 const tuple& shape,
65 const FunctionSpace& what,
66 bool expanded)
67 {
68 DataArrayView::ShapeType dataPointShape;
69 for (int i = 0; i < shape.attr("__len__")(); ++i) {
70 dataPointShape.push_back(extract<const int>(shape[i]));
71 }
72 DataArray temp(dataPointShape,value);
73 initialise(temp.getView(),what,expanded);
74 // create entry in global profiling table for this object
75 profData = dataProfTable.newData();
76 }
77
78 Data::Data(double value,
79 const DataArrayView::ShapeType& dataPointShape,
80 const FunctionSpace& what,
81 bool expanded)
82 {
83 DataArray temp(dataPointShape,value);
84 pair<int,int> dataShape=what.getDataShape();
85 initialise(temp.getView(),what,expanded);
86 // create entry in global profiling table for this object
87 profData = dataProfTable.newData();
88 }
89
90 Data::Data(const Data& inData)
91 {
92 m_data=inData.m_data;
93 // create entry in global profiling table for this object
94 profData = dataProfTable.newData();
95 }
96
97 Data::Data(const Data& inData,
98 const DataArrayView::RegionType& region)
99 {
100 //
101 // Create Data which is a slice of another Data
102 DataAbstract* tmp = inData.m_data->getSlice(region);
103 shared_ptr<DataAbstract> temp_data(tmp);
104 m_data=temp_data;
105 // create entry in global profiling table for this object
106 profData = dataProfTable.newData();
107 }
108
109 Data::Data(const Data& inData,
110 const FunctionSpace& functionspace)
111 {
112 if (inData.getFunctionSpace()==functionspace) {
113 m_data=inData.m_data;
114 } else {
115 Data tmp(0,inData.getPointDataView().getShape(),functionspace,true);
116 // Note: Must use a reference or pointer to a derived object
117 // in order to get polymorphic behaviour. Shouldn't really
118 // be able to create an instance of AbstractDomain but that was done
119 // as a boost:python work around which may no longer be required.
120 const AbstractDomain& inDataDomain=inData.getDomain();
121 if (inDataDomain==functionspace.getDomain()) {
122 inDataDomain.interpolateOnDomain(tmp,inData);
123 } else {
124 inDataDomain.interpolateACross(tmp,inData);
125 }
126 m_data=tmp.m_data;
127 }
128 // create entry in global profiling table for this object
129 profData = dataProfTable.newData();
130 }
131
132 Data::Data(const DataTagged::TagListType& tagKeys,
133 const DataTagged::ValueListType & values,
134 const DataArrayView& defaultValue,
135 const FunctionSpace& what,
136 bool expanded)
137 {
138 DataAbstract* temp=new DataTagged(tagKeys,values,defaultValue,what);
139 shared_ptr<DataAbstract> temp_data(temp);
140 m_data=temp_data;
141 if (expanded) {
142 expand();
143 }
144 // create entry in global profiling table for this object
145 profData = dataProfTable.newData();
146 }
147
148 Data::Data(const numeric::array& value,
149 const FunctionSpace& what,
150 bool expanded)
151 {
152 initialise(value,what,expanded);
153 // create entry in global profiling table for this object
154 profData = dataProfTable.newData();
155 }
156
157 Data::Data(const DataArrayView& value,
158 const FunctionSpace& what,
159 bool expanded)
160 {
161 initialise(value,what,expanded);
162 // create entry in global profiling table for this object
163 profData = dataProfTable.newData();
164 }
165
166 Data::Data(const object& value,
167 const FunctionSpace& what,
168 bool expanded)
169 {
170 numeric::array asNumArray(value);
171 initialise(asNumArray,what,expanded);
172 // create entry in global profiling table for this object
173 profData = dataProfTable.newData();
174 }
175
176 Data::Data(const object& value,
177 const Data& other)
178 {
179 //
180 // Create DataConstant using the given value and all other parameters
181 // copied from other. If value is a rank 0 object this Data
182 // will assume the point data shape of other.
183 DataArray temp(value);
184 if (temp.getView().getRank()==0) {
185 //
186 // Create a DataArray with the scalar value for all elements
187 DataArray temp2(other.getPointDataView().getShape(),temp.getView()());
188 initialise(temp2.getView(),other.getFunctionSpace(),false);
189 } else {
190 //
191 // Create a DataConstant with the same sample shape as other
192 initialise(temp.getView(),other.getFunctionSpace(),false);
193 }
194 // create entry in global profiling table for this object
195 profData = dataProfTable.newData();
196 }
197
198 escriptDataC
199 Data::getDataC()
200 {
201 escriptDataC temp;
202 temp.m_dataPtr=(void*)this;
203 return temp;
204 }
205
206 escriptDataC
207 Data::getDataC() const
208 {
209 escriptDataC temp;
210 temp.m_dataPtr=(void*)this;
211 return temp;
212 }
213
214 const boost::python::tuple
215 Data::getShapeTuple() const
216 {
217 const DataArrayView::ShapeType& shape=getDataPointShape();
218 switch(getDataPointRank()) {
219 case 0:
220 return make_tuple();
221 case 1:
222 return make_tuple(long_(shape[0]));
223 case 2:
224 return make_tuple(long_(shape[0]),long_(shape[1]));
225 case 3:
226 return make_tuple(long_(shape[0]),long_(shape[1]),long_(shape[2]));
227 case 4:
228 return make_tuple(long_(shape[0]),long_(shape[1]),long_(shape[2]),long_(shape[3]));
229 default:
230 throw DataException("Error - illegal Data rank.");
231 }
232 }
233
234 void
235 Data::copy(const Data& other)
236 {
237 //
238 // Perform a deep copy
239 {
240 DataExpanded* temp=dynamic_cast<DataExpanded*>(other.m_data.get());
241 if (temp!=0) {
242 //
243 // Construct a DataExpanded copy
244 DataAbstract* newData=new DataExpanded(*temp);
245 shared_ptr<DataAbstract> temp_data(newData);
246 m_data=temp_data;
247 return;
248 }
249 }
250 {
251 DataTagged* temp=dynamic_cast<DataTagged*>(other.m_data.get());
252 if (temp!=0) {
253 //
254 // Construct a DataTagged copy
255 DataAbstract* newData=new DataTagged(*temp);
256 shared_ptr<DataAbstract> temp_data(newData);
257 m_data=temp_data;
258 return;
259 }
260 }
261 {
262 DataConstant* temp=dynamic_cast<DataConstant*>(other.m_data.get());
263 if (temp!=0) {
264 //
265 // Construct a DataConstant copy
266 DataAbstract* newData=new DataConstant(*temp);
267 shared_ptr<DataAbstract> temp_data(newData);
268 m_data=temp_data;
269 return;
270 }
271 }
272 {
273 DataEmpty* temp=dynamic_cast<DataEmpty*>(other.m_data.get());
274 if (temp!=0) {
275 //
276 // Construct a DataEmpty copy
277 DataAbstract* newData=new DataEmpty();
278 shared_ptr<DataAbstract> temp_data(newData);
279 m_data=temp_data;
280 return;
281 }
282 }
283 throw DataException("Error - Copy not implemented for this Data type.");
284 }
285
286 void
287 Data::copyWithMask(const Data& other,
288 const Data& mask)
289 {
290 Data mask1;
291 Data mask2;
292
293 mask1 = mask.wherePositive();
294 mask2.copy(mask1);
295
296 mask1 *= other;
297 mask2 *= *this;
298 mask2 = *this - mask2;
299
300 *this = mask1 + mask2;
301 }
302
303 bool
304 Data::isExpanded() const
305 {
306 DataExpanded* temp=dynamic_cast<DataExpanded*>(m_data.get());
307 return (temp!=0);
308 }
309
310 bool
311 Data::isTagged() const
312 {
313 DataTagged* temp=dynamic_cast<DataTagged*>(m_data.get());
314 return (temp!=0);
315 }
316
317 bool
318 Data::isEmpty() const
319 {
320 DataEmpty* temp=dynamic_cast<DataEmpty*>(m_data.get());
321 return (temp!=0);
322 }
323
324 bool
325 Data::isConstant() const
326 {
327 DataConstant* temp=dynamic_cast<DataConstant*>(m_data.get());
328 return (temp!=0);
329 }
330
331 void
332 Data::expand()
333 {
334 if (isConstant()) {
335 DataConstant* tempDataConst=dynamic_cast<DataConstant*>(m_data.get());
336 DataAbstract* temp=new DataExpanded(*tempDataConst);
337 shared_ptr<DataAbstract> temp_data(temp);
338 m_data=temp_data;
339 } else if (isTagged()) {
340 DataTagged* tempDataTag=dynamic_cast<DataTagged*>(m_data.get());
341 DataAbstract* temp=new DataExpanded(*tempDataTag);
342 shared_ptr<DataAbstract> temp_data(temp);
343 m_data=temp_data;
344 } else if (isExpanded()) {
345 //
346 // do nothing
347 } else if (isEmpty()) {
348 throw DataException("Error - Expansion of DataEmpty not possible.");
349 } else {
350 throw DataException("Error - Expansion not implemented for this Data type.");
351 }
352 }
353
354 void
355 Data::tag()
356 {
357 if (isConstant()) {
358 DataConstant* tempDataConst=dynamic_cast<DataConstant*>(m_data.get());
359 DataAbstract* temp=new DataTagged(*tempDataConst);
360 shared_ptr<DataAbstract> temp_data(temp);
361 m_data=temp_data;
362 } else if (isTagged()) {
363 // do nothing
364 } else if (isExpanded()) {
365 throw DataException("Error - Creating tag data from DataExpanded not possible.");
366 } else if (isEmpty()) {
367 throw DataException("Error - Creating tag data from DataEmpty not possible.");
368 } else {
369 throw DataException("Error - Tagging not implemented for this Data type.");
370 }
371 }
372
373 void
374 Data::reshapeDataPoint(const DataArrayView::ShapeType& shape)
375 {
376 m_data->reshapeDataPoint(shape);
377 }
378
379 Data
380 Data::wherePositive() const
381 {
382 profData->where++;
383 return escript::unaryOp(*this,bind2nd(greater<double>(),0.0));
384 }
385
386 Data
387 Data::whereNegative() const
388 {
389 profData->where++;
390 return escript::unaryOp(*this,bind2nd(less<double>(),0.0));
391 }
392
393 Data
394 Data::whereNonNegative() const
395 {
396 profData->where++;
397 return escript::unaryOp(*this,bind2nd(greater_equal<double>(),0.0));
398 }
399
400 Data
401 Data::whereNonPositive() const
402 {
403 profData->where++;
404 return escript::unaryOp(*this,bind2nd(less_equal<double>(),0.0));
405 }
406
407 Data
408 Data::whereZero() const
409 {
410 profData->where++;
411 return escript::unaryOp(*this,bind2nd(equal_to<double>(),0.0));
412 }
413
414 Data
415 Data::whereNonZero() const
416 {
417 profData->where++;
418 return escript::unaryOp(*this,bind2nd(not_equal_to<double>(),0.0));
419 }
420
421 Data
422 Data::interpolate(const FunctionSpace& functionspace) const
423 {
424 profData->interpolate++;
425 return Data(*this,functionspace);
426 }
427
428 bool
429 Data::probeInterpolation(const FunctionSpace& functionspace) const
430 {
431 if (getFunctionSpace()==functionspace) {
432 return true;
433 } else {
434 const AbstractDomain& domain=getDomain();
435 if (domain==functionspace.getDomain()) {
436 return domain.probeInterpolationOnDomain(getFunctionSpace().getTypeCode(),functionspace.getTypeCode());
437 } else {
438 return domain.probeInterpolationACross(getFunctionSpace().getTypeCode(),functionspace.getDomain(),functionspace.getTypeCode());
439 }
440 }
441 }
442
443 Data
444 Data::gradOn(const FunctionSpace& functionspace) const
445 {
446 profData->grad++;
447 if (functionspace.getDomain()!=getDomain())
448 throw DataException("Error - gradient cannot be calculated on different domains.");
449 DataArrayView::ShapeType grad_shape=getPointDataView().getShape();
450 grad_shape.push_back(functionspace.getDim());
451 Data out(0.0,grad_shape,functionspace,true);
452 getDomain().setToGradient(out,*this);
453 return out;
454 }
455
456 Data
457 Data::grad() const
458 {
459 return gradOn(escript::function(getDomain()));
460 }
461
462 int
463 Data::getDataPointSize() const
464 {
465 return getPointDataView().noValues();
466 }
467
468 DataArrayView::ValueType::size_type
469 Data::getLength() const
470 {
471 return m_data->getLength();
472 }
473
474 const DataArrayView::ShapeType&
475 Data::getDataPointShape() const
476 {
477 return getPointDataView().getShape();
478 }
479
480 void
481 Data::fillFromNumArray(const boost::python::numeric::array num_array)
482 {
483 //
484 // check rank
485 if (num_array.getrank()<getDataPointRank())
486 throw DataException("Rank of numarray does not match Data object rank");
487
488 //
489 // check shape of num_array
490 for (int i=0; i<getDataPointRank(); i++) {
491 if (extract<int>(num_array.getshape()[i+1])!=getDataPointShape()[i])
492 throw DataException("Shape of numarray does not match Data object rank");
493 }
494
495 //
496 // make sure data is expanded:
497 if (!isExpanded()) {
498 expand();
499 }
500
501 //
502 // and copy over
503 m_data->copyAll(num_array);
504 }
505
506 const
507 boost::python::numeric::array
508 Data::convertToNumArray()
509 {
510 //
511 // determine the total number of data points
512 int numSamples = getNumSamples();
513 int numDataPointsPerSample = getNumDataPointsPerSample();
514 int numDataPoints = numSamples * numDataPointsPerSample;
515
516 //
517 // determine the rank and shape of each data point
518 int dataPointRank = getDataPointRank();
519 DataArrayView::ShapeType dataPointShape = getDataPointShape();
520
521 //
522 // create the numeric array to be returned
523 boost::python::numeric::array numArray(0.0);
524
525 //
526 // the rank of the returned numeric array will be the rank of
527 // the data points, plus one. Where the rank of the array is n,
528 // the last n-1 dimensions will be equal to the shape of the
529 // data points, whilst the first dimension will be equal to the
530 // total number of data points. Thus the array will consist of
531 // a serial vector of the data points.
532 int arrayRank = dataPointRank + 1;
533 DataArrayView::ShapeType arrayShape;
534 arrayShape.push_back(numDataPoints);
535 for (int d=0; d<dataPointRank; d++) {
536 arrayShape.push_back(dataPointShape[d]);
537 }
538
539 //
540 // resize the numeric array to the shape just calculated
541 if (arrayRank==1) {
542 numArray.resize(arrayShape[0]);
543 }
544 if (arrayRank==2) {
545 numArray.resize(arrayShape[0],arrayShape[1]);
546 }
547 if (arrayRank==3) {
548 numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2]);
549 }
550 if (arrayRank==4) {
551 numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2],arrayShape[3]);
552 }
553 if (arrayRank==5) {
554 numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2],arrayShape[3],arrayShape[4]);
555 }
556
557 //
558 // loop through each data point in turn, loading the values for that data point
559 // into the numeric array.
560 int dataPoint = 0;
561 for (int sampleNo = 0; sampleNo < numSamples; sampleNo++) {
562 for (int dataPointNo = 0; dataPointNo < numDataPointsPerSample; dataPointNo++) {
563 DataArrayView dataPointView = getDataPoint(sampleNo, dataPointNo);
564 if (dataPointRank==0) {
565 numArray[dataPoint]=dataPointView();
566 }
567 if (dataPointRank==1) {
568 for (int i=0; i<dataPointShape[0]; i++) {
569 numArray[dataPoint][i]=dataPointView(i);
570 }
571 }
572 if (dataPointRank==2) {
573 for (int i=0; i<dataPointShape[0]; i++) {
574 for (int j=0; j<dataPointShape[1]; j++) {
575 numArray[dataPoint][i][j] = dataPointView(i,j);
576 }
577 }
578 }
579 if (dataPointRank==3) {
580 for (int i=0; i<dataPointShape[0]; i++) {
581 for (int j=0; j<dataPointShape[1]; j++) {
582 for (int k=0; k<dataPointShape[2]; k++) {
583 numArray[dataPoint][i][j][k]=dataPointView(i,j,k);
584 }
585 }
586 }
587 }
588 if (dataPointRank==4) {
589 for (int i=0; i<dataPointShape[0]; i++) {
590 for (int j=0; j<dataPointShape[1]; j++) {
591 for (int k=0; k<dataPointShape[2]; k++) {
592 for (int l=0; l<dataPointShape[3]; l++) {
593 numArray[dataPoint][i][j][k][l]=dataPointView(i,j,k,l);
594 }
595 }
596 }
597 }
598 }
599 dataPoint++;
600 }
601 }
602
603 //
604 // return the loaded array
605 return numArray;
606 }
607
608 const
609 boost::python::numeric::array
610 Data::convertToNumArrayFromSampleNo(int sampleNo)
611 {
612 //
613 // Check a valid sample number has been supplied
614 if (sampleNo >= getNumSamples()) {
615 throw DataException("Error - Data::convertToNumArray: invalid sampleNo.");
616 }
617
618 //
619 // determine the number of data points per sample
620 int numDataPointsPerSample = getNumDataPointsPerSample();
621
622 //
623 // determine the rank and shape of each data point
624 int dataPointRank = getDataPointRank();
625 DataArrayView::ShapeType dataPointShape = getDataPointShape();
626
627 //
628 // create the numeric array to be returned
629 boost::python::numeric::array numArray(0.0);
630
631 //
632 // the rank of the returned numeric array will be the rank of
633 // the data points, plus one. Where the rank of the array is n,
634 // the last n-1 dimensions will be equal to the shape of the
635 // data points, whilst the first dimension will be equal to the
636 // total number of data points. Thus the array will consist of
637 // a serial vector of the data points.
638 int arrayRank = dataPointRank + 1;
639 DataArrayView::ShapeType arrayShape;
640 arrayShape.push_back(numDataPointsPerSample);
641 for (int d=0; d<dataPointRank; d++) {
642 arrayShape.push_back(dataPointShape[d]);
643 }
644
645 //
646 // resize the numeric array to the shape just calculated
647 if (arrayRank==1) {
648 numArray.resize(arrayShape[0]);
649 }
650 if (arrayRank==2) {
651 numArray.resize(arrayShape[0],arrayShape[1]);
652 }
653 if (arrayRank==3) {
654 numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2]);
655 }
656 if (arrayRank==4) {
657 numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2],arrayShape[3]);
658 }
659 if (arrayRank==5) {
660 numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2],arrayShape[3],arrayShape[4]);
661 }
662
663 //
664 // loop through each data point in turn, loading the values for that data point
665 // into the numeric array.
666 for (int dataPoint = 0; dataPoint < numDataPointsPerSample; dataPoint++) {
667 DataArrayView dataPointView = getDataPoint(sampleNo, dataPoint);
668 if (dataPointRank==0) {
669 numArray[dataPoint]=dataPointView();
670 }
671 if (dataPointRank==1) {
672 for (int i=0; i<dataPointShape[0]; i++) {
673 numArray[dataPoint][i]=dataPointView(i);
674 }
675 }
676 if (dataPointRank==2) {
677 for (int i=0; i<dataPointShape[0]; i++) {
678 for (int j=0; j<dataPointShape[1]; j++) {
679 numArray[dataPoint][i][j] = dataPointView(i,j);
680 }
681 }
682 }
683 if (dataPointRank==3) {
684 for (int i=0; i<dataPointShape[0]; i++) {
685 for (int j=0; j<dataPointShape[1]; j++) {
686 for (int k=0; k<dataPointShape[2]; k++) {
687 numArray[dataPoint][i][j][k]=dataPointView(i,j,k);
688 }
689 }
690 }
691 }
692 if (dataPointRank==4) {
693 for (int i=0; i<dataPointShape[0]; i++) {
694 for (int j=0; j<dataPointShape[1]; j++) {
695 for (int k=0; k<dataPointShape[2]; k++) {
696 for (int l=0; l<dataPointShape[3]; l++) {
697 numArray[dataPoint][i][j][k][l]=dataPointView(i,j,k,l);
698 }
699 }
700 }
701 }
702 }
703 }
704
705 //
706 // return the loaded array
707 return numArray;
708 }
709
710 const
711 boost::python::numeric::array
712 Data::convertToNumArrayFromDPNo(int sampleNo,
713 int dataPointNo)
714 {
715 //
716 // Check a valid sample number has been supplied
717 if (sampleNo >= getNumSamples()) {
718 throw DataException("Error - Data::convertToNumArray: invalid sampleNo.");
719 }
720
721 //
722 // Check a valid data point number has been supplied
723 if (dataPointNo >= getNumDataPointsPerSample()) {
724 throw DataException("Error - Data::convertToNumArray: invalid dataPointNo.");
725 }
726
727 //
728 // determine the rank and shape of each data point
729 int dataPointRank = getDataPointRank();
730 DataArrayView::ShapeType dataPointShape = getDataPointShape();
731
732 //
733 // create the numeric array to be returned
734 boost::python::numeric::array numArray(0.0);
735
736 //
737 // the shape of the returned numeric array will be the same
738 // as that of the data point
739 int arrayRank = dataPointRank;
740 DataArrayView::ShapeType arrayShape = dataPointShape;
741
742 //
743 // resize the numeric array to the shape just calculated
744 if (arrayRank==0) {
745 numArray.resize(1);
746 }
747 if (arrayRank==1) {
748 numArray.resize(arrayShape[0]);
749 }
750 if (arrayRank==2) {
751 numArray.resize(arrayShape[0],arrayShape[1]);
752 }
753 if (arrayRank==3) {
754 numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2]);
755 }
756 if (arrayRank==4) {
757 numArray.resize(arrayShape[0],arrayShape[1],arrayShape[2],arrayShape[3]);
758 }
759
760 //
761 // load the values for the data point into the numeric array.
762 DataArrayView dataPointView = getDataPoint(sampleNo, dataPointNo);
763 if (dataPointRank==0) {
764 numArray[0]=dataPointView();
765 }
766 if (dataPointRank==1) {
767 for (int i=0; i<dataPointShape[0]; i++) {
768 numArray[i]=dataPointView(i);
769 }
770 }
771 if (dataPointRank==2) {
772 for (int i=0; i<dataPointShape[0]; i++) {
773 for (int j=0; j<dataPointShape[1]; j++) {
774 numArray[i][j] = dataPointView(i,j);
775 }
776 }
777 }
778 if (dataPointRank==3) {
779 for (int i=0; i<dataPointShape[0]; i++) {
780 for (int j=0; j<dataPointShape[1]; j++) {
781 for (int k=0; k<dataPointShape[2]; k++) {
782 numArray[i][j][k]=dataPointView(i,j,k);
783 }
784 }
785 }
786 }
787 if (dataPointRank==4) {
788 for (int i=0; i<dataPointShape[0]; i++) {
789 for (int j=0; j<dataPointShape[1]; j++) {
790 for (int k=0; k<dataPointShape[2]; k++) {
791 for (int l=0; l<dataPointShape[3]; l++) {
792 numArray[i][j][k][l]=dataPointView(i,j,k,l);
793 }
794 }
795 }
796 }
797 }
798
799 //
800 // return the loaded array
801 return numArray;
802 }
803
804 boost::python::numeric::array
805 Data::integrate() const
806 {
807 int index;
808 int rank = getDataPointRank();
809 DataArrayView::ShapeType shape = getDataPointShape();
810
811 profData->integrate++;
812
813 //
814 // calculate the integral values
815 vector<double> integrals(getDataPointSize());
816 AbstractContinuousDomain::asAbstractContinuousDomain(getDomain()).setToIntegrals(integrals,*this);
817
818 //
819 // create the numeric array to be returned
820 // and load the array with the integral values
821 boost::python::numeric::array bp_array(1.0);
822 if (rank==0) {
823 bp_array.resize(1);
824 index = 0;
825 bp_array[0] = integrals[index];
826 }
827 if (rank==1) {
828 bp_array.resize(shape[0]);
829 for (int i=0; i<shape[0]; i++) {
830 index = i;
831 bp_array[i] = integrals[index];
832 }
833 }
834 if (rank==2) {
835 bp_array.resize(shape[0],shape[1]);
836 for (int i=0; i<shape[0]; i++) {
837 for (int j=0; j<shape[1]; j++) {
838 index = i + shape[0] * j;
839 bp_array[i,j] = integrals[index];
840 }
841 }
842 }
843 if (rank==3) {
844 bp_array.resize(shape[0],shape[1],shape[2]);
845 for (int i=0; i<shape[0]; i++) {
846 for (int j=0; j<shape[1]; j++) {
847 for (int k=0; k<shape[2]; k++) {
848 index = i + shape[0] * ( j + shape[1] * k );
849 bp_array[i,j,k] = integrals[index];
850 }
851 }
852 }
853 }
854 if (rank==4) {
855 bp_array.resize(shape[0],shape[1],shape[2],shape[3]);
856 for (int i=0; i<shape[0]; i++) {
857 for (int j=0; j<shape[1]; j++) {
858 for (int k=0; k<shape[2]; k++) {
859 for (int l=0; l<shape[3]; l++) {
860 index = i + shape[0] * ( j + shape[1] * ( k + shape[2] * l ) );
861 bp_array[i,j,k,l] = integrals[index];
862 }
863 }
864 }
865 }
866 }
867
868 //
869 // return the loaded array
870 return bp_array;
871 }
872
873 Data
874 Data::sin() const
875 {
876 profData->unary++;
877 return escript::unaryOp(*this,(Data::UnaryDFunPtr)::sin);
878 }
879
880 Data
881 Data::cos() const
882 {
883 profData->unary++;
884 return escript::unaryOp(*this,(Data::UnaryDFunPtr)::cos);
885 }
886
887 Data
888 Data::tan() const
889 {
890 profData->unary++;
891 return escript::unaryOp(*this,(Data::UnaryDFunPtr)::tan);
892 }
893
894 Data
895 Data::log() const
896 {
897 profData->unary++;
898 return escript::unaryOp(*this,(Data::UnaryDFunPtr)::log10);
899 }
900
901 Data
902 Data::ln() const
903 {
904 profData->unary++;
905 return escript::unaryOp(*this,(Data::UnaryDFunPtr)::log);
906 }
907
908 Data
909 Data::sign() const
910 {
911 profData->unary++;
912 return escript::unaryOp(*this,escript::fsign);
913 }
914
915 Data
916 Data::abs() const
917 {
918 profData->unary++;
919 return escript::unaryOp(*this,(Data::UnaryDFunPtr)::fabs);
920 }
921
922 Data
923 Data::neg() const
924 {
925 profData->unary++;
926 return escript::unaryOp(*this,negate<double>());
927 }
928
929 Data
930 Data::pos() const
931 {
932 profData->unary++;
933 Data result;
934 // perform a deep copy
935 result.copy(*this);
936 return result;
937 }
938
939 Data
940 Data::exp() const
941 {
942 profData->unary++;
943 return escript::unaryOp(*this,(Data::UnaryDFunPtr)::exp);
944 }
945
946 Data
947 Data::sqrt() const
948 {
949 profData->unary++;
950 return escript::unaryOp(*this,(Data::UnaryDFunPtr)::sqrt);
951 }
952
953 double
954 Data::Lsup() const
955 {
956 profData->reduction1++;
957 //
958 // set the initial absolute maximum value to zero
959 AbsMax abs_max_func;
960 return algorithm(abs_max_func,0);
961 }
962
963 double
964 Data::Linf() const
965 {
966 profData->reduction1++;
967 //
968 // set the initial absolute minimum value to max double
969 AbsMin abs_min_func;
970 return algorithm(abs_min_func,numeric_limits<double>::max());
971 }
972
973 double
974 Data::sup() const
975 {
976 profData->reduction1++;
977 //
978 // set the initial maximum value to min possible double
979 FMax fmax_func;
980 return algorithm(fmax_func,numeric_limits<double>::max()*-1);
981 }
982
983 double
984 Data::inf() const
985 {
986 profData->reduction1++;
987 //
988 // set the initial minimum value to max possible double
989 FMin fmin_func;
990 return algorithm(fmin_func,numeric_limits<double>::max());
991 }
992
993 Data
994 Data::maxval() const
995 {
996 profData->reduction2++;
997 //
998 // set the initial maximum value to min possible double
999 FMax fmax_func;
1000 return dp_algorithm(fmax_func,numeric_limits<double>::max()*-1);
1001 }
1002
1003 Data
1004 Data::minval() const
1005 {
1006 profData->reduction2++;
1007 //
1008 // set the initial minimum value to max possible double
1009 FMin fmin_func;
1010 return dp_algorithm(fmin_func,numeric_limits<double>::max());
1011 }
1012
1013 Data
1014 Data::length() const
1015 {
1016 profData->reduction2++;
1017 Length len_func;
1018 return dp_algorithm(len_func,0);
1019 }
1020
1021 Data
1022 Data::trace() const
1023 {
1024 profData->reduction2++;
1025 Trace trace_func;
1026 return dp_algorithm(trace_func,0);
1027 }
1028
1029 Data
1030 Data::transpose(int axis) const
1031 {
1032 profData->reduction2++;
1033 // not implemented
1034 throw DataException("Error - Data::transpose not implemented yet.");
1035 return Data();
1036 }
1037
1038 const boost::python::tuple
1039 Data::mindp() const
1040 {
1041 // NB: calc_mindp had to be split off from mindp as boost::make_tuple causes an
1042 // abort (for unknown reasons) if there are openmp directives with it in the
1043 // surrounding function
1044
1045 int SampleNo;
1046 int DataPointNo;
1047
1048 calc_mindp(SampleNo,DataPointNo);
1049
1050 return make_tuple(SampleNo,DataPointNo);
1051 }
1052
1053 void
1054 Data::calc_mindp(int& SampleNo,
1055 int& DataPointNo) const
1056 {
1057 int i,j;
1058 int lowi=0,lowj=0;
1059 double min=numeric_limits<double>::max();
1060
1061 Data temp=minval();
1062
1063 int numSamples=temp.getNumSamples();
1064 int numDPPSample=temp.getNumDataPointsPerSample();
1065
1066 double next,local_min;
1067 int local_lowi,local_lowj;
1068
1069 #pragma omp parallel private(next,local_min,local_lowi,local_lowj)
1070 {
1071 local_min=min;
1072 #pragma omp for private(i,j) schedule(static)
1073 for (i=0; i<numSamples; i++) {
1074 for (j=0; j<numDPPSample; j++) {
1075 next=temp.getDataPoint(i,j)();
1076 if (next<local_min) {
1077 local_min=next;
1078 local_lowi=i;
1079 local_lowj=j;
1080 }
1081 }
1082 }
1083 #pragma omp critical
1084 if (local_min<min) {
1085 min=local_min;
1086 lowi=local_lowi;
1087 lowj=local_lowj;
1088 }
1089 }
1090
1091 SampleNo = lowi;
1092 DataPointNo = lowj;
1093 }
1094
1095 void
1096 Data::saveDX(std::string fileName) const
1097 {
1098 getDomain().saveDX(fileName,*this);
1099 return;
1100 }
1101
1102 void
1103 Data::saveVTK(std::string fileName) const
1104 {
1105 getDomain().saveVTK(fileName,*this);
1106 return;
1107 }
1108
1109 Data&
1110 Data::operator+=(const Data& right)
1111 {
1112 profData->binary++;
1113 binaryOp(right,plus<double>());
1114 return (*this);
1115 }
1116
1117 Data&
1118 Data::operator+=(const boost::python::object& right)
1119 {
1120 profData->binary++;
1121 binaryOp(right,plus<double>());
1122 return (*this);
1123 }
1124
1125 Data&
1126 Data::operator-=(const Data& right)
1127 {
1128 profData->binary++;
1129 binaryOp(right,minus<double>());
1130 return (*this);
1131 }
1132
1133 Data&
1134 Data::operator-=(const boost::python::object& right)
1135 {
1136 profData->binary++;
1137 binaryOp(right,minus<double>());
1138 return (*this);
1139 }
1140
1141 Data&
1142 Data::operator*=(const Data& right)
1143 {
1144 profData->binary++;
1145 binaryOp(right,multiplies<double>());
1146 return (*this);
1147 }
1148
1149 Data&
1150 Data::operator*=(const boost::python::object& right)
1151 {
1152 profData->binary++;
1153 binaryOp(right,multiplies<double>());
1154 return (*this);
1155 }
1156
1157 Data&
1158 Data::operator/=(const Data& right)
1159 {
1160 profData->binary++;
1161 binaryOp(right,divides<double>());
1162 return (*this);
1163 }
1164
1165 Data&
1166 Data::operator/=(const boost::python::object& right)
1167 {
1168 profData->binary++;
1169 binaryOp(right,divides<double>());
1170 return (*this);
1171 }
1172
1173 Data
1174 Data::powO(const boost::python::object& right) const
1175 {
1176 profData->binary++;
1177 Data result;
1178 result.copy(*this);
1179 result.binaryOp(right,(Data::BinaryDFunPtr)::pow);
1180 return result;
1181 }
1182
1183 Data
1184 Data::powD(const Data& right) const
1185 {
1186 profData->binary++;
1187 Data result;
1188 result.copy(*this);
1189 result.binaryOp(right,(Data::BinaryDFunPtr)::pow);
1190 return result;
1191 }
1192
1193 //
1194 // NOTE: It is essential to specify the namespace this operator belongs to
1195 Data
1196 escript::operator+(const Data& left, const Data& right)
1197 {
1198 Data result;
1199 //
1200 // perform a deep copy
1201 result.copy(left);
1202 result+=right;
1203 return result;
1204 }
1205
1206 //
1207 // NOTE: It is essential to specify the namespace this operator belongs to
1208 Data
1209 escript::operator-(const Data& left, const Data& right)
1210 {
1211 Data result;
1212 //
1213 // perform a deep copy
1214 result.copy(left);
1215 result-=right;
1216 return result;
1217 }
1218
1219 //
1220 // NOTE: It is essential to specify the namespace this operator belongs to
1221 Data
1222 escript::operator*(const Data& left, const Data& right)
1223 {
1224 Data result;
1225 //
1226 // perform a deep copy
1227 result.copy(left);
1228 result*=right;
1229 return result;
1230 }
1231
1232 //
1233 // NOTE: It is essential to specify the namespace this operator belongs to
1234 Data
1235 escript::operator/(const Data& left, const Data& right)
1236 {
1237 Data result;
1238 //
1239 // perform a deep copy
1240 result.copy(left);
1241 result/=right;
1242 return result;
1243 }
1244
1245 //
1246 // NOTE: It is essential to specify the namespace this operator belongs to
1247 Data
1248 escript::operator+(const Data& left, const boost::python::object& right)
1249 {
1250 //
1251 // Convert to DataArray format if possible
1252 DataArray temp(right);
1253 Data result;
1254 //
1255 // perform a deep copy
1256 result.copy(left);
1257 result+=right;
1258 return result;
1259 }
1260
1261 //
1262 // NOTE: It is essential to specify the namespace this operator belongs to
1263 Data
1264 escript::operator-(const Data& left, const boost::python::object& right)
1265 {
1266 //
1267 // Convert to DataArray format if possible
1268 DataArray temp(right);
1269 Data result;
1270 //
1271 // perform a deep copy
1272 result.copy(left);
1273 result-=right;
1274 return result;
1275 }
1276
1277 //
1278 // NOTE: It is essential to specify the namespace this operator belongs to
1279 Data
1280 escript::operator*(const Data& left, const boost::python::object& right)
1281 {
1282 //
1283 // Convert to DataArray format if possible
1284 DataArray temp(right);
1285 Data result;
1286 //
1287 // perform a deep copy
1288 result.copy(left);
1289 result*=right;
1290 return result;
1291 }
1292
1293 //
1294 // NOTE: It is essential to specify the namespace this operator belongs to
1295 Data
1296 escript::operator/(const Data& left, const boost::python::object& right)
1297 {
1298 //
1299 // Convert to DataArray format if possible
1300 DataArray temp(right);
1301 Data result;
1302 //
1303 // perform a deep copy
1304 result.copy(left);
1305 result/=right;
1306 return result;
1307 }
1308
1309 //
1310 // NOTE: It is essential to specify the namespace this operator belongs to
1311 Data
1312 escript::operator+(const boost::python::object& left, const Data& right)
1313 {
1314 //
1315 // Construct the result using the given value and the other parameters
1316 // from right
1317 Data result(left,right);
1318 result+=right;
1319 return result;
1320 }
1321
1322 //
1323 // NOTE: It is essential to specify the namespace this operator belongs to
1324 Data
1325 escript::operator-(const boost::python::object& left, const Data& right)
1326 {
1327 //
1328 // Construct the result using the given value and the other parameters
1329 // from right
1330 Data result(left,right);
1331 result-=right;
1332 return result;
1333 }
1334
1335 //
1336 // NOTE: It is essential to specify the namespace this operator belongs to
1337 Data
1338 escript::operator*(const boost::python::object& left, const Data& right)
1339 {
1340 //
1341 // Construct the result using the given value and the other parameters
1342 // from right
1343 Data result(left,right);
1344 result*=right;
1345 return result;
1346 }
1347
1348 //
1349 // NOTE: It is essential to specify the namespace this operator belongs to
1350 Data
1351 escript::operator/(const boost::python::object& left, const Data& right)
1352 {
1353 //
1354 // Construct the result using the given value and the other parameters
1355 // from right
1356 Data result(left,right);
1357 result/=right;
1358 return result;
1359 }
1360
1361 //
1362 //bool escript::operator==(const Data& left, const Data& right)
1363 //{
1364 // /*
1365 // NB: this operator does very little at this point, and isn't to
1366 // be relied on. Requires further implementation.
1367 // */
1368 //
1369 // bool ret;
1370 //
1371 // if (left.isEmpty()) {
1372 // if(!right.isEmpty()) {
1373 // ret = false;
1374 // } else {
1375 // ret = true;
1376 // }
1377 // }
1378 //
1379 // if (left.isConstant()) {
1380 // if(!right.isConstant()) {
1381 // ret = false;
1382 // } else {
1383 // ret = true;
1384 // }
1385 // }
1386 //
1387 // if (left.isTagged()) {
1388 // if(!right.isTagged()) {
1389 // ret = false;
1390 // } else {
1391 // ret = true;
1392 // }
1393 // }
1394 //
1395 // if (left.isExpanded()) {
1396 // if(!right.isExpanded()) {
1397 // ret = false;
1398 // } else {
1399 // ret = true;
1400 // }
1401 // }
1402 //
1403 // return ret;
1404 //}
1405
1406 Data
1407 Data::getItem(const boost::python::object& key) const
1408 {
1409 const DataArrayView& view=getPointDataView();
1410
1411 DataArrayView::RegionType slice_region=view.getSliceRegion(key);
1412
1413 if (slice_region.size()!=view.getRank()) {
1414 throw DataException("Error - slice size does not match Data rank.");
1415 }
1416
1417 return getSlice(slice_region);
1418 }
1419
1420 Data
1421 Data::getSlice(const DataArrayView::RegionType& region) const
1422 {
1423 profData->slicing++;
1424 return Data(*this,region);
1425 }
1426
1427 void
1428 Data::setItemO(const boost::python::object& key,
1429 const boost::python::object& value)
1430 {
1431 Data tempData(value,getFunctionSpace());
1432 setItemD(key,tempData);
1433 }
1434
1435 void
1436 Data::setItemD(const boost::python::object& key,
1437 const Data& value)
1438 {
1439 const DataArrayView& view=getPointDataView();
1440
1441 DataArrayView::RegionType slice_region=view.getSliceRegion(key);
1442 if (slice_region.size()!=view.getRank()) {
1443 throw DataException("Error - slice size does not match Data rank.");
1444 }
1445 if (getFunctionSpace()!=value.getFunctionSpace()) {
1446 setSlice(Data(value,getFunctionSpace()),slice_region);
1447 } else {
1448 setSlice(value,slice_region);
1449 }
1450 }
1451
1452 void
1453 Data::setSlice(const Data& value,
1454 const DataArrayView::RegionType& region)
1455 {
1456 profData->slicing++;
1457 Data tempValue(value);
1458 typeMatchLeft(tempValue);
1459 typeMatchRight(tempValue);
1460 m_data->setSlice(tempValue.m_data.get(),region);
1461 }
1462
1463 void
1464 Data::typeMatchLeft(Data& right) const
1465 {
1466 if (isExpanded()){
1467 right.expand();
1468 } else if (isTagged()) {
1469 if (right.isConstant()) {
1470 right.tag();
1471 }
1472 }
1473 }
1474
1475 void
1476 Data::typeMatchRight(const Data& right)
1477 {
1478 if (isTagged()) {
1479 if (right.isExpanded()) {
1480 expand();
1481 }
1482 } else if (isConstant()) {
1483 if (right.isExpanded()) {
1484 expand();
1485 } else if (right.isTagged()) {
1486 tag();
1487 }
1488 }
1489 }
1490
1491 void
1492 Data::setTaggedValue(int tagKey,
1493 const boost::python::object& value)
1494 {
1495 //
1496 // Ensure underlying data object is of type DataTagged
1497 tag();
1498
1499 if (!isTagged()) {
1500 throw DataException("Error - DataTagged conversion failed!!");
1501 }
1502
1503 //
1504 // Construct DataArray from boost::python::object input value
1505 DataArray valueDataArray(value);
1506
1507 //
1508 // Call DataAbstract::setTaggedValue
1509 m_data->setTaggedValue(tagKey,valueDataArray.getView());
1510 }
1511
1512 void
1513 Data::setTaggedValueFromCPP(int tagKey,
1514 const DataArrayView& value)
1515 {
1516 //
1517 // Ensure underlying data object is of type DataTagged
1518 tag();
1519
1520 if (!isTagged()) {
1521 throw DataException("Error - DataTagged conversion failed!!");
1522 }
1523
1524 //
1525 // Call DataAbstract::setTaggedValue
1526 m_data->setTaggedValue(tagKey,value);
1527 }
1528
1529 int
1530 Data::getTagNumber(int dpno)
1531 {
1532 return m_data->getTagNumber(dpno);
1533 }
1534
1535 void
1536 Data::setRefValue(int ref,
1537 const boost::python::numeric::array& value)
1538 {
1539 //
1540 // Construct DataArray from boost::python::object input value
1541 DataArray valueDataArray(value);
1542
1543 //
1544 // Call DataAbstract::setRefValue
1545 m_data->setRefValue(ref,valueDataArray);
1546 }
1547
1548 void
1549 Data::getRefValue(int ref,
1550 boost::python::numeric::array& value)
1551 {
1552 //
1553 // Construct DataArray for boost::python::object return value
1554 DataArray valueDataArray(value);
1555
1556 //
1557 // Load DataArray with values from data-points specified by ref
1558 m_data->getRefValue(ref,valueDataArray);
1559
1560 //
1561 // Load values from valueDataArray into return numarray
1562
1563 // extract the shape of the numarray
1564 int rank = value.getrank();
1565 DataArrayView::ShapeType shape;
1566 for (int i=0; i < rank; i++) {
1567 shape.push_back(extract<int>(value.getshape()[i]));
1568 }
1569
1570 // and load the numarray with the data from the DataArray
1571 DataArrayView valueView = valueDataArray.getView();
1572
1573 if (rank==0) {
1574 boost::python::numeric::array temp_numArray(valueView());
1575 value = temp_numArray;
1576 }
1577 if (rank==1) {
1578 for (int i=0; i < shape[0]; i++) {
1579 value[i] = valueView(i);
1580 }
1581 }
1582 if (rank==2) {
1583 for (int i=0; i < shape[0]; i++) {
1584 for (int j=0; j < shape[1]; j++) {
1585 value[i][j] = valueView(i,j);
1586 }
1587 }
1588 }
1589 if (rank==3) {
1590 for (int i=0; i < shape[0]; i++) {
1591 for (int j=0; j < shape[1]; j++) {
1592 for (int k=0; k < shape[2]; k++) {
1593 value[i][j][k] = valueView(i,j,k);
1594 }
1595 }
1596 }
1597 }
1598 if (rank==4) {
1599 for (int i=0; i < shape[0]; i++) {
1600 for (int j=0; j < shape[1]; j++) {
1601 for (int k=0; k < shape[2]; k++) {
1602 for (int l=0; l < shape[3]; l++) {
1603 value[i][j][k][l] = valueView(i,j,k,l);
1604 }
1605 }
1606 }
1607 }
1608 }
1609
1610 }
1611
1612 void
1613 Data::archiveData(const std::string fileName)
1614 {
1615 cout << "Archiving Data object to: " << fileName << endl;
1616
1617 //
1618 // Determine type of this Data object
1619 int dataType = -1;
1620
1621 if (isEmpty()) {
1622 dataType = 0;
1623 cout << "\tdataType: DataEmpty" << endl;
1624 }
1625 if (isConstant()) {
1626 dataType = 1;
1627 cout << "\tdataType: DataConstant" << endl;
1628 }
1629 if (isTagged()) {
1630 dataType = 2;
1631 cout << "\tdataType: DataTagged" << endl;
1632 }
1633 if (isExpanded()) {
1634 dataType = 3;
1635 cout << "\tdataType: DataExpanded" << endl;
1636 }
1637
1638 if (dataType == -1) {
1639 throw DataException("archiveData Error: undefined dataType");
1640 }
1641
1642 //
1643 // Collect data items common to all Data types
1644 int noSamples = getNumSamples();
1645 int noDPPSample = getNumDataPointsPerSample();
1646 int functionSpaceType = getFunctionSpace().getTypeCode();
1647 int dataPointRank = getDataPointRank();
1648 int dataPointSize = getDataPointSize();
1649 int dataLength = getLength();
1650 DataArrayView::ShapeType dataPointShape = getDataPointShape();
1651 int referenceNumbers[noSamples];
1652 for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {
1653 referenceNumbers[sampleNo] = getFunctionSpace().getReferenceNoFromSampleNo(sampleNo);
1654 }
1655 int tagNumbers[noSamples];
1656 if (isTagged()) {
1657 for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {
1658 tagNumbers[sampleNo] = getFunctionSpace().getTagFromSampleNo(sampleNo);
1659 }
1660 }
1661
1662 cout << "\tnoSamples: " << noSamples << " noDPPSample: " << noDPPSample << endl;
1663 cout << "\tfunctionSpaceType: " << functionSpaceType << endl;
1664 cout << "\trank: " << dataPointRank << " size: " << dataPointSize << " length: " << dataLength << endl;
1665
1666 //
1667 // Flatten Shape to an array of integers suitable for writing to file
1668 int flatShape[4] = {0,0,0,0};
1669 cout << "\tshape: < ";
1670 for (int dim=0; dim<dataPointRank; dim++) {
1671 flatShape[dim] = dataPointShape[dim];
1672 cout << dataPointShape[dim] << " ";
1673 }
1674 cout << ">" << endl;
1675
1676 //
1677 // Open archive file
1678 ofstream archiveFile;
1679 archiveFile.open(fileName.data(), ios::out);
1680
1681 if (!archiveFile.good()) {
1682 throw DataException("archiveData Error: problem opening archive file");
1683 }
1684
1685 //
1686 // Write common data items to archive file
1687 archiveFile.write(reinterpret_cast<char *>(&dataType),sizeof(int));
1688 archiveFile.write(reinterpret_cast<char *>(&noSamples),sizeof(int));
1689 archiveFile.write(reinterpret_cast<char *>(&noDPPSample),sizeof(int));
1690 archiveFile.write(reinterpret_cast<char *>(&functionSpaceType),sizeof(int));
1691 archiveFile.write(reinterpret_cast<char *>(&dataPointRank),sizeof(int));
1692 archiveFile.write(reinterpret_cast<char *>(&dataPointSize),sizeof(int));
1693 archiveFile.write(reinterpret_cast<char *>(&dataLength),sizeof(int));
1694 for (int dim = 0; dim < 4; dim++) {
1695 archiveFile.write(reinterpret_cast<char *>(&flatShape[dim]),sizeof(int));
1696 }
1697 for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {
1698 archiveFile.write(reinterpret_cast<char *>(&referenceNumbers[sampleNo]),sizeof(int));
1699 }
1700 if (isTagged()) {
1701 for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {
1702 archiveFile.write(reinterpret_cast<char *>(&tagNumbers[sampleNo]),sizeof(int));
1703 }
1704 }
1705
1706 if (!archiveFile.good()) {
1707 throw DataException("archiveData Error: problem writing to archive file");
1708 }
1709
1710 //
1711 // Archive underlying data values for each Data type
1712 int noValues;
1713 switch (dataType) {
1714 case 0:
1715 // DataEmpty
1716 noValues = 0;
1717 archiveFile.write(reinterpret_cast<char *>(&noValues),sizeof(int));
1718 cout << "\tnoValues: " << noValues << endl;
1719 break;
1720 case 1:
1721 // DataConstant
1722 noValues = m_data->getLength();
1723 archiveFile.write(reinterpret_cast<char *>(&noValues),sizeof(int));
1724 cout << "\tnoValues: " << noValues << endl;
1725 if (m_data->archiveData(archiveFile,noValues)) {
1726 throw DataException("archiveData Error: problem writing data to archive file");
1727 }
1728 break;
1729 case 2:
1730 // DataTagged
1731 noValues = m_data->getLength();
1732 archiveFile.write(reinterpret_cast<char *>(&noValues),sizeof(int));
1733 cout << "\tnoValues: " << noValues << endl;
1734 if (m_data->archiveData(archiveFile,noValues)) {
1735 throw DataException("archiveData Error: problem writing data to archive file");
1736 }
1737 break;
1738 case 3:
1739 // DataExpanded
1740 noValues = m_data->getLength();
1741 archiveFile.write(reinterpret_cast<char *>(&noValues),sizeof(int));
1742 cout << "\tnoValues: " << noValues << endl;
1743 if (m_data->archiveData(archiveFile,noValues)) {
1744 throw DataException("archiveData Error: problem writing data to archive file");
1745 }
1746 break;
1747 }
1748
1749 if (!archiveFile.good()) {
1750 throw DataException("archiveData Error: problem writing data to archive file");
1751 }
1752
1753 //
1754 // Close archive file
1755 archiveFile.close();
1756
1757 if (!archiveFile.good()) {
1758 throw DataException("archiveData Error: problem closing archive file");
1759 }
1760
1761 }
1762
1763 void
1764 Data::extractData(const std::string fileName,
1765 const FunctionSpace& fspace)
1766 {
1767 //
1768 // Can only extract Data to an object which is initially DataEmpty
1769 if (!isEmpty()) {
1770 throw DataException("extractData Error: can only extract to DataEmpty object");
1771 }
1772
1773 cout << "Extracting Data object from: " << fileName << endl;
1774
1775 int dataType;
1776 int noSamples;
1777 int noDPPSample;
1778 int functionSpaceType;
1779 int dataPointRank;
1780 int dataPointSize;
1781 int dataLength;
1782 DataArrayView::ShapeType dataPointShape;
1783 int flatShape[4];
1784
1785 //
1786 // Open the archive file
1787 ifstream archiveFile;
1788 archiveFile.open(fileName.data(), ios::in);
1789
1790 if (!archiveFile.good()) {
1791 throw DataException("extractData Error: problem opening archive file");
1792 }
1793
1794 //
1795 // Read common data items from archive file
1796 archiveFile.read(reinterpret_cast<char *>(&dataType),sizeof(int));
1797 archiveFile.read(reinterpret_cast<char *>(&noSamples),sizeof(int));
1798 archiveFile.read(reinterpret_cast<char *>(&noDPPSample),sizeof(int));
1799 archiveFile.read(reinterpret_cast<char *>(&functionSpaceType),sizeof(int));
1800 archiveFile.read(reinterpret_cast<char *>(&dataPointRank),sizeof(int));
1801 archiveFile.read(reinterpret_cast<char *>(&dataPointSize),sizeof(int));
1802 archiveFile.read(reinterpret_cast<char *>(&dataLength),sizeof(int));
1803 for (int dim = 0; dim < 4; dim++) {
1804 archiveFile.read(reinterpret_cast<char *>(&flatShape[dim]),sizeof(int));
1805 if (flatShape[dim]>0) {
1806 dataPointShape.push_back(flatShape[dim]);
1807 }
1808 }
1809 int referenceNumbers[noSamples];
1810 for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {
1811 archiveFile.read(reinterpret_cast<char *>(&referenceNumbers[sampleNo]),sizeof(int));
1812 }
1813 int tagNumbers[noSamples];
1814 if (dataType==2) {
1815 for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {
1816 archiveFile.read(reinterpret_cast<char *>(&tagNumbers[sampleNo]),sizeof(int));
1817 }
1818 }
1819
1820 if (!archiveFile.good()) {
1821 throw DataException("extractData Error: problem reading from archive file");
1822 }
1823
1824 //
1825 // Verify the values just read from the archive file
1826 switch (dataType) {
1827 case 0:
1828 cout << "\tdataType: DataEmpty" << endl;
1829 break;
1830 case 1:
1831 cout << "\tdataType: DataConstant" << endl;
1832 break;
1833 case 2:
1834 cout << "\tdataType: DataTagged" << endl;
1835 break;
1836 case 3:
1837 cout << "\tdataType: DataExpanded" << endl;
1838 break;
1839 default:
1840 throw DataException("extractData Error: undefined dataType read from archive file");
1841 break;
1842 }
1843
1844 cout << "\tnoSamples: " << noSamples << " noDPPSample: " << noDPPSample << endl;
1845 cout << "\tfunctionSpaceType: " << functionSpaceType << endl;
1846 cout << "\trank: " << dataPointRank << " size: " << dataPointSize << " length: " << dataLength << endl;
1847 cout << "\tshape: < ";
1848 for (int dim = 0; dim < dataPointRank; dim++) {
1849 cout << dataPointShape[dim] << " ";
1850 }
1851 cout << ">" << endl;
1852
1853 //
1854 // Verify that supplied FunctionSpace object is compatible with this Data object.
1855 if ( (fspace.getTypeCode()!=functionSpaceType) ||
1856 (fspace.getNumSamples()!=noSamples) ||
1857 (fspace.getNumDPPSample()!=noDPPSample)
1858 ) {
1859 throw DataException("extractData Error: incompatible FunctionSpace");
1860 }
1861 for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {
1862 if (referenceNumbers[sampleNo] != fspace.getReferenceNoFromSampleNo(sampleNo)) {
1863 throw DataException("extractData Error: incompatible FunctionSpace");
1864 }
1865 }
1866 if (dataType==2) {
1867 for (int sampleNo=0; sampleNo<noSamples; sampleNo++) {
1868 if (tagNumbers[sampleNo] != fspace.getTagFromSampleNo(sampleNo)) {
1869 throw DataException("extractData Error: incompatible FunctionSpace");
1870 }
1871 }
1872 }
1873
1874 //
1875 // Construct a DataVector to hold underlying data values
1876 DataVector dataVec(dataLength);
1877
1878 //
1879 // Load this DataVector with the appropriate values
1880 int noValues;
1881 archiveFile.read(reinterpret_cast<char *>(&noValues),sizeof(int));
1882 cout << "\tnoValues: " << noValues << endl;
1883 switch (dataType) {
1884 case 0:
1885 // DataEmpty
1886 if (noValues != 0) {
1887 throw DataException("extractData Error: problem reading data from archive file");
1888 }
1889 break;
1890 case 1:
1891 // DataConstant
1892 if (dataVec.extractData(archiveFile,noValues)) {
1893 throw DataException("extractData Error: problem reading data from archive file");
1894 }
1895 break;
1896 case 2:
1897 // DataTagged
1898 if (dataVec.extractData(archiveFile,noValues)) {
1899 throw DataException("extractData Error: problem reading data from archive file");
1900 }
1901 break;
1902 case 3:
1903 // DataExpanded
1904 if (dataVec.extractData(archiveFile,noValues)) {
1905 throw DataException("extractData Error: problem reading data from archive file");
1906 }
1907 break;
1908 }
1909
1910 if (!archiveFile.good()) {
1911 throw DataException("extractData Error: problem reading from archive file");
1912 }
1913
1914 //
1915 // Close archive file
1916 archiveFile.close();
1917
1918 if (!archiveFile.good()) {
1919 throw DataException("extractData Error: problem closing archive file");
1920 }
1921
1922 //
1923 // Construct an appropriate Data object
1924 DataAbstract* tempData;
1925 switch (dataType) {
1926 case 0:
1927 // DataEmpty
1928 tempData=new DataEmpty();
1929 break;
1930 case 1:
1931 // DataConstant
1932 tempData=new DataConstant(fspace,dataPointShape,dataVec);
1933 break;
1934 case 2:
1935 // DataTagged
1936 tempData=new DataTagged(fspace,dataPointShape,tagNumbers,dataVec);
1937 break;
1938 case 3:
1939 // DataExpanded
1940 tempData=new DataExpanded(fspace,dataPointShape,dataVec);
1941 break;
1942 }
1943 shared_ptr<DataAbstract> temp_data(tempData);
1944 m_data=temp_data;
1945 }
1946
1947 ostream& escript::operator<<(ostream& o, const Data& data)
1948 {
1949 o << data.toString();
1950 return o;
1951 }

Properties

Name Value
svn:eol-style native
svn:keywords Author Date Id Revision

  ViewVC Help
Powered by ViewVC 1.1.26