Parent Directory
|
Revision Log
Use correct types for MPI op parameters
1 | |
2 | /******************************************************* |
3 | * |
4 | * Copyright (c) 2003-2009 by University of Queensland |
5 | * Earth Systems Science Computational Center (ESSCC) |
6 | * http://www.uq.edu.au/esscc |
7 | * |
8 | * Primary Business: Queensland, Australia |
9 | * Licensed under the Open Software License version 3.0 |
10 | * http://www.opensource.org/licenses/osl-3.0.php |
11 | * |
12 | *******************************************************/ |
13 | |
14 | |
15 | #include "Data.h" |
16 | |
17 | #include "DataExpanded.h" |
18 | #include "DataConstant.h" |
19 | #include "DataTagged.h" |
20 | #include "DataEmpty.h" |
21 | #include "DataLazy.h" |
22 | #include "FunctionSpaceFactory.h" |
23 | #include "AbstractContinuousDomain.h" |
24 | #include "UnaryFuncs.h" |
25 | #include "FunctionSpaceException.h" |
26 | #include "EscriptParams.h" |
27 | |
28 | extern "C" { |
29 | #include "esysUtils/blocktimer.h" |
30 | } |
31 | |
32 | #include <fstream> |
33 | #include <algorithm> |
34 | #include <vector> |
35 | #include <functional> |
36 | #include <sstream> // so we can throw messages about ranks |
37 | |
38 | #include <boost/python/dict.hpp> |
39 | #include <boost/python/extract.hpp> |
40 | #include <boost/python/long.hpp> |
41 | #include "WrappedArray.h" |
42 | |
43 | using namespace std; |
44 | using namespace boost::python; |
45 | using namespace boost; |
46 | using namespace escript; |
47 | |
48 | // ensure the current object is not a DataLazy |
49 | // The idea was that we could add an optional warning whenever a resolve is forced |
50 | // #define forceResolve() if (isLazy()) {#resolve();} |
51 | |
52 | #define AUTOLAZYON escriptParams.getAUTOLAZY() |
53 | #define MAKELAZYOP(X) if (isLazy() || (AUTOLAZYON && m_data->isExpanded())) \ |
54 | {\ |
55 | DataLazy* c=new DataLazy(borrowDataPtr(),X);\ |
56 | return Data(c);\ |
57 | } |
58 | #define MAKELAZYOPOFF(X,Y) if (isLazy() || (AUTOLAZYON && m_data->isExpanded())) \ |
59 | {\ |
60 | DataLazy* c=new DataLazy(borrowDataPtr(),X,Y);\ |
61 | return Data(c);\ |
62 | } |
63 | |
64 | #define MAKELAZYOP2(X,Y,Z) if (isLazy() || (AUTOLAZYON && m_data->isExpanded())) \ |
65 | {\ |
66 | DataLazy* c=new DataLazy(borrowDataPtr(),X,Y,Z);\ |
67 | return Data(c);\ |
68 | } |
69 | |
70 | #define MAKELAZYBINSELF(R,X) if (isLazy() || R.isLazy() || (AUTOLAZYON && (isExpanded() || R.isExpanded()))) \ |
71 | {\ |
72 | DataLazy* c=new DataLazy(m_data,R.borrowDataPtr(),X);\ |
73 | /* m_data=c->getPtr();*/ set_m_data(c->getPtr());\ |
74 | return (*this);\ |
75 | } |
76 | |
77 | // like the above but returns a new data rather than *this |
78 | #define MAKELAZYBIN(R,X) if (isLazy() || R.isLazy() || (AUTOLAZYON && (isExpanded() || R.isExpanded()))) \ |
79 | {\ |
80 | DataLazy* c=new DataLazy(m_data,R.borrowDataPtr(),X);\ |
81 | return Data(c);\ |
82 | } |
83 | |
84 | #define MAKELAZYBIN2(L,R,X) if (L.isLazy() || R.isLazy() || (AUTOLAZYON && (L.isExpanded() || R.isExpanded()))) \ |
85 | {\ |
86 | DataLazy* c=new DataLazy(L.borrowDataPtr(),R.borrowDataPtr(),X);\ |
87 | return Data(c);\ |
88 | } |
89 | |
90 | #define CHECK_DO_CRES escriptParams.getRESOLVE_COLLECTIVE() |
91 | |
92 | namespace |
93 | { |
94 | |
95 | template <class ARR> |
96 | inline |
97 | boost::python::tuple |
98 | pointToTuple1(const DataTypes::ShapeType& shape, ARR v, unsigned long offset) |
99 | { |
100 | using namespace boost::python; |
101 | using boost::python::tuple; |
102 | using boost::python::list; |
103 | |
104 | list l; |
105 | unsigned int dim=shape[0]; |
106 | for (size_t i=0;i<dim;++i) |
107 | { |
108 | l.append(v[i+offset]); |
109 | } |
110 | return tuple(l); |
111 | } |
112 | |
113 | template <class ARR> |
114 | inline |
115 | boost::python::tuple |
116 | pointToTuple2(const DataTypes::ShapeType& shape, ARR v, unsigned long offset) |
117 | { |
118 | using namespace boost::python; |
119 | using boost::python::tuple; |
120 | using boost::python::list; |
121 | |
122 | unsigned int shape0=shape[0]; |
123 | unsigned int shape1=shape[1]; |
124 | list lj; |
125 | for (size_t j=0;j<shape0;++j) |
126 | { |
127 | list li; |
128 | for (size_t i=0;i<shape1;++i) |
129 | { |
130 | li.append(v[offset+DataTypes::getRelIndex(shape,j,i)]); |
131 | } |
132 | lj.append(tuple(li)); |
133 | } |
134 | return tuple(lj); |
135 | } |
136 | |
137 | template <class ARR> |
138 | inline |
139 | boost::python::tuple |
140 | pointToTuple3(const DataTypes::ShapeType& shape, ARR v, unsigned long offset) |
141 | { |
142 | using namespace boost::python; |
143 | using boost::python::tuple; |
144 | using boost::python::list; |
145 | |
146 | unsigned int shape0=shape[0]; |
147 | unsigned int shape1=shape[1]; |
148 | unsigned int shape2=shape[2]; |
149 | |
150 | list lk; |
151 | for (size_t k=0;k<shape0;++k) |
152 | { |
153 | list lj; |
154 | for (size_t j=0;j<shape1;++j) |
155 | { |
156 | list li; |
157 | for (size_t i=0;i<shape2;++i) |
158 | { |
159 | li.append(v[offset+DataTypes::getRelIndex(shape,k,j,i)]); |
160 | } |
161 | lj.append(tuple(li)); |
162 | } |
163 | lk.append(tuple(lj)); |
164 | } |
165 | return tuple(lk); |
166 | } |
167 | |
168 | template <class ARR> |
169 | inline |
170 | boost::python::tuple |
171 | pointToTuple4(const DataTypes::ShapeType& shape, ARR v, unsigned long offset) |
172 | { |
173 | using namespace boost::python; |
174 | using boost::python::tuple; |
175 | using boost::python::list; |
176 | |
177 | unsigned int shape0=shape[0]; |
178 | unsigned int shape1=shape[1]; |
179 | unsigned int shape2=shape[2]; |
180 | unsigned int shape3=shape[3]; |
181 | |
182 | list ll; |
183 | for (size_t l=0;l<shape0;++l) |
184 | { |
185 | list lk; |
186 | for (size_t k=0;k<shape1;++k) |
187 | { |
188 | list lj; |
189 | for (size_t j=0;j<shape2;++j) |
190 | { |
191 | list li; |
192 | for (size_t i=0;i<shape3;++i) |
193 | { |
194 | li.append(v[offset+DataTypes::getRelIndex(shape,l,k,j,i)]); |
195 | } |
196 | lj.append(tuple(li)); |
197 | } |
198 | lk.append(tuple(lj)); |
199 | } |
200 | ll.append(tuple(lk)); |
201 | } |
202 | return tuple(ll); |
203 | } |
204 | |
205 | |
206 | // This should be safer once the DataC RO changes have been brought in |
207 | template <class ARR> |
208 | boost::python::tuple |
209 | pointToTuple( const DataTypes::ShapeType& shape,ARR v) |
210 | { |
211 | using namespace boost::python; |
212 | using boost::python::list; |
213 | int rank=shape.size(); |
214 | if (rank==0) |
215 | { |
216 | return make_tuple(v[0]); |
217 | } |
218 | else if (rank==1) |
219 | { |
220 | return pointToTuple1(shape,v,0); |
221 | } |
222 | else if (rank==2) |
223 | { |
224 | return pointToTuple2(shape,v,0); |
225 | } |
226 | else if (rank==3) |
227 | { |
228 | return pointToTuple3(shape,v,0); |
229 | } |
230 | else if (rank==4) |
231 | { |
232 | return pointToTuple4(shape,v,0); |
233 | } |
234 | else |
235 | throw DataException("Unknown rank in pointToTuple."); |
236 | } |
237 | |
238 | } // anonymous namespace |
239 | |
240 | Data::Data() |
241 | : m_shared(false), m_lazy(false) |
242 | { |
243 | // |
244 | // Default data is type DataEmpty |
245 | DataAbstract* temp=new DataEmpty(); |
246 | // m_data=temp->getPtr(); |
247 | set_m_data(temp->getPtr()); |
248 | m_protected=false; |
249 | } |
250 | |
251 | Data::Data(double value, |
252 | const tuple& shape, |
253 | const FunctionSpace& what, |
254 | bool expanded) |
255 | : m_shared(false), m_lazy(false) |
256 | { |
257 | DataTypes::ShapeType dataPointShape; |
258 | for (int i = 0; i < shape.attr("__len__")(); ++i) { |
259 | dataPointShape.push_back(extract<const int>(shape[i])); |
260 | } |
261 | |
262 | int len = DataTypes::noValues(dataPointShape); |
263 | DataVector temp_data(len,value,len); |
264 | initialise(temp_data, dataPointShape, what, expanded); |
265 | m_protected=false; |
266 | } |
267 | |
268 | Data::Data(double value, |
269 | const DataTypes::ShapeType& dataPointShape, |
270 | const FunctionSpace& what, |
271 | bool expanded) |
272 | : m_shared(false), m_lazy(false) |
273 | { |
274 | int len = DataTypes::noValues(dataPointShape); |
275 | DataVector temp_data(len,value,len); |
276 | initialise(temp_data, dataPointShape, what, expanded); |
277 | m_protected=false; |
278 | } |
279 | |
280 | Data::Data(const Data& inData) |
281 | : m_shared(false), m_lazy(false) |
282 | { |
283 | set_m_data(inData.m_data); |
284 | m_protected=inData.isProtected(); |
285 | } |
286 | |
287 | |
288 | Data::Data(const Data& inData, |
289 | const DataTypes::RegionType& region) |
290 | : m_shared(false), m_lazy(false) |
291 | { |
292 | DataAbstract_ptr dat=inData.m_data; |
293 | if (inData.isLazy()) |
294 | { |
295 | dat=inData.m_data->resolve(); |
296 | } |
297 | else |
298 | { |
299 | dat=inData.m_data; |
300 | } |
301 | // |
302 | // Create Data which is a slice of another Data |
303 | DataAbstract* tmp = dat->getSlice(region); |
304 | set_m_data(DataAbstract_ptr(tmp)); |
305 | m_protected=false; |
306 | |
307 | } |
308 | |
309 | Data::Data(const Data& inData, |
310 | const FunctionSpace& functionspace) |
311 | : m_shared(false), m_lazy(false) |
312 | { |
313 | if (inData.isEmpty()) |
314 | { |
315 | throw DataException("Error - will not interpolate for instances of DataEmpty."); |
316 | } |
317 | if (inData.getFunctionSpace()==functionspace) { |
318 | set_m_data(inData.m_data); |
319 | } |
320 | else |
321 | { |
322 | |
323 | if (inData.isConstant()) { // for a constant function, we just need to use the new function space |
324 | if (!inData.probeInterpolation(functionspace)) |
325 | { // Even though this is constant, we still need to check whether interpolation is allowed |
326 | throw FunctionSpaceException("Cannot interpolate across to the domain of the specified FunctionSpace. (DataConstant)"); |
327 | } |
328 | // if the data is not lazy, this will just be a cast to DataReady |
329 | DataReady_ptr dr=inData.m_data->resolve(); |
330 | DataConstant* dc=new DataConstant(functionspace,inData.m_data->getShape(),dr->getVectorRO()); |
331 | // m_data=DataAbstract_ptr(dc); |
332 | set_m_data(DataAbstract_ptr(dc)); |
333 | } else { |
334 | Data tmp(0,inData.getDataPointShape(),functionspace,true); |
335 | // Note: Must use a reference or pointer to a derived object |
336 | // in order to get polymorphic behaviour. Shouldn't really |
337 | // be able to create an instance of AbstractDomain but that was done |
338 | // as a boost:python work around which may no longer be required. |
339 | /*const AbstractDomain& inDataDomain=inData.getDomain();*/ |
340 | const_Domain_ptr inDataDomain=inData.getDomain(); |
341 | if (inDataDomain==functionspace.getDomain()) { |
342 | inDataDomain->interpolateOnDomain(tmp,inData); |
343 | } else { |
344 | inDataDomain->interpolateACross(tmp,inData); |
345 | } |
346 | // m_data=tmp.m_data; |
347 | set_m_data(tmp.m_data); |
348 | } |
349 | } |
350 | m_protected=false; |
351 | } |
352 | |
353 | Data::Data(DataAbstract* underlyingdata) |
354 | : m_shared(false), m_lazy(false) |
355 | { |
356 | set_m_data(underlyingdata->getPtr()); |
357 | m_protected=false; |
358 | } |
359 | |
360 | Data::Data(DataAbstract_ptr underlyingdata) |
361 | : m_shared(false), m_lazy(false) |
362 | { |
363 | set_m_data(underlyingdata); |
364 | m_protected=false; |
365 | } |
366 | |
367 | Data::Data(const DataTypes::ValueType& value, |
368 | const DataTypes::ShapeType& shape, |
369 | const FunctionSpace& what, |
370 | bool expanded) |
371 | : m_shared(false), m_lazy(false) |
372 | { |
373 | initialise(value,shape,what,expanded); |
374 | m_protected=false; |
375 | } |
376 | |
377 | |
378 | Data::Data(const object& value, |
379 | const FunctionSpace& what, |
380 | bool expanded) |
381 | : m_shared(false), m_lazy(false) |
382 | { |
383 | WrappedArray w(value); |
384 | initialise(w,what,expanded); |
385 | m_protected=false; |
386 | } |
387 | |
388 | |
389 | Data::Data(const object& value, |
390 | const Data& other) |
391 | : m_shared(false), m_lazy(false) |
392 | { |
393 | WrappedArray w(value); |
394 | |
395 | // extract the shape of the array |
396 | const DataTypes::ShapeType& tempShape=w.getShape(); |
397 | if (w.getRank()==0) { |
398 | |
399 | |
400 | // get the space for the data vector |
401 | int len1 = DataTypes::noValues(tempShape); |
402 | DataVector temp_data(len1, 0.0, len1); |
403 | temp_data.copyFromArray(w,1); |
404 | |
405 | int len = DataTypes::noValues(other.getDataPointShape()); |
406 | |
407 | DataVector temp2_data(len, temp_data[0], len); |
408 | DataConstant* t=new DataConstant(other.getFunctionSpace(),other.getDataPointShape(),temp2_data); |
409 | // m_data=DataAbstract_ptr(t); |
410 | set_m_data(DataAbstract_ptr(t)); |
411 | |
412 | } else { |
413 | // |
414 | // Create a DataConstant with the same sample shape as other |
415 | DataConstant* t=new DataConstant(w,other.getFunctionSpace()); |
416 | // m_data=DataAbstract_ptr(t); |
417 | set_m_data(DataAbstract_ptr(t)); |
418 | } |
419 | m_protected=false; |
420 | } |
421 | |
422 | Data::~Data() |
423 | { |
424 | set_m_data(DataAbstract_ptr()); |
425 | } |
426 | |
427 | |
428 | // only call in thread safe contexts. |
429 | // This method should be atomic |
430 | void Data::set_m_data(DataAbstract_ptr p) |
431 | { |
432 | if (m_data.get()!=0) // release old ownership |
433 | { |
434 | m_data->removeOwner(this); |
435 | } |
436 | if (p.get()!=0) |
437 | { |
438 | m_data=p; |
439 | m_data->addOwner(this); |
440 | m_shared=m_data->isShared(); |
441 | m_lazy=m_data->isLazy(); |
442 | } |
443 | } |
444 | |
445 | void Data::initialise(const WrappedArray& value, |
446 | const FunctionSpace& what, |
447 | bool expanded) |
448 | { |
449 | // |
450 | // Construct a Data object of the appropriate type. |
451 | // Construct the object first as there seems to be a bug which causes |
452 | // undefined behaviour if an exception is thrown during construction |
453 | // within the shared_ptr constructor. |
454 | if (expanded) { |
455 | DataAbstract* temp=new DataExpanded(value, what); |
456 | // m_data=temp->getPtr(); |
457 | set_m_data(temp->getPtr()); |
458 | } else { |
459 | DataAbstract* temp=new DataConstant(value, what); |
460 | // m_data=temp->getPtr(); |
461 | set_m_data(temp->getPtr()); |
462 | } |
463 | } |
464 | |
465 | |
466 | void |
467 | Data::initialise(const DataTypes::ValueType& value, |
468 | const DataTypes::ShapeType& shape, |
469 | const FunctionSpace& what, |
470 | bool expanded) |
471 | { |
472 | // |
473 | // Construct a Data object of the appropriate type. |
474 | // Construct the object first as there seems to be a bug which causes |
475 | // undefined behaviour if an exception is thrown during construction |
476 | // within the shared_ptr constructor. |
477 | if (expanded) { |
478 | DataAbstract* temp=new DataExpanded(what, shape, value); |
479 | // m_data=temp->getPtr(); |
480 | set_m_data(temp->getPtr()); |
481 | } else { |
482 | DataAbstract* temp=new DataConstant(what, shape, value); |
483 | // m_data=temp->getPtr(); |
484 | set_m_data(temp->getPtr()); |
485 | } |
486 | } |
487 | |
488 | |
489 | escriptDataC |
490 | Data::getDataC() |
491 | { |
492 | escriptDataC temp; |
493 | temp.m_dataPtr=(void*)this; |
494 | return temp; |
495 | } |
496 | |
497 | escriptDataC |
498 | Data::getDataC() const |
499 | { |
500 | escriptDataC temp; |
501 | temp.m_dataPtr=(void*)this; |
502 | return temp; |
503 | } |
504 | |
505 | size_t |
506 | Data::getSampleBufferSize() const |
507 | { |
508 | return m_data->getSampleBufferSize(); |
509 | } |
510 | |
511 | |
512 | const boost::python::tuple |
513 | Data::getShapeTuple() const |
514 | { |
515 | const DataTypes::ShapeType& shape=getDataPointShape(); |
516 | switch(getDataPointRank()) { |
517 | case 0: |
518 | return make_tuple(); |
519 | case 1: |
520 | return make_tuple(long_(shape[0])); |
521 | case 2: |
522 | return make_tuple(long_(shape[0]),long_(shape[1])); |
523 | case 3: |
524 | return make_tuple(long_(shape[0]),long_(shape[1]),long_(shape[2])); |
525 | case 4: |
526 | return make_tuple(long_(shape[0]),long_(shape[1]),long_(shape[2]),long_(shape[3])); |
527 | default: |
528 | throw DataException("Error - illegal Data rank."); |
529 | } |
530 | } |
531 | |
532 | |
533 | // The different name is needed because boost has trouble with overloaded functions. |
534 | // It can't work out what type the function is based soley on its name. |
535 | // There are ways to fix this involving creating function pointer variables for each form |
536 | // but there doesn't seem to be a need given that the methods have the same name from the python point of view |
537 | Data |
538 | Data::copySelf() |
539 | { |
540 | DataAbstract* temp=m_data->deepCopy(); |
541 | return Data(temp); |
542 | } |
543 | |
544 | void |
545 | Data::copy(const Data& other) |
546 | { |
547 | DataAbstract* temp=other.m_data->deepCopy(); |
548 | DataAbstract_ptr p=temp->getPtr(); |
549 | // m_data=p; |
550 | set_m_data(p); |
551 | } |
552 | |
553 | |
554 | Data |
555 | Data::delay() |
556 | { |
557 | if (!isLazy()) |
558 | { |
559 | DataLazy* dl=new DataLazy(m_data); |
560 | return Data(dl); |
561 | } |
562 | return *this; |
563 | } |
564 | |
565 | void |
566 | Data::delaySelf() |
567 | { |
568 | if (!isLazy()) |
569 | { |
570 | // m_data=(new DataLazy(m_data))->getPtr(); |
571 | set_m_data((new DataLazy(m_data))->getPtr()); |
572 | } |
573 | } |
574 | |
575 | |
576 | // For lazy data, it would seem that DataTagged will need to be treated differently since even after setting all tags |
577 | // to zero, all the tags from all the DataTags would be in the result. |
578 | // However since they all have the same value (0) whether they are there or not should not matter. |
579 | // So I have decided that for all types this method will create a constant 0. |
580 | // It can be promoted up as required. |
581 | // A possible efficiency concern might be expanded->constant->expanded which has an extra memory management |
582 | // but we can deal with that if it arises. |
583 | // |
584 | void |
585 | Data::setToZero() |
586 | { |
587 | if (isEmpty()) |
588 | { |
589 | throw DataException("Error - Operations not permitted on instances of DataEmpty."); |
590 | } |
591 | if (isLazy()) |
592 | { |
593 | DataTypes::ValueType v(getNoValues(),0); |
594 | DataConstant* dc=new DataConstant(getFunctionSpace(),getDataPointShape(),v); |
595 | DataLazy* dl=new DataLazy(dc->getPtr()); |
596 | set_m_data(dl->getPtr()); |
597 | } |
598 | else |
599 | { |
600 | exclusiveWrite(); |
601 | m_data->setToZero(); |
602 | } |
603 | } |
604 | |
605 | |
606 | void |
607 | Data::copyWithMask(const Data& other, |
608 | const Data& mask) |
609 | { |
610 | // 1. Interpolate if required so all Datas use the same FS as this |
611 | // 2. Tag or Expand so that all Data's are the same type |
612 | // 3. Iterate over the data vectors copying values where mask is >0 |
613 | if (other.isEmpty() || mask.isEmpty()) |
614 | { |
615 | throw DataException("Error - copyWithMask not permitted using instances of DataEmpty."); |
616 | } |
617 | Data other2(other); |
618 | Data mask2(mask); |
619 | other2.resolve(); |
620 | mask2.resolve(); |
621 | this->resolve(); |
622 | FunctionSpace myFS=getFunctionSpace(); |
623 | FunctionSpace oFS=other2.getFunctionSpace(); |
624 | FunctionSpace mFS=mask2.getFunctionSpace(); |
625 | if (oFS!=myFS) |
626 | { |
627 | if (other2.probeInterpolation(myFS)) |
628 | { |
629 | other2=other2.interpolate(myFS); |
630 | } |
631 | else |
632 | { |
633 | throw DataException("Error - copyWithMask: other FunctionSpace is not compatible with this one."); |
634 | } |
635 | } |
636 | if (mFS!=myFS) |
637 | { |
638 | if (mask2.probeInterpolation(myFS)) |
639 | { |
640 | mask2=mask2.interpolate(myFS); |
641 | } |
642 | else |
643 | { |
644 | throw DataException("Error - copyWithMask: mask FunctionSpace is not compatible with this one."); |
645 | } |
646 | } |
647 | // Ensure that all args have the same type |
648 | if (this->isExpanded() || mask2.isExpanded() || other2.isExpanded()) |
649 | { |
650 | this->expand(); |
651 | other2.expand(); |
652 | mask2.expand(); |
653 | } |
654 | else if (this->isTagged() || mask2.isTagged() || other2.isTagged()) |
655 | { |
656 | this->tag(); |
657 | other2.tag(); |
658 | mask2.tag(); |
659 | } |
660 | else if (this->isConstant() && mask2.isConstant() && other2.isConstant()) |
661 | { |
662 | } |
663 | else |
664 | { |
665 | throw DataException("Error - Unknown DataAbstract passed to copyWithMask."); |
666 | } |
667 | unsigned int selfrank=getDataPointRank(); |
668 | unsigned int otherrank=other2.getDataPointRank(); |
669 | unsigned int maskrank=mask2.getDataPointRank(); |
670 | if ((selfrank==0) && (otherrank>0 || maskrank>0)) |
671 | { |
672 | // to get here we must be copying from a large object into a scalar |
673 | // I am not allowing this. |
674 | // If you are calling copyWithMask then you are considering keeping some existing values |
675 | // and so I'm going to assume that you don't want your data objects getting a new shape. |
676 | throw DataException("Attempt to copyWithMask into a scalar from an object or mask with rank>0."); |
677 | } |
678 | exclusiveWrite(); |
679 | // Now we iterate over the elements |
680 | DataVector& self=getReady()->getVectorRW();; |
681 | const DataVector& ovec=other2.getReadyPtr()->getVectorRO(); |
682 | const DataVector& mvec=mask2.getReadyPtr()->getVectorRO(); |
683 | |
684 | if ((selfrank>0) && (otherrank==0) &&(maskrank==0)) |
685 | { |
686 | // Not allowing this combination. |
687 | // it is not clear what the rank of the target should be. |
688 | // Should it be filled with the scalar (rank stays the same); |
689 | // or should the target object be reshaped to be a scalar as well. |
690 | throw DataException("Attempt to copyWithMask from scalar mask and data into non-scalar target."); |
691 | } |
692 | if ((selfrank>0) && (otherrank>0) &&(maskrank==0)) |
693 | { |
694 | if (mvec[0]>0) // copy whole object if scalar is >0 |
695 | { |
696 | copy(other); |
697 | } |
698 | return; |
699 | } |
700 | if (isTagged()) // so all objects involved will also be tagged |
701 | { |
702 | // note the ! |
703 | if (!((getDataPointShape()==mask2.getDataPointShape()) && |
704 | ((other2.getDataPointShape()==mask2.getDataPointShape()) || (otherrank==0)))) |
705 | { |
706 | throw DataException("copyWithMask, shape mismatch."); |
707 | } |
708 | |
709 | // We need to consider the possibility that tags are missing or in the wrong order |
710 | // My guiding assumption here is: All tagged Datas are assumed to have the default value for |
711 | // all tags which are not explicitly defined |
712 | |
713 | const DataTagged* mptr=dynamic_cast<const DataTagged*>(mask2.m_data.get()); |
714 | const DataTagged* optr=dynamic_cast<const DataTagged*>(other2.m_data.get()); |
715 | DataTagged* tptr=dynamic_cast<DataTagged*>(m_data.get()); |
716 | |
717 | // first, add any tags missing from other or mask |
718 | const DataTagged::DataMapType& olookup=optr->getTagLookup(); |
719 | const DataTagged::DataMapType& mlookup=mptr->getTagLookup(); |
720 | const DataTagged::DataMapType& tlookup=tptr->getTagLookup(); |
721 | DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
722 | for (i=olookup.begin();i!=olookup.end();i++) |
723 | { |
724 | tptr->addTag(i->first); |
725 | } |
726 | for (i=mlookup.begin();i!=mlookup.end();i++) { |
727 | tptr->addTag(i->first); |
728 | } |
729 | // now we know that *this has all the required tags but they aren't guaranteed to be in |
730 | // the same order |
731 | |
732 | // There are two possibilities: 1. all objects have the same rank. 2. other is a scalar |
733 | if ((selfrank==otherrank) && (otherrank==maskrank)) |
734 | { |
735 | for (i=tlookup.begin();i!=tlookup.end();i++) |
736 | { |
737 | // get the target offset |
738 | DataTypes::ValueType::size_type toff=tptr->getOffsetForTag(i->first); |
739 | DataTypes::ValueType::size_type moff=mptr->getOffsetForTag(i->first); |
740 | DataTypes::ValueType::size_type ooff=optr->getOffsetForTag(i->first); |
741 | for (int j=0;j<getDataPointSize();++j) |
742 | { |
743 | if (mvec[j+moff]>0) |
744 | { |
745 | self[j+toff]=ovec[j+ooff]; |
746 | } |
747 | } |
748 | } |
749 | // now for the default value |
750 | for (int j=0;j<getDataPointSize();++j) |
751 | { |
752 | if (mvec[j+mptr->getDefaultOffset()]>0) |
753 | { |
754 | self[j+tptr->getDefaultOffset()]=ovec[j+optr->getDefaultOffset()]; |
755 | } |
756 | } |
757 | } |
758 | else // other is a scalar |
759 | { |
760 | for (i=tlookup.begin();i!=tlookup.end();i++) |
761 | { |
762 | // get the target offset |
763 | DataTypes::ValueType::size_type toff=tptr->getOffsetForTag(i->first); |
764 | DataTypes::ValueType::size_type moff=mptr->getOffsetForTag(i->first); |
765 | DataTypes::ValueType::size_type ooff=optr->getOffsetForTag(i->first); |
766 | for (int j=0;j<getDataPointSize();++j) |
767 | { |
768 | if (mvec[j+moff]>0) |
769 | { |
770 | self[j+toff]=ovec[ooff]; |
771 | } |
772 | } |
773 | } |
774 | // now for the default value |
775 | for (int j=0;j<getDataPointSize();++j) |
776 | { |
777 | if (mvec[j+mptr->getDefaultOffset()]>0) |
778 | { |
779 | self[j+tptr->getDefaultOffset()]=ovec[0]; |
780 | } |
781 | } |
782 | } |
783 | |
784 | return; // ugly |
785 | } |
786 | // mixed scalar and non-scalar operation |
787 | if ((selfrank>0) && (otherrank==0) && (mask2.getDataPointShape()==getDataPointShape())) |
788 | { |
789 | size_t num_points=self.size(); |
790 | // OPENMP 3.0 allows unsigned loop vars. |
791 | #if defined(_OPENMP) && (_OPENMP < 200805) |
792 | long i; |
793 | #else |
794 | size_t i; |
795 | #endif |
796 | size_t psize=getDataPointSize(); |
797 | #pragma omp parallel for private(i) schedule(static) |
798 | for (i=0;i<num_points;++i) |
799 | { |
800 | if (mvec[i]>0) |
801 | { |
802 | self[i]=ovec[i/psize]; // since this is expanded there is one scalar |
803 | } // dest point |
804 | } |
805 | return; // ugly! |
806 | } |
807 | // tagged data is already taken care of so we only need to worry about shapes |
808 | // special cases with scalars are already dealt with so all we need to worry about is shape |
809 | if ((getDataPointShape()!=other2.getDataPointShape()) || getDataPointShape()!=mask2.getDataPointShape()) |
810 | { |
811 | ostringstream oss; |
812 | oss <<"Error - size mismatch in arguments to copyWithMask."; |
813 | oss << "\nself_shape=" << DataTypes::shapeToString(getDataPointShape()); |
814 | oss << " other2_shape=" << DataTypes::shapeToString(other2.getDataPointShape()); |
815 | oss << " mask2_shape=" << DataTypes::shapeToString(mask2.getDataPointShape()); |
816 | throw DataException(oss.str()); |
817 | } |
818 | size_t num_points=self.size(); |
819 | |
820 | // OPENMP 3.0 allows unsigned loop vars. |
821 | #if defined(_OPENMP) && (_OPENMP < 200805) |
822 | long i; |
823 | #else |
824 | size_t i; |
825 | #endif |
826 | #pragma omp parallel for private(i) schedule(static) |
827 | for (i=0;i<num_points;++i) |
828 | { |
829 | if (mvec[i]>0) |
830 | { |
831 | self[i]=ovec[i]; |
832 | } |
833 | } |
834 | } |
835 | |
836 | bool |
837 | Data::isExpanded() const |
838 | { |
839 | DataExpanded* temp=dynamic_cast<DataExpanded*>(m_data.get()); |
840 | return (temp!=0); |
841 | } |
842 | |
843 | bool |
844 | Data::actsExpanded() const |
845 | { |
846 | return m_data->actsExpanded(); |
847 | |
848 | } |
849 | |
850 | |
851 | bool |
852 | Data::isTagged() const |
853 | { |
854 | DataTagged* temp=dynamic_cast<DataTagged*>(m_data.get()); |
855 | return (temp!=0); |
856 | } |
857 | |
858 | bool |
859 | Data::isEmpty() const |
860 | { |
861 | DataEmpty* temp=dynamic_cast<DataEmpty*>(m_data.get()); |
862 | return (temp!=0); |
863 | } |
864 | |
865 | bool |
866 | Data::isConstant() const |
867 | { |
868 | DataConstant* temp=dynamic_cast<DataConstant*>(m_data.get()); |
869 | return (temp!=0); |
870 | } |
871 | |
872 | bool |
873 | Data::isLazy() const |
874 | { |
875 | return m_lazy; // not asking m_data because we need to be able to ask this while m_data is changing |
876 | } |
877 | |
878 | // at the moment this is synonymous with !isLazy() but that could change |
879 | bool |
880 | Data::isReady() const |
881 | { |
882 | return (dynamic_cast<DataReady*>(m_data.get())!=0); |
883 | } |
884 | |
885 | |
886 | void |
887 | Data::setProtection() |
888 | { |
889 | m_protected=true; |
890 | } |
891 | |
892 | bool |
893 | Data::isProtected() const |
894 | { |
895 | return m_protected; |
896 | } |
897 | |
898 | |
899 | |
900 | void |
901 | Data::expand() |
902 | { |
903 | if (isConstant()) { |
904 | DataConstant* tempDataConst=dynamic_cast<DataConstant*>(m_data.get()); |
905 | DataAbstract* temp=new DataExpanded(*tempDataConst); |
906 | // m_data=temp->getPtr(); |
907 | set_m_data(temp->getPtr()); |
908 | } else if (isTagged()) { |
909 | DataTagged* tempDataTag=dynamic_cast<DataTagged*>(m_data.get()); |
910 | DataAbstract* temp=new DataExpanded(*tempDataTag); |
911 | // m_data=temp->getPtr(); |
912 | set_m_data(temp->getPtr()); |
913 | } else if (isExpanded()) { |
914 | // |
915 | // do nothing |
916 | } else if (isEmpty()) { |
917 | throw DataException("Error - Expansion of DataEmpty not possible."); |
918 | } else if (isLazy()) { |
919 | resolve(); |
920 | expand(); // resolve might not give us expanded data |
921 | } else { |
922 | throw DataException("Error - Expansion not implemented for this Data type."); |
923 | } |
924 | } |
925 | |
926 | void |
927 | Data::tag() |
928 | { |
929 | if (isConstant()) { |
930 | DataConstant* tempDataConst=dynamic_cast<DataConstant*>(m_data.get()); |
931 | DataAbstract* temp=new DataTagged(*tempDataConst); |
932 | // m_data=temp->getPtr(); |
933 | set_m_data(temp->getPtr()); |
934 | } else if (isTagged()) { |
935 | // do nothing |
936 | } else if (isExpanded()) { |
937 | throw DataException("Error - Creating tag data from DataExpanded not possible."); |
938 | } else if (isEmpty()) { |
939 | throw DataException("Error - Creating tag data from DataEmpty not possible."); |
940 | } else if (isLazy()) { |
941 | DataAbstract_ptr res=m_data->resolve(); |
942 | if (m_data->isExpanded()) |
943 | { |
944 | throw DataException("Error - data would resolve to DataExpanded, tagging is not possible."); |
945 | } |
946 | // m_data=res; |
947 | set_m_data(res); |
948 | tag(); |
949 | } else { |
950 | throw DataException("Error - Tagging not implemented for this Data type."); |
951 | } |
952 | } |
953 | |
954 | void |
955 | Data::resolve() |
956 | { |
957 | if (isLazy()) |
958 | { |
959 | // m_data=m_data->resolve(); |
960 | set_m_data(m_data->resolve()); |
961 | } |
962 | } |
963 | |
964 | void |
965 | Data::requireWrite() |
966 | { |
967 | resolve(); |
968 | exclusiveWrite(); |
969 | } |
970 | |
971 | Data |
972 | Data::oneOver() const |
973 | { |
974 | MAKELAZYOP(RECIP) |
975 | return C_TensorUnaryOperation(*this, bind1st(divides<double>(),1.)); |
976 | } |
977 | |
978 | Data |
979 | Data::wherePositive() const |
980 | { |
981 | MAKELAZYOP(GZ) |
982 | return C_TensorUnaryOperation(*this, bind2nd(greater<double>(),0.0)); |
983 | } |
984 | |
985 | Data |
986 | Data::whereNegative() const |
987 | { |
988 | MAKELAZYOP(LZ) |
989 | return C_TensorUnaryOperation(*this, bind2nd(less<double>(),0.0)); |
990 | } |
991 | |
992 | Data |
993 | Data::whereNonNegative() const |
994 | { |
995 | MAKELAZYOP(GEZ) |
996 | return C_TensorUnaryOperation(*this, bind2nd(greater_equal<double>(),0.0)); |
997 | } |
998 | |
999 | Data |
1000 | Data::whereNonPositive() const |
1001 | { |
1002 | MAKELAZYOP(LEZ) |
1003 | return C_TensorUnaryOperation(*this, bind2nd(less_equal<double>(),0.0)); |
1004 | } |
1005 | |
1006 | Data |
1007 | Data::whereZero(double tol) const |
1008 | { |
1009 | // Data dataAbs=abs(); |
1010 | // return C_TensorUnaryOperation(dataAbs, bind2nd(less_equal<double>(),tol)); |
1011 | MAKELAZYOPOFF(EZ,tol) |
1012 | return C_TensorUnaryOperation(*this, bind2nd(AbsLTE(),tol)); |
1013 | |
1014 | } |
1015 | |
1016 | Data |
1017 | Data::whereNonZero(double tol) const |
1018 | { |
1019 | // Data dataAbs=abs(); |
1020 | // return C_TensorUnaryOperation(dataAbs, bind2nd(greater<double>(),tol)); |
1021 | MAKELAZYOPOFF(NEZ,tol) |
1022 | return C_TensorUnaryOperation(*this, bind2nd(AbsGT(),tol)); |
1023 | |
1024 | } |
1025 | |
1026 | Data |
1027 | Data::interpolate(const FunctionSpace& functionspace) const |
1028 | { |
1029 | return Data(*this,functionspace); |
1030 | } |
1031 | |
1032 | bool |
1033 | Data::probeInterpolation(const FunctionSpace& functionspace) const |
1034 | { |
1035 | return getFunctionSpace().probeInterpolation(functionspace); |
1036 | } |
1037 | |
1038 | Data |
1039 | Data::gradOn(const FunctionSpace& functionspace) const |
1040 | { |
1041 | if (isEmpty()) |
1042 | { |
1043 | throw DataException("Error - operation not permitted on instances of DataEmpty."); |
1044 | } |
1045 | double blocktimer_start = blocktimer_time(); |
1046 | if (functionspace.getDomain()!=getDomain()) |
1047 | throw DataException("Error - gradient cannot be calculated on different domains."); |
1048 | DataTypes::ShapeType grad_shape=getDataPointShape(); |
1049 | grad_shape.push_back(functionspace.getDim()); |
1050 | Data out(0.0,grad_shape,functionspace,true); |
1051 | getDomain()->setToGradient(out,*this); |
1052 | blocktimer_increment("grad()", blocktimer_start); |
1053 | return out; |
1054 | } |
1055 | |
1056 | Data |
1057 | Data::grad() const |
1058 | { |
1059 | if (isEmpty()) |
1060 | { |
1061 | throw DataException("Error - operation not permitted on instances of DataEmpty."); |
1062 | } |
1063 | return gradOn(escript::function(*getDomain())); |
1064 | } |
1065 | |
1066 | int |
1067 | Data::getDataPointSize() const |
1068 | { |
1069 | return m_data->getNoValues(); |
1070 | } |
1071 | |
1072 | |
1073 | DataTypes::ValueType::size_type |
1074 | Data::getLength() const |
1075 | { |
1076 | return m_data->getLength(); |
1077 | } |
1078 | |
1079 | |
1080 | // There is no parallelism here ... elements need to be added in the correct order. |
1081 | // If we could presize the list and then fill in the elements it might work |
1082 | // This would need setting elements to be threadsafe. |
1083 | // Having mulitple C threads calling into one interpreter is aparently a no-no. |
1084 | const boost::python::object |
1085 | Data::toListOfTuples(bool scalarastuple) |
1086 | { |
1087 | using namespace boost::python; |
1088 | using boost::python::list; |
1089 | if (get_MPISize()>1) |
1090 | { |
1091 | throw DataException("::toListOfTuples is not available for MPI with more than one process."); |
1092 | } |
1093 | unsigned int rank=getDataPointRank(); |
1094 | unsigned int size=getDataPointSize(); |
1095 | |
1096 | int npoints=getNumDataPoints(); |
1097 | expand(); // This will also resolve if required |
1098 | const DataTypes::ValueType& vec=getReady()->getVectorRO(); |
1099 | boost::python::list temp; |
1100 | temp.append(object()); |
1101 | boost::python::list res(temp*npoints);// presize the list by the "[None] * npoints" trick |
1102 | if (rank==0) |
1103 | { |
1104 | long count; |
1105 | if (scalarastuple) |
1106 | { |
1107 | for (count=0;count<npoints;++count) |
1108 | { |
1109 | res[count]=make_tuple(vec[count]); |
1110 | } |
1111 | } |
1112 | else |
1113 | { |
1114 | for (count=0;count<npoints;++count) |
1115 | { |
1116 | res[count]=vec[count]; |
1117 | } |
1118 | } |
1119 | } |
1120 | else if (rank==1) |
1121 | { |
1122 | size_t count; |
1123 | size_t offset=0; |
1124 | for (count=0;count<npoints;++count,offset+=size) |
1125 | { |
1126 | res[count]=pointToTuple1(getDataPointShape(), vec, offset); |
1127 | } |
1128 | } |
1129 | else if (rank==2) |
1130 | { |
1131 | size_t count; |
1132 | size_t offset=0; |
1133 | for (count=0;count<npoints;++count,offset+=size) |
1134 | { |
1135 | res[count]=pointToTuple2(getDataPointShape(), vec, offset); |
1136 | } |
1137 | } |
1138 | else if (rank==3) |
1139 | { |
1140 | size_t count; |
1141 | size_t offset=0; |
1142 | for (count=0;count<npoints;++count,offset+=size) |
1143 | { |
1144 | res[count]=pointToTuple3(getDataPointShape(), vec, offset); |
1145 | } |
1146 | } |
1147 | else if (rank==4) |
1148 | { |
1149 | size_t count; |
1150 | size_t offset=0; |
1151 | for (count=0;count<npoints;++count,offset+=size) |
1152 | { |
1153 | res[count]=pointToTuple4(getDataPointShape(), vec, offset); |
1154 | } |
1155 | } |
1156 | else |
1157 | { |
1158 | throw DataException("Unknown rank in ::toListOfTuples()"); |
1159 | } |
1160 | return res; |
1161 | } |
1162 | |
1163 | const boost::python::object |
1164 | Data::getValueOfDataPointAsTuple(int dataPointNo) |
1165 | { |
1166 | forceResolve(); |
1167 | if (getNumDataPointsPerSample()>0) { |
1168 | int sampleNo = dataPointNo/getNumDataPointsPerSample(); |
1169 | int dataPointNoInSample = dataPointNo - sampleNo * getNumDataPointsPerSample(); |
1170 | // |
1171 | // Check a valid sample number has been supplied |
1172 | if ((sampleNo >= getNumSamples()) || (sampleNo < 0 )) { |
1173 | throw DataException("Error - Data::getValueOfDataPointAsTuple: invalid sampleNo."); |
1174 | } |
1175 | |
1176 | // |
1177 | // Check a valid data point number has been supplied |
1178 | if ((dataPointNoInSample >= getNumDataPointsPerSample()) || (dataPointNoInSample < 0)) { |
1179 | throw DataException("Error - Data::getValueOfDataPointAsTuple: invalid dataPointNoInSample."); |
1180 | } |
1181 | // TODO: global error handling |
1182 | DataTypes::ValueType::size_type offset=getDataOffset(sampleNo, dataPointNoInSample); |
1183 | return pointToTuple(getDataPointShape(),&(getDataAtOffsetRO(offset))); |
1184 | } |
1185 | else |
1186 | { |
1187 | // The pre-numpy method would return an empty array of the given shape |
1188 | // I'm going to throw an exception because if we have zero points per sample we have problems |
1189 | throw DataException("Error - need at least 1 datapoint per sample."); |
1190 | } |
1191 | |
1192 | } |
1193 | |
1194 | |
1195 | void |
1196 | Data::setValueOfDataPointToPyObject(int dataPointNo, const boost::python::object& py_object) |
1197 | { |
1198 | // this will throw if the value cannot be represented |
1199 | setValueOfDataPointToArray(dataPointNo,py_object); |
1200 | } |
1201 | |
1202 | void |
1203 | Data::setValueOfDataPointToArray(int dataPointNo, const boost::python::object& obj) |
1204 | { |
1205 | if (isProtected()) { |
1206 | throw DataException("Error - attempt to update protected Data object."); |
1207 | } |
1208 | |
1209 | WrappedArray w(obj); |
1210 | // |
1211 | // check rank |
1212 | if (static_cast<unsigned int>(w.getRank())<getDataPointRank()) |
1213 | throw DataException("Rank of array does not match Data object rank"); |
1214 | |
1215 | // |
1216 | // check shape of array |
1217 | for (unsigned int i=0; i<getDataPointRank(); i++) { |
1218 | if (w.getShape()[i]!=getDataPointShape()[i]) |
1219 | throw DataException("Shape of array does not match Data object rank"); |
1220 | } |
1221 | |
1222 | exclusiveWrite(); |
1223 | |
1224 | // |
1225 | // make sure data is expanded: |
1226 | // |
1227 | if (!isExpanded()) { |
1228 | expand(); |
1229 | } |
1230 | if (getNumDataPointsPerSample()>0) { |
1231 | int sampleNo = dataPointNo/getNumDataPointsPerSample(); |
1232 | int dataPointNoInSample = dataPointNo - sampleNo * getNumDataPointsPerSample(); |
1233 | m_data->copyToDataPoint(sampleNo, dataPointNoInSample,w); |
1234 | } else { |
1235 | m_data->copyToDataPoint(-1, 0,w); |
1236 | } |
1237 | } |
1238 | |
1239 | void |
1240 | Data::setValueOfDataPoint(int dataPointNo, const double value) |
1241 | { |
1242 | if (isProtected()) { |
1243 | throw DataException("Error - attempt to update protected Data object."); |
1244 | } |
1245 | // |
1246 | // make sure data is expanded: |
1247 | exclusiveWrite(); |
1248 | if (!isExpanded()) { |
1249 | expand(); |
1250 | } |
1251 | if (getNumDataPointsPerSample()>0) { |
1252 | int sampleNo = dataPointNo/getNumDataPointsPerSample(); |
1253 | int dataPointNoInSample = dataPointNo - sampleNo * getNumDataPointsPerSample(); |
1254 | m_data->copyToDataPoint(sampleNo, dataPointNoInSample,value); |
1255 | } else { |
1256 | m_data->copyToDataPoint(-1, 0,value); |
1257 | } |
1258 | } |
1259 | |
1260 | const |
1261 | boost::python::object |
1262 | Data::getValueOfGlobalDataPointAsTuple(int procNo, int dataPointNo) |
1263 | { |
1264 | // This could be lazier than it is now |
1265 | forceResolve(); |
1266 | |
1267 | // copy datapoint into a buffer |
1268 | // broadcast buffer to all nodes |
1269 | // convert buffer to tuple |
1270 | // return tuple |
1271 | |
1272 | const DataTypes::ShapeType& dataPointShape = getDataPointShape(); |
1273 | size_t length=DataTypes::noValues(dataPointShape); |
1274 | |
1275 | // added for the MPI communication |
1276 | double *tmpData = new double[length]; |
1277 | |
1278 | // updated for the MPI case |
1279 | if( get_MPIRank()==procNo ){ |
1280 | if (getNumDataPointsPerSample()>0) { |
1281 | int sampleNo = dataPointNo/getNumDataPointsPerSample(); |
1282 | int dataPointNoInSample = dataPointNo - sampleNo * getNumDataPointsPerSample(); |
1283 | // |
1284 | // Check a valid sample number has been supplied |
1285 | if ((sampleNo >= getNumSamples()) || (sampleNo < 0 )) { |
1286 | throw DataException("Error - Data::getValueOfGlobalDataPointAsTuple: invalid sampleNo."); |
1287 | } |
1288 | |
1289 | // |
1290 | // Check a valid data point number has been supplied |
1291 | if ((dataPointNoInSample >= getNumDataPointsPerSample()) || (dataPointNoInSample < 0)) { |
1292 | throw DataException("Error - Data::getValueOfGlobalDataPointAsTuple: invalid dataPointNoInSample."); |
1293 | } |
1294 | // TODO: global error handling |
1295 | DataTypes::ValueType::size_type offset=getDataOffset(sampleNo, dataPointNoInSample); |
1296 | |
1297 | memcpy(tmpData,&(getDataAtOffsetRO(offset)),length*sizeof(double)); |
1298 | } |
1299 | } |
1300 | #ifdef PASO_MPI |
1301 | // broadcast the data to all other processes |
1302 | MPI_Bcast( tmpData, length, MPI_DOUBLE, procNo, get_MPIComm() ); |
1303 | #endif |
1304 | |
1305 | boost::python::tuple t=pointToTuple(dataPointShape,tmpData); |
1306 | delete [] tmpData; |
1307 | // |
1308 | // return the loaded array |
1309 | return t; |
1310 | |
1311 | } |
1312 | |
1313 | |
1314 | boost::python::object |
1315 | Data::integrateToTuple_const() const |
1316 | { |
1317 | if (isLazy()) |
1318 | { |
1319 | throw DataException("Error - cannot integrate for constant lazy data."); |
1320 | } |
1321 | return integrateWorker(); |
1322 | } |
1323 | |
1324 | boost::python::object |
1325 | Data::integrateToTuple() |
1326 | { |
1327 | if (isLazy()) |
1328 | { |
1329 | expand(); // Can't do a non-resolving version of this without changing the domain object |
1330 | } // see the dom->setToIntegrals call. Not saying it can't be done, just not doing it yet. |
1331 | return integrateWorker(); |
1332 | |
1333 | } |
1334 | |
1335 | boost::python::object |
1336 | Data::integrateWorker() const |
1337 | { |
1338 | DataTypes::ShapeType shape = getDataPointShape(); |
1339 | int dataPointSize = getDataPointSize(); |
1340 | |
1341 | // |
1342 | // calculate the integral values |
1343 | vector<double> integrals(dataPointSize); |
1344 | vector<double> integrals_local(dataPointSize); |
1345 | const AbstractContinuousDomain* dom=dynamic_cast<const AbstractContinuousDomain*>(getDomain().get()); |
1346 | if (dom==0) |
1347 | { |
1348 | throw DataException("Can not integrate over non-continuous domains."); |
1349 | } |
1350 | #ifdef PASO_MPI |
1351 | dom->setToIntegrals(integrals_local,*this); |
1352 | // Global sum: use an array instead of a vector because elements of array are guaranteed to be contiguous in memory |
1353 | double *tmp = new double[dataPointSize]; |
1354 | double *tmp_local = new double[dataPointSize]; |
1355 | for (int i=0; i<dataPointSize; i++) { tmp_local[i] = integrals_local[i]; } |
1356 | MPI_Allreduce( &tmp_local[0], &tmp[0], dataPointSize, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD ); |
1357 | for (int i=0; i<dataPointSize; i++) { integrals[i] = tmp[i]; } |
1358 | tuple result=pointToTuple(shape,tmp); |
1359 | delete[] tmp; |
1360 | delete[] tmp_local; |
1361 | #else |
1362 | dom->setToIntegrals(integrals,*this); |
1363 | /* double *tmp = new double[dataPointSize]; |
1364 | for (int i=0; i<dataPointSize; i++) { tmp[i]=integrals[i]; }*/ |
1365 | tuple result=pointToTuple(shape,integrals); |
1366 | // delete tmp; |
1367 | #endif |
1368 | |
1369 | |
1370 | return result; |
1371 | } |
1372 | |
1373 | Data |
1374 | Data::sin() const |
1375 | { |
1376 | MAKELAZYOP(SIN) |
1377 | return C_TensorUnaryOperation<double (*)(double)>(*this, ::sin); |
1378 | } |
1379 | |
1380 | Data |
1381 | Data::cos() const |
1382 | { |
1383 | MAKELAZYOP(COS) |
1384 | return C_TensorUnaryOperation<double (*)(double)>(*this, ::cos); |
1385 | } |
1386 | |
1387 | Data |
1388 | Data::tan() const |
1389 | { |
1390 | MAKELAZYOP(TAN) |
1391 | return C_TensorUnaryOperation<double (*)(double)>(*this, ::tan); |
1392 | } |
1393 | |
1394 | Data |
1395 | Data::asin() const |
1396 | { |
1397 | MAKELAZYOP(ASIN) |
1398 | return C_TensorUnaryOperation<double (*)(double)>(*this, ::asin); |
1399 | } |
1400 | |
1401 | Data |
1402 | Data::acos() const |
1403 | { |
1404 | MAKELAZYOP(ACOS) |
1405 | return C_TensorUnaryOperation<double (*)(double)>(*this, ::acos); |
1406 | } |
1407 | |
1408 | |
1409 | Data |
1410 | Data::atan() const |
1411 | { |
1412 | MAKELAZYOP(ATAN) |
1413 | return C_TensorUnaryOperation<double (*)(double)>(*this, ::atan); |
1414 | } |
1415 | |
1416 | Data |
1417 | Data::sinh() const |
1418 | { |
1419 | MAKELAZYOP(SINH) |
1420 | return C_TensorUnaryOperation<double (*)(double)>(*this, ::sinh); |
1421 | } |
1422 | |
1423 | Data |
1424 | Data::cosh() const |
1425 | { |
1426 | MAKELAZYOP(COSH) |
1427 | return C_TensorUnaryOperation<double (*)(double)>(*this, ::cosh); |
1428 | } |
1429 | |
1430 | Data |
1431 | Data::tanh() const |
1432 | { |
1433 | MAKELAZYOP(TANH) |
1434 | return C_TensorUnaryOperation<double (*)(double)>(*this, ::tanh); |
1435 | } |
1436 | |
1437 | |
1438 | Data |
1439 | Data::erf() const |
1440 | { |
1441 | #if defined (_WIN32) && !defined(__INTEL_COMPILER) |
1442 | throw DataException("Error - Data:: erf function is not supported on _WIN32 platforms."); |
1443 | #else |
1444 | MAKELAZYOP(ERF) |
1445 | return C_TensorUnaryOperation(*this, ::erf); |
1446 | #endif |
1447 | } |
1448 | |
1449 | Data |
1450 | Data::asinh() const |
1451 | { |
1452 | MAKELAZYOP(ASINH) |
1453 | #if defined (_WIN32) && !defined(__INTEL_COMPILER) |
1454 | return C_TensorUnaryOperation(*this, escript::asinh_substitute); |
1455 | #else |
1456 | return C_TensorUnaryOperation(*this, ::asinh); |
1457 | #endif |
1458 | } |
1459 | |
1460 | Data |
1461 | Data::acosh() const |
1462 | { |
1463 | MAKELAZYOP(ACOSH) |
1464 | #if defined (_WIN32) && !defined(__INTEL_COMPILER) |
1465 | return C_TensorUnaryOperation(*this, escript::acosh_substitute); |
1466 | #else |
1467 | return C_TensorUnaryOperation(*this, ::acosh); |
1468 | #endif |
1469 | } |
1470 | |
1471 | Data |
1472 | Data::atanh() const |
1473 | { |
1474 | MAKELAZYOP(ATANH) |
1475 | #if defined (_WIN32) && !defined(__INTEL_COMPILER) |
1476 | return C_TensorUnaryOperation(*this, escript::atanh_substitute); |
1477 | #else |
1478 | return C_TensorUnaryOperation(*this, ::atanh); |
1479 | #endif |
1480 | } |
1481 | |
1482 | Data |
1483 | Data::log10() const |
1484 | { |
1485 | MAKELAZYOP(LOG10) |
1486 | return C_TensorUnaryOperation<double (*)(double)>(*this, ::log10); |
1487 | } |
1488 | |
1489 | Data |
1490 | Data::log() const |
1491 | { |
1492 | MAKELAZYOP(LOG) |
1493 | return C_TensorUnaryOperation<double (*)(double)>(*this, ::log); |
1494 | } |
1495 | |
1496 | Data |
1497 | Data::sign() const |
1498 | { |
1499 | MAKELAZYOP(SIGN) |
1500 | return C_TensorUnaryOperation(*this, escript::fsign); |
1501 | } |
1502 | |
1503 | Data |
1504 | Data::abs() const |
1505 | { |
1506 | MAKELAZYOP(ABS) |
1507 | return C_TensorUnaryOperation<double (*)(double)>(*this, ::fabs); |
1508 | } |
1509 | |
1510 | Data |
1511 | Data::neg() const |
1512 | { |
1513 | MAKELAZYOP(NEG) |
1514 | return C_TensorUnaryOperation(*this, negate<double>()); |
1515 | } |
1516 | |
1517 | Data |
1518 | Data::pos() const |
1519 | { |
1520 | // not doing lazy check here is deliberate. |
1521 | // since a deep copy of lazy data should be cheap, I'll just let it happen now |
1522 | Data result; |
1523 | // perform a deep copy |
1524 | result.copy(*this); |
1525 | return result; |
1526 | } |
1527 | |
1528 | Data |
1529 | Data::exp() const |
1530 | { |
1531 | MAKELAZYOP(EXP) |
1532 | return C_TensorUnaryOperation<double (*)(double)>(*this, ::exp); |
1533 | } |
1534 | |
1535 | Data |
1536 | Data::sqrt() const |
1537 | { |
1538 | MAKELAZYOP(SQRT) |
1539 | return C_TensorUnaryOperation<double (*)(double)>(*this, ::sqrt); |
1540 | } |
1541 | |
1542 | double |
1543 | Data::Lsup_const() const |
1544 | { |
1545 | if (isLazy()) |
1546 | { |
1547 | throw DataException("Error - cannot compute Lsup for constant lazy data."); |
1548 | } |
1549 | return LsupWorker(); |
1550 | } |
1551 | |
1552 | double |
1553 | Data::Lsup() |
1554 | { |
1555 | if (isLazy()) |
1556 | { |
1557 | if (!actsExpanded() || CHECK_DO_CRES) |
1558 | { |
1559 | resolve(); |
1560 | } |
1561 | else |
1562 | { |
1563 | #ifdef PASO_MPI |
1564 | return lazyAlgWorker<AbsMax>(0,MPI_MAX); |
1565 | #else |
1566 | return lazyAlgWorker<AbsMax>(0,0); |
1567 | #endif |
1568 | } |
1569 | } |
1570 | return LsupWorker(); |
1571 | } |
1572 | |
1573 | double |
1574 | Data::sup_const() const |
1575 | { |
1576 | if (isLazy()) |
1577 | { |
1578 | throw DataException("Error - cannot compute sup for constant lazy data."); |
1579 | } |
1580 | return supWorker(); |
1581 | } |
1582 | |
1583 | double |
1584 | Data::sup() |
1585 | { |
1586 | if (isLazy()) |
1587 | { |
1588 | if (!actsExpanded() || CHECK_DO_CRES) |
1589 | { |
1590 | resolve(); |
1591 | } |
1592 | else |
1593 | { |
1594 | #ifdef PASO_MPI |
1595 | return lazyAlgWorker<FMax>(numeric_limits<double>::max()*-1, MPI_MAX); |
1596 | #else |
1597 | return lazyAlgWorker<FMax>(numeric_limits<double>::max()*-1, 0); |
1598 | #endif |
1599 | } |
1600 | } |
1601 | return supWorker(); |
1602 | } |
1603 | |
1604 | double |
1605 | Data::inf_const() const |
1606 | { |
1607 | if (isLazy()) |
1608 | { |
1609 | throw DataException("Error - cannot compute inf for constant lazy data."); |
1610 | } |
1611 | return infWorker(); |
1612 | } |
1613 | |
1614 | double |
1615 | Data::inf() |
1616 | { |
1617 | if (isLazy()) |
1618 | { |
1619 | if (!actsExpanded() || CHECK_DO_CRES) |
1620 | { |
1621 | resolve(); |
1622 | } |
1623 | else |
1624 | { |
1625 | #ifdef PASO_MPI |
1626 | return lazyAlgWorker<FMin>(numeric_limits<double>::max(), MPI_MIN); |
1627 | #else |
1628 | return lazyAlgWorker<FMin>(numeric_limits<double>::max(), 0); |
1629 | #endif |
1630 | } |
1631 | } |
1632 | return infWorker(); |
1633 | } |
1634 | |
1635 | template <class BinaryOp> |
1636 | double |
1637 | #ifdef PASO_MPI |
1638 | Data::lazyAlgWorker(double init, MPI_Op mpiop_type) |
1639 | #else |
1640 | Data::lazyAlgWorker(double init) |
1641 | #endif |
1642 | { |
1643 | if (!isLazy() || !m_data->actsExpanded()) |
1644 | { |
1645 | throw DataException("Error - lazyAlgWorker can only be called on lazy(expanded) data."); |
1646 | } |
1647 | DataLazy* dl=dynamic_cast<DataLazy*>(m_data.get()); |
1648 | EsysAssert((dl!=0), "Programming error - casting to DataLazy."); |
1649 | BufferGroup* bg=allocSampleBuffer(); |
1650 | double val=init; |
1651 | int i=0; |
1652 | const size_t numsamples=getNumSamples(); |
1653 | const size_t samplesize=getNoValues()*getNumDataPointsPerSample(); |
1654 | BinaryOp operation; |
1655 | #pragma omp parallel private(i) |
1656 | { |
1657 | double localtot=init; |
1658 | #pragma omp for schedule(static) private(i) |
1659 | for (i=0;i<numsamples;++i) |
1660 | { |
1661 | size_t roffset=0; |
1662 | const DataTypes::ValueType* v=dl->resolveSample(*bg, i, roffset); |
1663 | // Now we have the sample, run operation on all points |
1664 | for (size_t j=0;j<samplesize;++j) |
1665 | { |
1666 | localtot=operation(localtot,(*v)[j+roffset]); |
1667 | } |
1668 | } |
1669 | #pragma omp critical |
1670 | val=operation(val,localtot); |
1671 | } |
1672 | freeSampleBuffer(bg); |
1673 | #ifdef PASO_MPI |
1674 | double globalValue; |
1675 | MPI_Allreduce( &val, &globalValue, 1, MPI_DOUBLE, mpiop_type, MPI_COMM_WORLD ); |
1676 | return globalValue; |
1677 | #else |
1678 | return val; |
1679 | #endif |
1680 | } |
1681 | |
1682 | double |
1683 | Data::LsupWorker() const |
1684 | { |
1685 | double localValue; |
1686 | // |
1687 | // set the initial absolute maximum value to zero |
1688 | |
1689 | AbsMax abs_max_func; |
1690 | localValue = algorithm(abs_max_func,0); |
1691 | #ifdef PASO_MPI |
1692 | double globalValue; |
1693 | MPI_Allreduce( &localValue, &globalValue, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD ); |
1694 | return globalValue; |
1695 | #else |
1696 | return localValue; |
1697 | #endif |
1698 | } |
1699 | |
1700 | double |
1701 | Data::supWorker() const |
1702 | { |
1703 | double localValue; |
1704 | // |
1705 | // set the initial maximum value to min possible double |
1706 | FMax fmax_func; |
1707 | localValue = algorithm(fmax_func,numeric_limits<double>::max()*-1); |
1708 | #ifdef PASO_MPI |
1709 | double globalValue; |
1710 | MPI_Allreduce( &localValue, &globalValue, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD ); |
1711 | return globalValue; |
1712 | #else |
1713 | return localValue; |
1714 | #endif |
1715 | } |
1716 | |
1717 | double |
1718 | Data::infWorker() const |
1719 | { |
1720 | double localValue; |
1721 | // |
1722 | // set the initial minimum value to max possible double |
1723 | FMin fmin_func; |
1724 | localValue = algorithm(fmin_func,numeric_limits<double>::max()); |
1725 | #ifdef PASO_MPI |
1726 | double globalValue; |
1727 | MPI_Allreduce( &localValue, &globalValue, 1, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD ); |
1728 | return globalValue; |
1729 | #else |
1730 | return localValue; |
1731 | #endif |
1732 | } |
1733 | |
1734 | /* TODO */ |
1735 | /* global reduction */ |
1736 | Data |
1737 | Data::maxval() const |
1738 | { |
1739 | MAKELAZYOP(MAXVAL) |
1740 | // |
1741 | // set the initial maximum value to min possible double |
1742 | FMax fmax_func; |
1743 | return dp_algorithm(fmax_func,numeric_limits<double>::max()*-1); |
1744 | } |
1745 | |
1746 | Data |
1747 | Data::minval() const |
1748 | { |
1749 | MAKELAZYOP(MINVAL) |
1750 | // |
1751 | // set the initial minimum value to max possible double |
1752 | FMin fmin_func; |
1753 | return dp_algorithm(fmin_func,numeric_limits<double>::max()); |
1754 | } |
1755 | |
1756 | Data |
1757 | Data::swapaxes(const int axis0, const int axis1) const |
1758 | { |
1759 | int axis0_tmp,axis1_tmp; |
1760 | DataTypes::ShapeType s=getDataPointShape(); |
1761 | DataTypes::ShapeType ev_shape; |
1762 | // Here's the equivalent of python s_out=s[axis_offset:]+s[:axis_offset] |
1763 | // which goes thru all shape vector elements starting with axis_offset (at index=rank wrap around to 0) |
1764 | int rank=getDataPointRank(); |
1765 | if (rank<2) { |
1766 | throw DataException("Error - Data::swapaxes argument must have at least rank 2."); |
1767 | } |
1768 | if (axis0<0 || axis0>rank-1) { |
1769 | throw DataException("Error - Data::swapaxes: axis0 must be between 0 and rank-1=" + rank-1); |
1770 | } |
1771 | if (axis1<0 || axis1>rank-1) { |
1772 | throw DataException("Error - Data::swapaxes: axis1 must be between 0 and rank-1=" + rank-1); |
1773 | } |
1774 | if (axis0 == axis1) { |
1775 | throw DataException("Error - Data::swapaxes: axis indices must be different."); |
1776 | } |
1777 | MAKELAZYOP2(SWAP,axis0,axis1) |
1778 | if (axis0 > axis1) |
1779 | { |
1780 | axis0_tmp=axis1; |
1781 | axis1_tmp=axis0; |
1782 | } |
1783 | else |
1784 | { |
1785 | axis0_tmp=axis0; |
1786 | axis1_tmp=axis1; |
1787 | } |
1788 | for (int i=0; i<rank; i++) |
1789 | { |
1790 | if (i == axis0_tmp) |
1791 | { |
1792 | ev_shape.push_back(s[axis1_tmp]); |
1793 | } |
1794 | else if (i == axis1_tmp) |
1795 | { |
1796 | ev_shape.push_back(s[axis0_tmp]); |
1797 | } |
1798 | else |
1799 | { |
1800 | ev_shape.push_back(s[i]); |
1801 | } |
1802 | } |
1803 | Data ev(0.,ev_shape,getFunctionSpace()); |
1804 | ev.typeMatchRight(*this); |
1805 | m_data->swapaxes(ev.m_data.get(), axis0_tmp, axis1_tmp); |
1806 | return ev; |
1807 | } |
1808 | |
1809 | Data |
1810 | Data::symmetric() const |
1811 | { |
1812 | // check input |
1813 | DataTypes::ShapeType s=getDataPointShape(); |
1814 | if (getDataPointRank()==2) { |
1815 | if(s[0] != s[1]) |
1816 | throw DataException("Error - Data::symmetric can only be calculated for rank 2 object with equal first and second dimension."); |
1817 | } |
1818 | else if (getDataPointRank()==4) { |
1819 | if(!(s[0] == s[2] && s[1] == s[3])) |
1820 | throw DataException("Error - Data::symmetric can only be calculated for rank 4 object with dim0==dim2 and dim1==dim3."); |
1821 | } |
1822 | else { |
1823 | throw DataException("Error - Data::symmetric can only be calculated for rank 2 or 4 object."); |
1824 | } |
1825 | MAKELAZYOP(SYM) |
1826 | Data ev(0.,getDataPointShape(),getFunctionSpace()); |
1827 | ev.typeMatchRight(*this); |
1828 | m_data->symmetric(ev.m_data.get()); |
1829 | return ev; |
1830 | } |
1831 | |
1832 | Data |
1833 | Data::nonsymmetric() const |
1834 | { |
1835 | MAKELAZYOP(NSYM) |
1836 | // check input |
1837 | DataTypes::ShapeType s=getDataPointShape(); |
1838 | if (getDataPointRank()==2) { |
1839 | if(s[0] != s[1]) |
1840 | throw DataException("Error - Data::nonsymmetric can only be calculated for rank 2 object with equal first and second dimension."); |
1841 | DataTypes::ShapeType ev_shape; |
1842 | ev_shape.push_back(s[0]); |
1843 | ev_shape.push_back(s[1]); |
1844 | Data ev(0.,ev_shape,getFunctionSpace()); |
1845 | ev.typeMatchRight(*this); |
1846 | m_data->nonsymmetric(ev.m_data.get()); |
1847 | return ev; |
1848 | } |
1849 | else if (getDataPointRank()==4) { |
1850 | if(!(s[0] == s[2] && s[1] == s[3])) |
1851 | throw DataException("Error - Data::nonsymmetric can only be calculated for rank 4 object with dim0==dim2 and dim1==dim3."); |
1852 | DataTypes::ShapeType ev_shape; |
1853 | ev_shape.push_back(s[0]); |
1854 | ev_shape.push_back(s[1]); |
1855 | ev_shape.push_back(s[2]); |
1856 | ev_shape.push_back(s[3]); |
1857 | Data ev(0.,ev_shape,getFunctionSpace()); |
1858 | ev.typeMatchRight(*this); |
1859 | m_data->nonsymmetric(ev.m_data.get()); |
1860 | return ev; |
1861 | } |
1862 | else { |
1863 | throw DataException("Error - Data::nonsymmetric can only be calculated for rank 2 or 4 object."); |
1864 | } |
1865 | } |
1866 | |
1867 | Data |
1868 | Data::trace(int axis_offset) const |
1869 | { |
1870 | MAKELAZYOPOFF(TRACE,axis_offset) |
1871 | if ((axis_offset<0) || (axis_offset>getDataPointRank())) |
1872 | { |
1873 | throw DataException("Error - Data::trace, axis_offset must be between 0 and rank-2 inclusive."); |
1874 | } |
1875 | DataTypes::ShapeType s=getDataPointShape(); |
1876 | if (getDataPointRank()==2) { |
1877 | DataTypes::ShapeType ev_shape; |
1878 | Data ev(0.,ev_shape,getFunctionSpace()); |
1879 | ev.typeMatchRight(*this); |
1880 | m_data->trace(ev.m_data.get(), axis_offset); |
1881 | return ev; |
1882 | } |
1883 | if (getDataPointRank()==3) { |
1884 | DataTypes::ShapeType ev_shape; |
1885 | if (axis_offset==0) { |
1886 | int s2=s[2]; |
1887 | ev_shape.push_back(s2); |
1888 | } |
1889 | else if (axis_offset==1) { |
1890 | int s0=s[0]; |
1891 | ev_shape.push_back(s0); |
1892 | } |
1893 | Data ev(0.,ev_shape,getFunctionSpace()); |
1894 | ev.typeMatchRight(*this); |
1895 | m_data->trace(ev.m_data.get(), axis_offset); |
1896 | return ev; |
1897 | } |
1898 | if (getDataPointRank()==4) { |
1899 | DataTypes::ShapeType ev_shape; |
1900 | if (axis_offset==0) { |
1901 | ev_shape.push_back(s[2]); |
1902 | ev_shape.push_back(s[3]); |
1903 | } |
1904 | else if (axis_offset==1) { |
1905 | ev_shape.push_back(s[0]); |
1906 | ev_shape.push_back(s[3]); |
1907 | } |
1908 | else if (axis_offset==2) { |
1909 | ev_shape.push_back(s[0]); |
1910 | ev_shape.push_back(s[1]); |
1911 | } |
1912 | Data ev(0.,ev_shape,getFunctionSpace()); |
1913 | ev.typeMatchRight(*this); |
1914 | m_data->trace(ev.m_data.get(), axis_offset); |
1915 | return ev; |
1916 | } |
1917 | else { |
1918 | throw DataException("Error - Data::trace can only be calculated for rank 2, 3 or 4 object."); |
1919 | } |
1920 | } |
1921 | |
1922 | Data |
1923 | Data::transpose(int axis_offset) const |
1924 | { |
1925 | MAKELAZYOPOFF(TRANS,axis_offset) |
1926 | DataTypes::ShapeType s=getDataPointShape(); |
1927 | DataTypes::ShapeType ev_shape; |
1928 | // Here's the equivalent of python s_out=s[axis_offset:]+s[:axis_offset] |
1929 | // which goes thru all shape vector elements starting with axis_offset (at index=rank wrap around to 0) |
1930 | int rank=getDataPointRank(); |
1931 | if (axis_offset<0 || axis_offset>rank) { |
1932 | throw DataException("Error - Data::transpose must have 0 <= axis_offset <= rank=" + rank); |
1933 | } |
1934 | for (int i=0; i<rank; i++) { |
1935 | |
1936 | int index = (axis_offset+i)%rank; |
1937 | ev_shape.push_back(s[index]); // Append to new shape |
1938 | } |
1939 | Data ev(0.,ev_shape,getFunctionSpace()); |
1940 | ev.typeMatchRight(*this); |
1941 | m_data->transpose(ev.m_data.get(), axis_offset); |
1942 | return ev; |
1943 | } |
1944 | |
1945 | Data |
1946 | Data::eigenvalues() const |
1947 | { |
1948 | if (isLazy()) |
1949 | { |
1950 | Data temp(*this); // to get around the fact that you can't resolve a const Data |
1951 | temp.resolve(); |
1952 | return temp.eigenvalues(); |
1953 | } |
1954 | // check input |
1955 | DataTypes::ShapeType s=getDataPointShape(); |
1956 | if (getDataPointRank()!=2) |
1957 | throw DataException("Error - Data::eigenvalues can only be calculated for rank 2 object."); |
1958 | if(s[0] != s[1]) |
1959 | throw DataException("Error - Data::eigenvalues can only be calculated for object with equal first and second dimension."); |
1960 | // create return |
1961 | DataTypes::ShapeType ev_shape(1,s[0]); |
1962 | Data ev(0.,ev_shape,getFunctionSpace()); |
1963 | ev.typeMatchRight(*this); |
1964 | m_data->eigenvalues(ev.m_data.get()); |
1965 | return ev; |
1966 | } |
1967 | |
1968 | const boost::python::tuple |
1969 | Data::eigenvalues_and_eigenvectors(const double tol) const |
1970 | { |
1971 | if (isLazy()) |
1972 | { |
1973 | Data temp(*this); // to get around the fact that you can't resolve a const Data |
1974 | temp.resolve(); |
1975 | return temp.eigenvalues_and_eigenvectors(tol); |
1976 | } |
1977 | DataTypes::ShapeType s=getDataPointShape(); |
1978 | if (getDataPointRank()!=2) |
1979 | throw DataException("Error - Data::eigenvalues and eigenvectors can only be calculated for rank 2 object."); |
1980 | if(s[0] != s[1]) |
1981 | throw DataException("Error - Data::eigenvalues and eigenvectors can only be calculated for object with equal first and second dimension."); |
1982 | // create return |
1983 | DataTypes::ShapeType ev_shape(1,s[0]); |
1984 | Data ev(0.,ev_shape,getFunctionSpace()); |
1985 | ev.typeMatchRight(*this); |
1986 | DataTypes::ShapeType V_shape(2,s[0]); |
1987 | Data V(0.,V_shape,getFunctionSpace()); |
1988 | V.typeMatchRight(*this); |
1989 | m_data->eigenvalues_and_eigenvectors(ev.m_data.get(),V.m_data.get(),tol); |
1990 | return make_tuple(boost::python::object(ev),boost::python::object(V)); |
1991 | } |
1992 | |
1993 | const boost::python::tuple |
1994 | Data::minGlobalDataPoint() const |
1995 | { |
1996 | // NB: calc_minGlobalDataPoint( had to be split off from minGlobalDataPoint( as boost::make_tuple causes an |
1997 | // abort (for unknown reasons) if there are openmp directives with it in the |
1998 | // surrounding function |
1999 | |
2000 | int DataPointNo; |
2001 | int ProcNo; |
2002 | calc_minGlobalDataPoint(ProcNo,DataPointNo); |
2003 | return make_tuple(ProcNo,DataPointNo); |
2004 | } |
2005 | |
2006 | void |
2007 | Data::calc_minGlobalDataPoint(int& ProcNo, |
2008 | int& DataPointNo) const |
2009 | { |
2010 | if (isLazy()) |
2011 | { |
2012 | Data temp(*this); // to get around the fact that you can't resolve a const Data |
2013 | temp.resolve(); |
2014 | return temp.calc_minGlobalDataPoint(ProcNo,DataPointNo); |
2015 | } |
2016 | int i,j; |
2017 | int lowi=0,lowj=0; |
2018 | double min=numeric_limits<double>::max(); |
2019 | |
2020 | Data temp=minval(); |
2021 | |
2022 | int numSamples=temp.getNumSamples(); |
2023 | int numDPPSample=temp.getNumDataPointsPerSample(); |
2024 | |
2025 | double next,local_min; |
2026 | int local_lowi=0,local_lowj=0; |
2027 | |
2028 | #pragma omp parallel firstprivate(local_lowi,local_lowj) private(next,local_min) |
2029 | { |
2030 | local_min=min; |
2031 | #pragma omp for private(i,j) schedule(static) |
2032 | for (i=0; i<numSamples; i++) { |
2033 | for (j=0; j<numDPPSample; j++) { |
2034 | next=temp.getDataAtOffsetRO(temp.getDataOffset(i,j)); |
2035 | if (next<local_min) { |
2036 | local_min=next; |
2037 | local_lowi=i; |
2038 | local_lowj=j; |
2039 | } |
2040 | } |
2041 | } |
2042 | #pragma omp critical |
2043 | if (local_min<min) { // If we found a smaller value than our sentinel |
2044 | min=local_min; |
2045 | lowi=local_lowi; |
2046 | lowj=local_lowj; |
2047 | } |
2048 | } |
2049 | |
2050 | #ifdef PASO_MPI |
2051 | // determine the processor on which the minimum occurs |
2052 | next = temp.getDataPointRO(lowi,lowj); |
2053 | int lowProc = 0; |
2054 | double *globalMins = new double[get_MPISize()+1]; |
2055 | int error; |
2056 | error = MPI_Gather ( &next, 1, MPI_DOUBLE, globalMins, 1, MPI_DOUBLE, 0, get_MPIComm() ); |
2057 | |
2058 | if( get_MPIRank()==0 ){ |
2059 | next = globalMins[lowProc]; |
2060 | for( i=1; i<get_MPISize(); i++ ) |
2061 | if( next>globalMins[i] ){ |
2062 | lowProc = i; |
2063 | next = globalMins[i]; |
2064 | } |
2065 | } |
2066 | MPI_Bcast( &lowProc, 1, MPI_INT, 0, get_MPIComm() ); |
2067 | DataPointNo = lowj + lowi * numDPPSample; |
2068 | MPI_Bcast(&DataPointNo, 1, MPI_INT, lowProc, get_MPIComm() ); |
2069 | delete [] globalMins; |
2070 | ProcNo = lowProc; |
2071 | #else |
2072 | ProcNo = 0; |
2073 | DataPointNo = lowj + lowi * numDPPSample; |
2074 | #endif |
2075 | } |
2076 | |
2077 | |
2078 | const boost::python::tuple |
2079 | Data::maxGlobalDataPoint() const |
2080 | { |
2081 | int DataPointNo; |
2082 | int ProcNo; |
2083 | calc_maxGlobalDataPoint(ProcNo,DataPointNo); |
2084 | return make_tuple(ProcNo,DataPointNo); |
2085 | } |
2086 | |
2087 | void |
2088 | Data::calc_maxGlobalDataPoint(int& ProcNo, |
2089 | int& DataPointNo) const |
2090 | { |
2091 | if (isLazy()) |
2092 | { |
2093 | Data temp(*this); // to get around the fact that you can't resolve a const Data |
2094 | temp.resolve(); |
2095 | return temp.calc_maxGlobalDataPoint(ProcNo,DataPointNo); |
2096 | } |
2097 | int i,j; |
2098 | int highi=0,highj=0; |
2099 | //------------- |
2100 | double max= -numeric_limits<double>::max(); |
2101 | |
2102 | Data temp=maxval(); |
2103 | |
2104 | int numSamples=temp.getNumSamples(); |
2105 | int numDPPSample=temp.getNumDataPointsPerSample(); |
2106 | |
2107 | double next,local_max; |
2108 | int local_highi=0,local_highj=0; |
2109 | |
2110 | #pragma omp parallel firstprivate(local_highi,local_highj) private(next,local_max) |
2111 | { |
2112 | local_max=max; |
2113 | #pragma omp for private(i,j) schedule(static) |
2114 | for (i=0; i<numSamples; i++) { |
2115 | for (j=0; j<numDPPSample; j++) { |
2116 | next=temp.getDataAtOffsetRO(temp.getDataOffset(i,j)); |
2117 | if (next>local_max) { |
2118 | local_max=next; |
2119 | local_highi=i; |
2120 | local_highj=j; |
2121 | } |
2122 | } |
2123 | } |
2124 | #pragma omp critical |
2125 | if (local_max>max) { // If we found a larger value than our sentinel |
2126 | max=local_max; |
2127 | highi=local_highi; |
2128 | highj=local_highj; |
2129 | } |
2130 | } |
2131 | #ifdef PASO_MPI |
2132 | // determine the processor on which the maximum occurs |
2133 | next = temp.getDataPointRO(highi,highj); |
2134 | int highProc = 0; |
2135 | double *globalMaxs = new double[get_MPISize()+1]; |
2136 | int error; |
2137 | error = MPI_Gather ( &next, 1, MPI_DOUBLE, globalMaxs, 1, MPI_DOUBLE, 0, get_MPIComm() ); |
2138 | if( get_MPIRank()==0 ){ |
2139 | next = globalMaxs[highProc]; |
2140 | for( i=1; i<get_MPISize(); i++ ) |
2141 | { |
2142 | if( next<globalMaxs[i] ) |
2143 | { |
2144 | highProc = i; |
2145 | next = globalMaxs[i]; |
2146 | } |
2147 | } |
2148 | } |
2149 | MPI_Bcast( &highProc, 1, MPI_INT, 0, get_MPIComm() ); |
2150 | DataPointNo = highj + highi * numDPPSample; |
2151 | MPI_Bcast(&DataPointNo, 1, MPI_INT, highProc, get_MPIComm() ); |
2152 | |
2153 | delete [] globalMaxs; |
2154 | ProcNo = highProc; |
2155 | #else |
2156 | ProcNo = 0; |
2157 | DataPointNo = highj + highi * numDPPSample; |
2158 | #endif |
2159 | } |
2160 | |
2161 | void |
2162 | Data::saveDX(std::string fileName) const |
2163 | { |
2164 | if (isEmpty()) |
2165 | { |
2166 | throw DataException("Error - Operations not permitted on instances of DataEmpty."); |
2167 | } |
2168 | if (isLazy()) |
2169 | { |
2170 | Data temp(*this); // to get around the fact that you can't resolve a const Data |
2171 | temp.resolve(); |
2172 | temp.saveDX(fileName); |
2173 | return; |
2174 | } |
2175 | boost::python::dict args; |
2176 | args["data"]=boost::python::object(this); |
2177 | getDomain()->saveDX(fileName,args); |
2178 | return; |
2179 | } |
2180 | |
2181 | void |
2182 | Data::saveVTK(std::string fileName) const |
2183 | { |
2184 | if (isEmpty()) |
2185 | { |
2186 | throw DataException("Error - Operations not permitted on instances of DataEmpty."); |
2187 | } |
2188 | if (isLazy()) |
2189 | { |
2190 | Data temp(*this); // to get around the fact that you can't resolve a const Data |
2191 | temp.resolve(); |
2192 | temp.saveVTK(fileName); |
2193 | return; |
2194 | } |
2195 | boost::python::dict args; |
2196 | args["data"]=boost::python::object(this); |
2197 | getDomain()->saveVTK(fileName,args,"",""); |
2198 | return; |
2199 | } |
2200 | |
2201 | |
2202 | |
2203 | Data& |
2204 | Data::operator+=(const Data& right) |
2205 | { |
2206 | if (isProtected()) { |
2207 | throw DataException("Error - attempt to update protected Data object."); |
2208 | } |
2209 | MAKELAZYBINSELF(right,ADD) // for lazy + is equivalent to += |
2210 | exclusiveWrite(); // Since Lazy data does not modify its leaves we only need to worry here |
2211 | binaryOp(right,plus<double>()); |
2212 | return (*this); |
2213 | } |
2214 | |
2215 | Data& |
2216 | Data::operator+=(const boost::python::object& right) |
2217 | { |
2218 | if (isProtected()) { |
2219 | throw DataException("Error - attempt to update protected Data object."); |
2220 | } |
2221 | Data tmp(right,getFunctionSpace(),false); |
2222 | (*this)+=tmp; |
2223 | return *this; |
2224 | } |
2225 | |
2226 | // Hmmm, operator= makes a deep copy but the copy constructor does not? |
2227 | Data& |
2228 | Data::operator=(const Data& other) |
2229 | { |
2230 | m_protected=false; // since any changes should be caught by exclusiveWrite(); |
2231 | // m_data=other.m_data; |
2232 | set_m_data(other.m_data); |
2233 | return (*this); |
2234 | } |
2235 | |
2236 | Data& |
2237 | Data::operator-=(const Data& right) |
2238 | { |
2239 | if (isProtected()) { |
2240 | throw DataException("Error - attempt to update protected Data object."); |
2241 | } |
2242 | MAKELAZYBINSELF(right,SUB) |
2243 | exclusiveWrite(); |
2244 | binaryOp(right,minus<double>()); |
2245 | return (*this); |
2246 | } |
2247 | |
2248 | Data& |
2249 | Data::operator-=(const boost::python::object& right) |
2250 | { |
2251 | if (isProtected()) { |
2252 | throw DataException("Error - attempt to update protected Data object."); |
2253 | } |
2254 | Data tmp(right,getFunctionSpace(),false); |
2255 | (*this)-=tmp; |
2256 | return (*this); |
2257 | } |
2258 | |
2259 | Data& |
2260 | Data::operator*=(const Data& right) |
2261 | { |
2262 | if (isProtected()) { |
2263 | throw DataException("Error - attempt to update protected Data object."); |
2264 | } |
2265 | MAKELAZYBINSELF(right,MUL) |
2266 | exclusiveWrite(); |
2267 | binaryOp(right,multiplies<double>()); |
2268 | return (*this); |
2269 | } |
2270 | |
2271 | Data& |
2272 | Data::operator*=(const boost::python::object& right) |
2273 | { |
2274 | if (isProtected()) { |
2275 | throw DataException("Error - attempt to update protected Data object."); |
2276 | } |
2277 | Data tmp(right,getFunctionSpace(),false); |
2278 | (*this)*=tmp; |
2279 | return (*this); |
2280 | } |
2281 | |
2282 | Data& |
2283 | Data::operator/=(const Data& right) |
2284 | { |
2285 | if (isProtected()) { |
2286 | throw DataException("Error - attempt to update protected Data object."); |
2287 | } |
2288 | MAKELAZYBINSELF(right,DIV) |
2289 | exclusiveWrite(); |
2290 | binaryOp(right,divides<double>()); |
2291 | return (*this); |
2292 | } |
2293 | |
2294 | Data& |
2295 | Data::operator/=(const boost::python::object& right) |
2296 | { |
2297 | if (isProtected()) { |
2298 | throw DataException("Error - attempt to update protected Data object."); |
2299 | } |
2300 | Data tmp(right,getFunctionSpace(),false); |
2301 | (*this)/=tmp; |
2302 | return (*this); |
2303 | } |
2304 | |
2305 | Data |
2306 | Data::rpowO(const boost::python::object& left) const |
2307 | { |
2308 | Data left_d(left,*this); |
2309 | return left_d.powD(*this); |
2310 | } |
2311 | |
2312 | Data |
2313 | Data::powO(const boost::python::object& right) const |
2314 | { |
2315 | Data tmp(right,getFunctionSpace(),false); |
2316 | return powD(tmp); |
2317 | } |
2318 | |
2319 | Data |
2320 | Data::powD(const Data& right) const |
2321 | { |
2322 | MAKELAZYBIN(right,POW) |
2323 | return C_TensorBinaryOperation<double (*)(double, double)>(*this, right, ::pow); |
2324 | } |
2325 | |
2326 | // |
2327 | // NOTE: It is essential to specify the namespace this operator belongs to |
2328 | Data |
2329 | escript::operator+(const Data& left, const Data& right) |
2330 | { |
2331 | MAKELAZYBIN2(left,right,ADD) |
2332 | return C_TensorBinaryOperation(left, right, plus<double>()); |
2333 | } |
2334 | |
2335 | // |
2336 | // NOTE: It is essential to specify the namespace this operator belongs to |
2337 | Data |
2338 | escript::operator-(const Data& left, const Data& right) |
2339 | { |
2340 | MAKELAZYBIN2(left,right,SUB) |
2341 | return C_TensorBinaryOperation(left, right, minus<double>()); |
2342 | } |
2343 | |
2344 | // |
2345 | // NOTE: It is essential to specify the namespace this operator belongs to |
2346 | Data |
2347 | escript::operator*(const Data& left, const Data& right) |
2348 | { |
2349 | MAKELAZYBIN2(left,right,MUL) |
2350 | return C_TensorBinaryOperation(left, right, multiplies<double>()); |
2351 | } |
2352 | |
2353 | // |
2354 | // NOTE: It is essential to specify the namespace this operator belongs to |
2355 | Data |
2356 | escript::operator/(const Data& left, const Data& right) |
2357 | { |
2358 | MAKELAZYBIN2(left,right,DIV) |
2359 | return C_TensorBinaryOperation(left, right, divides<double>()); |
2360 | } |
2361 | |
2362 | // |
2363 | // NOTE: It is essential to specify the namespace this operator belongs to |
2364 | Data |
2365 | escript::operator+(const Data& left, const boost::python::object& right) |
2366 | { |
2367 | Data tmp(right,left.getFunctionSpace(),false); |
2368 | MAKELAZYBIN2(left,tmp,ADD) |
2369 | return left+tmp; |
2370 | } |
2371 | |
2372 | // |
2373 | // NOTE: It is essential to specify the namespace this operator belongs to |
2374 | Data |
2375 | escript::operator-(const Data& left, const boost::python::object& right) |
2376 | { |
2377 | Data tmp(right,left.getFunctionSpace(),false); |
2378 | MAKELAZYBIN2(left,tmp,SUB) |
2379 | return left-tmp; |
2380 | } |
2381 | |
2382 | // |
2383 | // NOTE: It is essential to specify the namespace this operator belongs to |
2384 | Data |
2385 | escript::operator*(const Data& left, const boost::python::object& right) |
2386 | { |
2387 | Data tmp(right,left.getFunctionSpace(),false); |
2388 | MAKELAZYBIN2(left,tmp,MUL) |
2389 | return left*tmp; |
2390 | } |
2391 | |
2392 | // |
2393 | // NOTE: It is essential to specify the namespace this operator belongs to |
2394 | Data |
2395 | escript::operator/(const Data& left, const boost::python::object& right) |
2396 | { |
2397 | Data tmp(right,left.getFunctionSpace(),false); |
2398 | MAKELAZYBIN2(left,tmp,DIV) |
2399 | return left/tmp; |
2400 | } |
2401 | |
2402 | // |
2403 | // NOTE: It is essential to specify the namespace this operator belongs to |
2404 | Data |
2405 | escript::operator+(const boost::python::object& left, const Data& right) |
2406 | { |
2407 | Data tmp(left,right.getFunctionSpace(),false); |
2408 | MAKELAZYBIN2(tmp,right,ADD) |
2409 | return tmp+right; |
2410 | } |
2411 | |
2412 | // |
2413 | // NOTE: It is essential to specify the namespace this operator belongs to |
2414 | Data |
2415 | escript::operator-(const boost::python::object& left, const Data& right) |
2416 | { |
2417 | Data tmp(left,right.getFunctionSpace(),false); |
2418 | MAKELAZYBIN2(tmp,right,SUB) |
2419 | return tmp-right; |
2420 | } |
2421 | |
2422 | // |
2423 | // NOTE: It is essential to specify the namespace this operator belongs to |
2424 | Data |
2425 | escript::operator*(const boost::python::object& left, const Data& right) |
2426 | { |
2427 | Data tmp(left,right.getFunctionSpace(),false); |
2428 | MAKELAZYBIN2(tmp,right,MUL) |
2429 | return tmp*right; |
2430 | } |
2431 | |
2432 | // |
2433 | // NOTE: It is essential to specify the namespace this operator belongs to |
2434 | Data |
2435 | escript::operator/(const boost::python::object& left, const Data& right) |
2436 | { |
2437 | Data tmp(left,right.getFunctionSpace(),false); |
2438 | MAKELAZYBIN2(tmp,right,DIV) |
2439 | return tmp/right; |
2440 | } |
2441 | |
2442 | |
2443 | /* TODO */ |
2444 | /* global reduction */ |
2445 | Data |
2446 | Data::getItem(const boost::python::object& key) const |
2447 | { |
2448 | |
2449 | DataTypes::RegionType slice_region=DataTypes::getSliceRegion(getDataPointShape(),key); |
2450 | |
2451 | if (slice_region.size()!=getDataPointRank()) { |
2452 | throw DataException("Error - slice size does not match Data rank."); |
2453 | } |
2454 | |
2455 | return getSlice(slice_region); |
2456 | } |
2457 | |
2458 | /* TODO */ |
2459 | /* global reduction */ |
2460 | Data |
2461 | Data::getSlice(const DataTypes::RegionType& region) const |
2462 | { |
2463 | return Data(*this,region); |
2464 | } |
2465 | |
2466 | /* TODO */ |
2467 | /* global reduction */ |
2468 | void |
2469 | Data::setItemO(const boost::python::object& key, |
2470 | const boost::python::object& value) |
2471 | { |
2472 | Data tempData(value,getFunctionSpace()); |
2473 | setItemD(key,tempData); |
2474 | } |
2475 | |
2476 | void |
2477 | Data::setItemD(const boost::python::object& key, |
2478 | const Data& value) |
2479 | { |
2480 | DataTypes::RegionType slice_region=DataTypes::getSliceRegion(getDataPointShape(),key); |
2481 | if (slice_region.size()!=getDataPointRank()) { |
2482 | throw DataException("Error - slice size does not match Data rank."); |
2483 | } |
2484 | exclusiveWrite(); |
2485 | if (getFunctionSpace()!=value.getFunctionSpace()) { |
2486 | setSlice(Data(value,getFunctionSpace()),slice_region); |
2487 | } else { |
2488 | setSlice(value,slice_region); |
2489 | } |
2490 | } |
2491 | |
2492 | void |
2493 | Data::setSlice(const Data& value, |
2494 | const DataTypes::RegionType& region) |
2495 | { |
2496 | if (isProtected()) { |
2497 | throw DataException("Error - attempt to update protected Data object."); |
2498 | } |
2499 | forceResolve(); |
2500 | exclusiveWrite(); // In case someone finds a way to call this without going through setItemD |
2501 | Data tempValue(value); |
2502 | typeMatchLeft(tempValue); |
2503 | typeMatchRight(tempValue); |
2504 | getReady()->setSlice(tempValue.m_data.get(),region); |
2505 | } |
2506 | |
2507 | void |
2508 | Data::typeMatchLeft(Data& right) const |
2509 | { |
2510 | if (right.isLazy() && !isLazy()) |
2511 | { |
2512 | right.resolve(); |
2513 | } |
2514 | if (isExpanded()){ |
2515 | right.expand(); |
2516 | } else if (isTagged()) { |
2517 | if (right.isConstant()) { |
2518 | right.tag(); |
2519 | } |
2520 | } |
2521 | } |
2522 | |
2523 | void |
2524 | Data::typeMatchRight(const Data& right) |
2525 | { |
2526 | if (isLazy() && !right.isLazy()) |
2527 | { |
2528 | resolve(); |
2529 | } |
2530 | if (isTagged()) { |
2531 | if (right.isExpanded()) { |
2532 | expand(); |
2533 | } |
2534 | } else if (isConstant()) { |
2535 | if (right.isExpanded()) { |
2536 | expand(); |
2537 | } else if (right.isTagged()) { |
2538 | tag(); |
2539 | } |
2540 | } |
2541 | } |
2542 | |
2543 | // The normal TaggedValue adds the tag if it is not already present |
2544 | // This form does not. It throws instead. |
2545 | // This is because the names are maintained by the domain and cannot be added |
2546 | // without knowing the tag number to map it to. |
2547 | void |
2548 | Data::setTaggedValueByName(std::string name, |
2549 | const boost::python::object& value) |
2550 | { |
2551 | if (getFunctionSpace().getDomain()->isValidTagName(name)) { |
2552 | forceResolve(); |
2553 | exclusiveWrite(); |
2554 | int tagKey=getFunctionSpace().getDomain()->getTag(name); |
2555 | setTaggedValue(tagKey,value); |
2556 | } |
2557 | else |
2558 | { // The |
2559 | throw DataException("Error - unknown tag in setTaggedValueByName."); |
2560 | } |
2561 | } |
2562 | |
2563 | void |
2564 | Data::setTaggedValue(int tagKey, |
2565 | const boost::python::object& value) |
2566 | { |
2567 | if (isProtected()) { |
2568 | throw DataException("Error - attempt to update protected Data object."); |
2569 | } |
2570 | // |
2571 | // Ensure underlying data object is of type DataTagged |
2572 | forceResolve(); |
2573 | exclusiveWrite(); |
2574 | if (isConstant()) tag(); |
2575 | WrappedArray w(value); |
2576 | |
2577 | DataVector temp_data2; |
2578 | temp_data2.copyFromArray(w,1); |
2579 | |
2580 | m_data->setTaggedValue(tagKey,w.getShape(), temp_data2); |
2581 | } |
2582 | |
2583 | |
2584 | void |
2585 | Data::setTaggedValueFromCPP(int tagKey, |
2586 | const DataTypes::ShapeType& pointshape, |
2587 | const DataTypes::ValueType& value, |
2588 | int dataOffset) |
2589 | { |
2590 | if (isProtected()) { |
2591 | throw DataException("Error - attempt to update protected Data object."); |
2592 | } |
2593 | // |
2594 | // Ensure underlying data object is of type DataTagged |
2595 | forceResolve(); |
2596 | if (isConstant()) tag(); |
2597 | exclusiveWrite(); |
2598 | // |
2599 | // Call DataAbstract::setTaggedValue |
2600 | m_data->setTaggedValue(tagKey,pointshape, value, dataOffset); |
2601 | } |
2602 | |
2603 | int |
2604 | Data::getTagNumber(int dpno) |
2605 | { |
2606 | if (isEmpty()) |
2607 | { |
2608 | throw DataException("Error - operation not permitted on instances of DataEmpty."); |
2609 | } |
2610 | return getFunctionSpace().getTagFromDataPointNo(dpno); |
2611 | } |
2612 | |
2613 | |
2614 | ostream& escript::operator<<(ostream& o, const Data& data) |
2615 | { |
2616 | o << data.toString(); |
2617 | return o; |
2618 | } |
2619 | |
2620 | Data |
2621 | escript::C_GeneralTensorProduct(Data& arg_0, |
2622 | Data& arg_1, |
2623 | int axis_offset, |
2624 | int transpose) |
2625 | { |
2626 | // General tensor product: res(SL x SR) = arg_0(SL x SM) * arg_1(SM x SR) |
2627 | // SM is the product of the last axis_offset entries in arg_0.getShape(). |
2628 | |
2629 | // deal with any lazy data |
2630 | // if (arg_0.isLazy()) {arg_0.resolve();} |
2631 | // if (arg_1.isLazy()) {arg_1.resolve();} |
2632 | if (arg_0.isLazy() || arg_1.isLazy() || (AUTOLAZYON && (arg_0.isExpanded() || arg_1.isExpanded()))) |
2633 | { |
2634 | DataLazy* c=new DataLazy(arg_0.borrowDataPtr(), arg_1.borrowDataPtr(), PROD, axis_offset,transpose); |
2635 | return Data(c); |
2636 | } |
2637 | |
2638 | // Interpolate if necessary and find an appropriate function space |
2639 | Data arg_0_Z, arg_1_Z; |
2640 | if (arg_0.getFunctionSpace()!=arg_1.getFunctionSpace()) { |
2641 | if (arg_0.probeInterpolation(arg_1.getFunctionSpace())) { |
2642 | arg_0_Z = arg_0.interpolate(arg_1.getFunctionSpace()); |
2643 | arg_1_Z = Data(arg_1); |
2644 | } |
2645 | else if (arg_1.probeInterpolation(arg_0.getFunctionSpace())) { |
2646 | arg_1_Z=arg_1.interpolate(arg_0.getFunctionSpace()); |
2647 | arg_0_Z =Data(arg_0); |
2648 | } |
2649 | else { |
2650 | throw DataException("Error - C_GeneralTensorProduct: arguments have incompatible function spaces."); |
2651 | } |
2652 | } else { |
2653 | arg_0_Z = Data(arg_0); |
2654 | arg_1_Z = Data(arg_1); |
2655 | } |
2656 | // Get rank and shape of inputs |
2657 | int rank0 = arg_0_Z.getDataPointRank(); |
2658 | int rank1 = arg_1_Z.getDataPointRank(); |
2659 | const DataTypes::ShapeType& shape0 = arg_0_Z.getDataPointShape(); |
2660 | const DataTypes::ShapeType& shape1 = arg_1_Z.getDataPointShape(); |
2661 | |
2662 | // Prepare for the loops of the product and verify compatibility of shapes |
2663 | int start0=0, start1=0; |
2664 | if (transpose == 0) {} |
2665 | else if (transpose == 1) { start0 = axis_offset; } |
2666 | else if (transpose == 2) { start1 = rank1-axis_offset; } |
2667 | else { throw DataException("C_GeneralTensorProduct: Error - transpose should be 0, 1 or 2"); } |
2668 | |
2669 | |
2670 | // Adjust the shapes for transpose |
2671 | DataTypes::ShapeType tmpShape0(rank0); // pre-sizing the vectors rather |
2672 | DataTypes::ShapeType tmpShape1(rank1); // than using push_back |
2673 | for (int i=0; i<rank0; i++) { tmpShape0[i]=shape0[(i+start0)%rank0]; } |
2674 | for (int i=0; i<rank1; i++) { tmpShape1[i]=shape1[(i+start1)%rank1]; } |
2675 | |
2676 | #if 0 |
2677 | // For debugging: show shape after transpose |
2678 | char tmp[100]; |
2679 | std::string shapeStr; |
2680 | shapeStr = "("; |
2681 | for (int i=0; i<rank0; i++) { sprintf(tmp, "%d,", tmpShape0[i]); shapeStr += tmp; } |
2682 | shapeStr += ")"; |
2683 | cout << "C_GeneralTensorProduct: Shape of arg0 is " << shapeStr << endl; |
2684 | shapeStr = "("; |
2685 | for (int i=0; i<rank1; i++) { sprintf(tmp, "%d,", tmpShape1[i]); shapeStr += tmp; } |
2686 | shapeStr += ")"; |
2687 | cout << "C_GeneralTensorProduct: Shape of arg1 is " << shapeStr << endl; |
2688 | #endif |
2689 | |
2690 | // Prepare for the loops of the product |
2691 | int SL=1, SM=1, SR=1; |
2692 | for (int i=0; i<rank0-axis_offset; i++) { |
2693 | SL *= tmpShape0[i]; |
2694 | } |
2695 | for (int i=rank0-axis_offset; i<rank0; i++) { |
2696 | if (tmpShape0[i] != tmpShape1[i-(rank0-axis_offset)]) { |
2697 | throw DataException("C_GeneralTensorProduct: Error - incompatible shapes"); |
2698 | } |
2699 | SM *= tmpShape0[i]; |
2700 | } |
2701 | for (int i=axis_offset; i<rank1; i++) { |
2702 | SR *= tmpShape1[i]; |
2703 | } |
2704 | |
2705 | // Define the shape of the output (rank of shape is the sum of the loop ranges below) |
2706 | DataTypes::ShapeType shape2(rank0+rank1-2*axis_offset); |
2707 | { // block to limit the scope of out_index |
2708 | int out_index=0; |
2709 | for (int i=0; i<rank0-axis_offset; i++, ++out_index) { shape2[out_index]=tmpShape0[i]; } // First part of arg_0_Z |
2710 | for (int i=axis_offset; i<rank1; i++, ++out_index) { shape2[out_index]=tmpShape1[i]; } // Last part of arg_1_Z |
2711 | } |
2712 | |
2713 | if (shape2.size()>ESCRIPT_MAX_DATA_RANK) |
2714 | { |
2715 | ostringstream os; |
2716 | os << "C_GeneralTensorProduct: Error - Attempt to create a rank " << shape2.size() << " object. The maximum rank is " << ESCRIPT_MAX_DATA_RANK << "."; |
2717 | throw DataException(os.str()); |
2718 | } |
2719 | |
2720 | // Declare output Data object |
2721 | Data res; |
2722 | |
2723 | if (arg_0_Z.isConstant() && arg_1_Z.isConstant()) { |
2724 | res = Data(0.0, shape2, arg_1_Z.getFunctionSpace()); // DataConstant output |
2725 | const double *ptr_0 = &(arg_0_Z.getDataAtOffsetRO(0)); |
2726 | const double *ptr_1 = &(arg_1_Z.getDataAtOffsetRO(0)); |
2727 | double *ptr_2 = &(res.getDataAtOffsetRW(0)); |
2728 | matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose); |
2729 | } |
2730 | else if (arg_0_Z.isConstant() && arg_1_Z.isTagged()) { |
2731 | |
2732 | // Prepare the DataConstant input |
2733 | DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2734 | if (tmp_0==0) { throw DataException("GTP Programming error - casting to DataConstant."); } |
2735 | |
2736 | // Borrow DataTagged input from Data object |
2737 | DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2738 | if (tmp_1==0) { throw DataException("GTP_1 Programming error - casting to DataTagged."); } |
2739 | |
2740 | // Prepare a DataTagged output 2 |
2741 | res = Data(0.0, shape2, arg_1_Z.getFunctionSpace()); // DataTagged output |
2742 | res.tag(); |
2743 | DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2744 | if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataTagged."); } |
2745 | |
2746 | // Prepare offset into DataConstant |
2747 | int offset_0 = tmp_0->getPointOffset(0,0); |
2748 | const double *ptr_0 = &(arg_0_Z.getDataAtOffsetRO(offset_0)); |
2749 | |
2750 | const double *ptr_1 = &(tmp_1->getDefaultValueRO(0)); |
2751 | double *ptr_2 = &(tmp_2->getDefaultValueRW(0)); |
2752 | |
2753 | // Compute an MVP for the default |
2754 | matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose); |
2755 | // Compute an MVP for each tag |
2756 | const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2757 | DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2758 | for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2759 | tmp_2->addTag(i->first); |
2760 | |
2761 | const double *ptr_1 = &(tmp_1->getDataByTagRO(i->first,0)); |
2762 | double *ptr_2 = &(tmp_2->getDataByTagRW(i->first,0)); |
2763 | |
2764 | matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose); |
2765 | } |
2766 | |
2767 | } |
2768 | else if (arg_0_Z.isConstant() && arg_1_Z.isExpanded()) { |
2769 | |
2770 | res = Data(0.0, shape2, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2771 | DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2772 | DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2773 | DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2774 | if (tmp_0==0) { throw DataException("GTP Programming error - casting to DataConstant."); } |
2775 | if (tmp_1==0) { throw DataException("GTP Programming error - casting to DataExpanded."); } |
2776 | if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataExpanded."); } |
2777 | int sampleNo_1,dataPointNo_1; |
2778 | int numSamples_1 = arg_1_Z.getNumSamples(); |
2779 | int numDataPointsPerSample_1 = arg_1_Z.getNumDataPointsPerSample(); |
2780 | int offset_0 = tmp_0->getPointOffset(0,0); |
2781 | #pragma omp parallel for private(sampleNo_1,dataPointNo_1) schedule(static) |
2782 | for (sampleNo_1 = 0; sampleNo_1 < numSamples_1; sampleNo_1++) { |
2783 | for (dataPointNo_1 = 0; dataPointNo_1 < numDataPointsPerSample_1; dataPointNo_1++) { |
2784 | int offset_1 = tmp_1->getPointOffset(sampleNo_1,dataPointNo_1); |
2785 | int offset_2 = tmp_2->getPointOffset(sampleNo_1,dataPointNo_1); |
2786 | const double *ptr_0 = &(arg_0_Z.getDataAtOffsetRO(offset_0)); |
2787 | const double *ptr_1 = &(arg_1_Z.getDataAtOffsetRO(offset_1)); |
2788 | double *ptr_2 = &(res.getDataAtOffsetRW(offset_2)); |
2789 | matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose); |
2790 | } |
2791 | } |
2792 | |
2793 | } |
2794 | else if (arg_0_Z.isTagged() && arg_1_Z.isConstant()) { |
2795 | |
2796 | // Borrow DataTagged input from Data object |
2797 | DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2798 | if (tmp_0==0) { throw DataException("GTP_0 Programming error - casting to DataTagged."); } |
2799 | |
2800 | // Prepare the DataConstant input |
2801 | DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2802 | if (tmp_1==0) { throw DataException("GTP Programming error - casting to DataConstant."); } |
2803 | |
2804 | // Prepare a DataTagged output 2 |
2805 | res = Data(0.0, shape2, arg_0_Z.getFunctionSpace()); // DataTagged output |
2806 | res.tag(); |
2807 | DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2808 | if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataTagged."); } |
2809 | |
2810 | // Prepare offset into DataConstant |
2811 | int offset_1 = tmp_1->getPointOffset(0,0); |
2812 | const double *ptr_1 = &(arg_1_Z.getDataAtOffsetRO(offset_1)); |
2813 | const double *ptr_0 = &(tmp_0->getDefaultValueRO(0)); |
2814 | double *ptr_2 = &(tmp_2->getDefaultValueRW(0)); |
2815 | |
2816 | // Compute an MVP for the default |
2817 | matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose); |
2818 | // Compute an MVP for each tag |
2819 | const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2820 | DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2821 | for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2822 | |
2823 | tmp_2->addTag(i->first); |
2824 | const double *ptr_0 = &(tmp_0->getDataByTagRO(i->first,0)); |
2825 | double *ptr_2 = &(tmp_2->getDataByTagRW(i->first,0)); |
2826 | matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose); |
2827 | } |
2828 | |
2829 | } |
2830 | else if (arg_0_Z.isTagged() && arg_1_Z.isTagged()) { |
2831 | |
2832 | // Borrow DataTagged input from Data object |
2833 | DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2834 | if (tmp_0==0) { throw DataException("GTP Programming error - casting to DataTagged."); } |
2835 | |
2836 | // Borrow DataTagged input from Data object |
2837 | DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2838 | if (tmp_1==0) { throw DataException("GTP Programming error - casting to DataTagged."); } |
2839 | |
2840 | // Prepare a DataTagged output 2 |
2841 | res = Data(0.0, shape2, arg_1_Z.getFunctionSpace()); |
2842 | res.tag(); // DataTagged output |
2843 | DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2844 | if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataTagged."); } |
2845 | |
2846 | const double *ptr_0 = &(tmp_0->getDefaultValueRO(0)); |
2847 | const double *ptr_1 = &(tmp_1->getDefaultValueRO(0)); |
2848 | double *ptr_2 = &(tmp_2->getDefaultValueRW(0)); |
2849 | |
2850 | // Compute an MVP for the default |
2851 | matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose); |
2852 | // Merge the tags |
2853 | DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2854 | const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2855 | const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2856 | for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2857 | tmp_2->addTag(i->first); // use tmp_2 to get correct shape |
2858 | } |
2859 | for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2860 | tmp_2->addTag(i->first); |
2861 | } |
2862 | // Compute an MVP for each tag |
2863 | const DataTagged::DataMapType& lookup_2=tmp_2->getTagLookup(); |
2864 | for (i=lookup_2.begin();i!=lookup_2.end();i++) { |
2865 | const double *ptr_0 = &(tmp_0->getDataByTagRO(i->first,0)); |
2866 | const double *ptr_1 = &(tmp_1->getDataByTagRO(i->first,0)); |
2867 | double *ptr_2 = &(tmp_2->getDataByTagRW(i->first,0)); |
2868 | |
2869 | matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose); |
2870 | } |
2871 | |
2872 | } |
2873 | else if (arg_0_Z.isTagged() && arg_1_Z.isExpanded()) { |
2874 | |
2875 | // After finding a common function space above the two inputs have the same numSamples and num DPPS |
2876 | res = Data(0.0, shape2, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2877 | DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2878 | DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2879 | DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2880 | if (tmp_0==0) { throw DataException("GTP Programming error - casting to DataTagged."); } |
2881 | if (tmp_1==0) { throw DataException("GTP Programming error - casting to DataExpanded."); } |
2882 | if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataExpanded."); } |
2883 | int sampleNo_0,dataPointNo_0; |
2884 | int numSamples_0 = arg_0_Z.getNumSamples(); |
2885 | int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2886 | #pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2887 | for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2888 | int offset_0 = tmp_0->getPointOffset(sampleNo_0,0); // They're all the same, so just use #0 |
2889 | const double *ptr_0 = &(arg_0_Z.getDataAtOffsetRO(offset_0)); |
2890 | for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2891 | int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2892 | int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2893 | const double *ptr_1 = &(arg_1_Z.getDataAtOffsetRO(offset_1)); |
2894 | double *ptr_2 = &(res.getDataAtOffsetRW(offset_2)); |
2895 | matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose); |
2896 | } |
2897 | } |
2898 | |
2899 | } |
2900 | else if (arg_0_Z.isExpanded() && arg_1_Z.isConstant()) { |
2901 | |
2902 | res = Data(0.0, shape2, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2903 | DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2904 | DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2905 | DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2906 | if (tmp_0==0) { throw DataException("GTP Programming error - casting to DataExpanded."); } |
2907 | if (tmp_1==0) { throw DataException("GTP Programming error - casting to DataConstant."); } |
2908 | if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataExpanded."); } |
2909 | int sampleNo_0,dataPointNo_0; |
2910 | int numSamples_0 = arg_0_Z.getNumSamples(); |
2911 | int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2912 | int offset_1 = tmp_1->getPointOffset(0,0); |
2913 | #pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2914 | for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2915 | for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2916 | int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2917 | int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2918 | const double *ptr_0 = &(arg_0_Z.getDataAtOffsetRO(offset_0)); |
2919 | const double *ptr_1 = &(arg_1_Z.getDataAtOffsetRO(offset_1)); |
2920 | double *ptr_2 = &(res.getDataAtOffsetRW(offset_2)); |
2921 | matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose); |
2922 | } |
2923 | } |
2924 | |
2925 | |
2926 | } |
2927 | else if (arg_0_Z.isExpanded() && arg_1_Z.isTagged()) { |
2928 | |
2929 | // After finding a common function space above the two inputs have the same numSamples and num DPPS |
2930 | res = Data(0.0, shape2, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2931 | DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2932 | DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2933 | DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2934 | if (tmp_0==0) { throw DataException("GTP Programming error - casting to DataExpanded."); } |
2935 | if (tmp_1==0) { throw DataException("GTP Programming error - casting to DataTagged."); } |
2936 | if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataExpanded."); } |
2937 | int sampleNo_0,dataPointNo_0; |
2938 | int numSamples_0 = arg_0_Z.getNumSamples(); |
2939 | int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2940 | #pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2941 | for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2942 | int offset_1 = tmp_1->getPointOffset(sampleNo_0,0); |
2943 | const double *ptr_1 = &(arg_1_Z.getDataAtOffsetRO(offset_1)); |
2944 | for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2945 | int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2946 | int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2947 | const double *ptr_0 = &(arg_0_Z.getDataAtOffsetRO(offset_0)); |
2948 | double *ptr_2 = &(res.getDataAtOffsetRW(offset_2)); |
2949 | matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose); |
2950 | } |
2951 | } |
2952 | |
2953 | } |
2954 | else if (arg_0_Z.isExpanded() && arg_1_Z.isExpanded()) { |
2955 | |
2956 | // After finding a common function space above the two inputs have the same numSamples and num DPPS |
2957 | res = Data(0.0, shape2, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2958 | DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2959 | DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2960 | DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2961 | if (tmp_0==0) { throw DataException("GTP Programming error - casting to DataExpanded."); } |
2962 | if (tmp_1==0) { throw DataException("GTP Programming error - casting to DataExpanded."); } |
2963 | if (tmp_2==0) { throw DataException("GTP Programming error - casting to DataExpanded."); } |
2964 | int sampleNo_0,dataPointNo_0; |
2965 | int numSamples_0 = arg_0_Z.getNumSamples(); |
2966 | int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2967 | #pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2968 | for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2969 | for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2970 | int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2971 | int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2972 | int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2973 | const double *ptr_0 = &(arg_0_Z.getDataAtOffsetRO(offset_0)); |
2974 | const double *ptr_1 = &(arg_1_Z.getDataAtOffsetRO(offset_1)); |
2975 | double *ptr_2 = &(res.getDataAtOffsetRW(offset_2)); |
2976 | matrix_matrix_product(SL, SM, SR, ptr_0, ptr_1, ptr_2, transpose); |
2977 | } |
2978 | } |
2979 | |
2980 | } |
2981 | else { |
2982 | throw DataException("Error - C_GeneralTensorProduct: unknown combination of inputs"); |
2983 | } |
2984 | |
2985 | return res; |
2986 | } |
2987 | |
2988 | DataAbstract* |
2989 | Data::borrowData() const |
2990 | { |
2991 | return m_data.get(); |
2992 | } |
2993 | |
2994 | // Not all that happy about returning a non-const from a const |
2995 | DataAbstract_ptr |
2996 | Data::borrowDataPtr() const |
2997 | { |
2998 | return m_data; |
2999 | } |
3000 | |
3001 | // Not all that happy about returning a non-const from a const |
3002 | DataReady_ptr |
3003 | Data::borrowReadyPtr() const |
3004 | { |
3005 | DataReady_ptr dr=dynamic_pointer_cast<DataReady>(m_data); |
3006 | EsysAssert((dr!=0), "Error - casting to DataReady."); |
3007 | return dr; |
3008 | } |
3009 | |
3010 | std::string |
3011 | Data::toString() const |
3012 | { |
3013 | if (!m_data->isEmpty() && |
3014 | !m_data->isLazy() && |
3015 | getLength()>escriptParams.getInt("TOO_MANY_LINES")) |
3016 | { |
3017 | stringstream temp; |
3018 | temp << "Summary: inf="<< inf_const() << " sup=" << sup_const() << " data points=" << getNumDataPoints(); |
3019 | return temp.str(); |
3020 | } |
3021 | return m_data->toString(); |
3022 | } |
3023 | |
3024 | |
3025 | // This method is not thread-safe |
3026 | DataTypes::ValueType::reference |
3027 | Data::getDataAtOffsetRW(DataTypes::ValueType::size_type i) |
3028 | { |
3029 | checkExclusiveWrite(); |
3030 | return getReady()->getDataAtOffsetRW(i); |
3031 | } |
3032 | |
3033 | // This method is not thread-safe |
3034 | DataTypes::ValueType::const_reference |
3035 | Data::getDataAtOffsetRO(DataTypes::ValueType::size_type i) |
3036 | { |
3037 | forceResolve(); |
3038 | return getReady()->getDataAtOffsetRO(i); |
3039 | } |
3040 | |
3041 | |
3042 | // DataTypes::ValueType::const_reference |
3043 | // Data::getDataAtOffsetRO(DataTypes::ValueType::size_type i) const |
3044 | // { |
3045 | // if (isLazy()) |
3046 | // { |
3047 | // throw DataException("Programmer error - getDataAtOffsetRO() not permitted on Lazy Data (object is const which prevents resolving)."); |
3048 | // } |
3049 | // return getReady()->getDataAtOffsetRO(i); |
3050 | // } |
3051 | |
3052 | |
3053 | DataTypes::ValueType::const_reference |
3054 | Data::getDataPointRO(int sampleNo, int dataPointNo) |
3055 | { |
3056 | forceResolve(); |
3057 | if (!isReady()) |
3058 | { |
3059 | throw DataException("Programmer error -getDataPointRO() not permitted on Lazy Data."); |
3060 | } |
3061 | else |
3062 | { |
3063 | const DataReady* dr=getReady(); |
3064 | return dr->getDataAtOffsetRO(dr->getPointOffset(sampleNo, dataPointNo)); |
3065 | } |
3066 | } |
3067 | |
3068 | |
3069 | |
3070 | |
3071 | DataTypes::ValueType::reference |
3072 | Data::getDataPointRW(int sampleNo, int dataPointNo) |
3073 | { |
3074 | checkExclusiveWrite(); |
3075 | DataReady* dr=getReady(); |
3076 | return dr->getDataAtOffsetRW(dr->getPointOffset(sampleNo, dataPointNo)); |
3077 | } |
3078 | |
3079 | BufferGroup* |
3080 | Data::allocSampleBuffer() const |
3081 | { |
3082 | if (isLazy()) |
3083 | { |
3084 | #ifdef _OPENMP |
3085 | int tnum=omp_get_max_threads(); |
3086 | #else |
3087 | int tnum=1; |
3088 | #endif |
3089 | return new BufferGroup(getSampleBufferSize(),tnum); |
3090 | } |
3091 | else |
3092 | { |
3093 | return NULL; |
3094 | } |
3095 | } |
3096 | |
3097 | void |
3098 | Data::freeSampleBuffer(BufferGroup* bufferg) |
3099 | { |
3100 | if (bufferg!=0) |
3101 | { |
3102 | delete bufferg; |
3103 | } |
3104 | } |
3105 | |
3106 | |
3107 | Data |
3108 | Data::interpolateFromTable2DP(boost::python::object table, double Amin, double Astep, |
3109 | Data& B, double Bmin, double Bstep, double undef, bool check_boundaries) |
3110 | { |
3111 | WrappedArray t(table); |
3112 | return interpolateFromTable2D(t, Amin, Astep, undef, B, Bmin, Bstep,check_boundaries); |
3113 | } |
3114 | |
3115 | Data |
3116 | Data::interpolateFromTable1DP(boost::python::object table, double Amin, double Astep, |
3117 | double undef,bool check_boundaries) |
3118 | { |
3119 | WrappedArray t(table); |
3120 | return interpolateFromTable1D(t, Amin, Astep, undef, check_boundaries); |
3121 | } |
3122 | |
3123 | |
3124 | Data |
3125 | Data::interpolateFromTable1D(const WrappedArray& table, double Amin, double Astep, |
3126 | double undef, bool check_boundaries) |
3127 | { |
3128 | table.convertArray(); // critical! Calling getElt on an unconverted array is not thread safe |
3129 | int error=0; |
3130 | if ((getDataPointRank()!=0)) |
3131 | { |
3132 | throw DataException("Input to 1D interpolation must be scalar"); |
3133 | } |
3134 | if (table.getRank()!=1) |
3135 | { |
3136 | throw DataException("Table for 1D interpolation must be 1D"); |
3137 | } |
3138 | if (Astep<=0) |
3139 | { |
3140 | throw DataException("Astep must be positive"); |
3141 | } |
3142 | if (!isExpanded()) |
3143 | { |
3144 | expand(); |
3145 | } |
3146 | Data res(0, DataTypes::scalarShape, getFunctionSpace(), true); |
3147 | try |
3148 | { |
3149 | int numpts=getNumDataPoints(); |
3150 | const DataVector& adat=getReady()->getVectorRO(); |
3151 | DataVector& rdat=res.getReady()->getVectorRW(); |
3152 | int twidth=table.getShape()[0]-1; |
3153 | bool haserror=false; |
3154 | int l=0; |
3155 | #pragma omp parallel for private(l) schedule(static) |
3156 | for (l=0;l<numpts; ++l) |
3157 | { |
3158 | #pragma omp flush(haserror) // In case haserror was in register |
3159 | if (!haserror) |
3160 | { |
3161 | int lerror=0; |
3162 | try |
3163 | { |
3164 | do // so we can use break |
3165 | { |
3166 | double a=adat[l]; |
3167 | int x=static_cast<int>(((a-Amin)/Astep)); |
3168 | if (check_boundaries) { |
3169 | if ((a<Amin) || (x<0)) |
3170 | { |
3171 | lerror=1; |
3172 | break; |
3173 | } |
3174 | if (a>Amin+Astep*twidth) |
3175 | { |
3176 | lerror=4; |
3177 | break; |
3178 | } |
3179 | } |
3180 | if (x<0) x=0; |
3181 | if (x>twidth) x=twidth; |
3182 | |
3183 | if (x==twidth) // value is on the far end of the table |
3184 | { |
3185 | double e=table.getElt(x); |
3186 | if (e>undef) |
3187 | { |
3188 | lerror=2; |
3189 | break; |
3190 | } |
3191 | rdat[l]=e; |
3192 | } |
3193 | else // x and y are in bounds |
3194 | { |
3195 | double e=table.getElt(x); |
3196 | double w=table.getElt(x+1); |
3197 | if ((e>undef) || (w>undef)) |
3198 | { |
3199 | lerror=2; |
3200 | break; |
3201 | } |
3202 | // map x*Astep <= a << (x+1)*Astep to [-1,1] |
3203 | double la = 2.0*(a-Amin-(x*Astep))/Astep-1; |
3204 | rdat[l]=((1-la)*e + (1+la)*w)/2; |
3205 | } |
3206 | } while (false); |
3207 | } catch (DataException d) |
3208 | { |
3209 | lerror=3; |
3210 | } |
3211 | if (lerror!=0) |
3212 | { |
3213 | #pragma omp critical // Doco says there is a flush associated with critical |
3214 | { |
3215 | haserror=true; // We only care that one error is recorded. We don't care which |
3216 | error=lerror; // one |
3217 | } |
3218 | } |
3219 | } // if (!error) |
3220 | } // parallelised for |
3221 | } catch (DataException d) |
3222 | { |
3223 | error=3; // this is outside the parallel region so assign directly |
3224 | } |
3225 | #ifdef PASO_MPI |
3226 | int rerror=0; |
3227 | MPI_Allreduce( &error, &rerror, 1, MPI_INT, MPI_MAX, get_MPIComm() ); |
3228 | error=rerror; |
3229 | #endif |
3230 | if (error) |
3231 | { |
3232 | switch (error) |
3233 | { |
3234 | case 1: throw DataException("Value below lower table range."); |
3235 | case 2: throw DataException("Interpolated value too large"); |
3236 | case 4: throw DataException("Value greater than upper table range."); |
3237 | default: |
3238 | throw DataException("Unknown error in interpolation"); |
3239 | } |
3240 | } |
3241 | return res; |
3242 | } |
3243 | |
3244 | |
3245 | Data |
3246 | Data::interpolateFromTable2D(const WrappedArray& table, double Amin, double Astep, |
3247 | double undef, Data& B, double Bmin, double Bstep, bool check_boundaries) |
3248 | { |
3249 | table.convertArray(); // critical! Calling getElt on an unconverted array is not thread safe |
3250 | int error=0; |
3251 | if ((getDataPointRank()!=0) || (B.getDataPointRank()!=0)) |
3252 | { |
3253 | throw DataException("Inputs to 2D interpolation must be scalar"); |
3254 | } |
3255 | if (table.getRank()!=2) |
3256 | { |
3257 | throw DataException("Table for 2D interpolation must be 2D"); |
3258 | } |
3259 | if ((Astep<=0) || (Bstep<=0)) |
3260 | { |
3261 | throw DataException("Astep and Bstep must be postive"); |
3262 | } |
3263 | if (getFunctionSpace()!=B.getFunctionSpace()) |
3264 | { |
3265 | Data n=B.interpolate(getFunctionSpace()); |
3266 | return interpolateFromTable2D(table, Amin, Astep, undef, |
3267 | n , Bmin, Bstep, check_boundaries); |
3268 | } |
3269 | if (!isExpanded()) |
3270 | { |
3271 | expand(); |
3272 | } |
3273 | if (!B.isExpanded()) |
3274 | { |
3275 | B.expand(); |
3276 | } |
3277 | Data res(0, DataTypes::scalarShape, getFunctionSpace(), true); |
3278 | try |
3279 | { |
3280 | int numpts=getNumDataPoints(); |
3281 | const DataVector& adat=getReady()->getVectorRO(); |
3282 | const DataVector& bdat=B.getReady()->getVectorRO(); |
3283 | DataVector& rdat=res.getReady()->getVectorRW(); |
3284 | const DataTypes::ShapeType& ts=table.getShape(); |
3285 | int twx=ts[0]-1; // table width x |
3286 | int twy=ts[1]-1; // table width y |
3287 | bool haserror=false; |
3288 | int l=0; |
3289 | #pragma omp parallel for private(l) schedule(static) |
3290 | for (l=0; l<numpts; ++l) |
3291 | { |
3292 | #pragma omp flush(haserror) // In case haserror was in register |
3293 | if (!haserror) |
3294 | { |
3295 | int lerror=0; |
3296 | try |
3297 | { |
3298 | do |
3299 | { |
3300 |