1 |
|
2 |
/******************************************************* |
3 |
* |
4 |
* Copyright (c) 2003-2009 by University of Queensland |
5 |
* Earth Systems Science Computational Center (ESSCC) |
6 |
* http://www.uq.edu.au/esscc |
7 |
* |
8 |
* Primary Business: Queensland, Australia |
9 |
* Licensed under the Open Software License version 3.0 |
10 |
* http://www.opensource.org/licenses/osl-3.0.php |
11 |
* |
12 |
*******************************************************/ |
13 |
|
14 |
|
15 |
#include "DataLazy.h" |
16 |
#ifdef USE_NETCDF |
17 |
#include <netcdfcpp.h> |
18 |
#endif |
19 |
#ifdef PASO_MPI |
20 |
#include <mpi.h> |
21 |
#endif |
22 |
#ifdef _OPENMP |
23 |
#include <omp.h> |
24 |
#endif |
25 |
#include "FunctionSpace.h" |
26 |
#include "DataTypes.h" |
27 |
#include "Data.h" |
28 |
#include "UnaryFuncs.h" // for escript::fsign |
29 |
#include "Utils.h" |
30 |
|
31 |
#include "EscriptParams.h" |
32 |
|
33 |
#include <iomanip> // for some fancy formatting in debug |
34 |
|
35 |
// #define LAZYDEBUG(X) if (privdebug){X;} |
36 |
#define LAZYDEBUG(X) |
37 |
namespace |
38 |
{ |
39 |
bool privdebug=false; |
40 |
|
41 |
#define ENABLEDEBUG privdebug=true; |
42 |
#define DISABLEDEBUG privdebug=false; |
43 |
} |
44 |
|
45 |
// #define SIZELIMIT if ((m_height>escript::escriptParams.getTOO_MANY_LEVELS()) || (m_children>escript::escriptParams.getTOO_MANY_NODES())) {cerr << "\n!!!!!!! SIZE LIMIT EXCEEDED " << m_children << ";" << m_height << endl << toString() << endl;resolveToIdentity();} |
46 |
|
47 |
#define SIZELIMIT if ((m_height>escript::escriptParams.getTOO_MANY_LEVELS()) || (m_children>escript::escriptParams.getTOO_MANY_NODES())) {resolveToIdentity();} |
48 |
|
49 |
|
50 |
/* |
51 |
How does DataLazy work? |
52 |
~~~~~~~~~~~~~~~~~~~~~~~ |
53 |
|
54 |
Each instance represents a single operation on one or two other DataLazy instances. These arguments are normally |
55 |
denoted left and right. |
56 |
|
57 |
A special operation, IDENTITY, stores an instance of DataReady in the m_id member. |
58 |
This means that all "internal" nodes in the structure are instances of DataLazy. |
59 |
|
60 |
Each operation has a string representation as well as an opgroup - eg G_IDENTITY, G_BINARY, ... |
61 |
Note that IDENITY is not considered a unary operation. |
62 |
|
63 |
I am avoiding calling the structure formed a tree because it is not guaranteed to be one (eg c=a+a). |
64 |
It must however form a DAG (directed acyclic graph). |
65 |
I will refer to individual DataLazy objects with the structure as nodes. |
66 |
|
67 |
Each node also stores: |
68 |
- m_readytype \in {'E','T','C','?'} ~ indicates what sort of DataReady would be produced if the expression was |
69 |
evaluated. |
70 |
- m_buffsrequired ~ the larged number of samples which would need to be kept simultaneously in order to |
71 |
evaluate the expression. |
72 |
- m_samplesize ~ the number of doubles stored in a sample. |
73 |
|
74 |
When a new node is created, the above values are computed based on the values in the child nodes. |
75 |
Eg: if left requires 4 samples and right requires 6 then left+right requires 7 samples. |
76 |
|
77 |
The resolve method, which produces a DataReady from a DataLazy, does the following: |
78 |
1) Create a DataReady to hold the new result. |
79 |
2) Allocate a vector (v) big enough to hold m_buffsrequired samples. |
80 |
3) For each sample, call resolveSample with v, to get its values and copy them into the result object. |
81 |
|
82 |
(In the case of OMP, multiple samples are resolved in parallel so the vector needs to be larger.) |
83 |
|
84 |
resolveSample returns a Vector* and an offset within that vector where the result is stored. |
85 |
Normally, this would be v, but for identity nodes their internal vector is returned instead. |
86 |
|
87 |
The convention that I use, is that the resolve methods should store their results starting at the offset they are passed. |
88 |
|
89 |
For expressions which evaluate to Constant or Tagged, there is a different evaluation method. |
90 |
The collapse method invokes the (non-lazy) operations on the Data class to evaluate the expression. |
91 |
|
92 |
To add a new operator you need to do the following (plus anything I might have forgotten - adding a new group for example): |
93 |
1) Add to the ES_optype. |
94 |
2) determine what opgroup your operation belongs to (X) |
95 |
3) add a string for the op to the end of ES_opstrings |
96 |
4) increase ES_opcount |
97 |
5) add an entry (X) to opgroups |
98 |
6) add an entry to the switch in collapseToReady |
99 |
7) add an entry to resolveX |
100 |
*/ |
101 |
|
102 |
|
103 |
using namespace std; |
104 |
using namespace boost; |
105 |
|
106 |
namespace escript |
107 |
{ |
108 |
|
109 |
namespace |
110 |
{ |
111 |
|
112 |
enum ES_opgroup |
113 |
{ |
114 |
G_UNKNOWN, |
115 |
G_IDENTITY, |
116 |
G_BINARY, // pointwise operations with two arguments |
117 |
G_UNARY, // pointwise operations with one argument |
118 |
G_UNARY_P, // pointwise operations with one argument, requiring a parameter |
119 |
G_NP1OUT, // non-pointwise op with one output |
120 |
G_NP1OUT_P, // non-pointwise op with one output requiring a parameter |
121 |
G_TENSORPROD, // general tensor product |
122 |
G_NP1OUT_2P, // non-pointwise op with one output requiring two params |
123 |
G_REDUCTION // non-pointwise unary op with a scalar output |
124 |
}; |
125 |
|
126 |
|
127 |
|
128 |
|
129 |
string ES_opstrings[]={"UNKNOWN","IDENTITY","+","-","*","/","^", |
130 |
"sin","cos","tan", |
131 |
"asin","acos","atan","sinh","cosh","tanh","erf", |
132 |
"asinh","acosh","atanh", |
133 |
"log10","log","sign","abs","neg","pos","exp","sqrt", |
134 |
"1/","where>0","where<0","where>=0","where<=0", "where<>0","where=0", |
135 |
"symmetric","nonsymmetric", |
136 |
"prod", |
137 |
"transpose", "trace", |
138 |
"swapaxes", |
139 |
"minval", "maxval"}; |
140 |
int ES_opcount=43; |
141 |
ES_opgroup opgroups[]={G_UNKNOWN,G_IDENTITY,G_BINARY,G_BINARY,G_BINARY,G_BINARY, G_BINARY, |
142 |
G_UNARY,G_UNARY,G_UNARY, //10 |
143 |
G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY, // 17 |
144 |
G_UNARY,G_UNARY,G_UNARY, // 20 |
145 |
G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY, // 28 |
146 |
G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY, G_UNARY_P, G_UNARY_P, // 35 |
147 |
G_NP1OUT,G_NP1OUT, |
148 |
G_TENSORPROD, |
149 |
G_NP1OUT_P, G_NP1OUT_P, |
150 |
G_NP1OUT_2P, |
151 |
G_REDUCTION, G_REDUCTION}; |
152 |
inline |
153 |
ES_opgroup |
154 |
getOpgroup(ES_optype op) |
155 |
{ |
156 |
return opgroups[op]; |
157 |
} |
158 |
|
159 |
// return the FunctionSpace of the result of "left op right" |
160 |
FunctionSpace |
161 |
resultFS(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op) |
162 |
{ |
163 |
// perhaps this should call interpolate and throw or something? |
164 |
// maybe we need an interpolate node - |
165 |
// that way, if interpolate is required in any other op we can just throw a |
166 |
// programming error exception. |
167 |
|
168 |
FunctionSpace l=left->getFunctionSpace(); |
169 |
FunctionSpace r=right->getFunctionSpace(); |
170 |
if (l!=r) |
171 |
{ |
172 |
if (r.probeInterpolation(l)) |
173 |
{ |
174 |
return l; |
175 |
} |
176 |
if (l.probeInterpolation(r)) |
177 |
{ |
178 |
return r; |
179 |
} |
180 |
throw DataException("Cannot interpolate between the FunctionSpaces given for operation "+opToString(op)+"."); |
181 |
} |
182 |
return l; |
183 |
} |
184 |
|
185 |
// return the shape of the result of "left op right" |
186 |
// the shapes resulting from tensor product are more complex to compute so are worked out elsewhere |
187 |
DataTypes::ShapeType |
188 |
resultShape(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op) |
189 |
{ |
190 |
if (left->getShape()!=right->getShape()) |
191 |
{ |
192 |
if ((getOpgroup(op)!=G_BINARY) && (getOpgroup(op)!=G_NP1OUT)) |
193 |
{ |
194 |
throw DataException("Shapes not the name - shapes must match for (point)binary operations."); |
195 |
} |
196 |
|
197 |
if (left->getRank()==0) // we need to allow scalar * anything |
198 |
{ |
199 |
return right->getShape(); |
200 |
} |
201 |
if (right->getRank()==0) |
202 |
{ |
203 |
return left->getShape(); |
204 |
} |
205 |
throw DataException("Shapes not the same - arguments must have matching shapes (or be scalars) for (point)binary operations on lazy data."); |
206 |
} |
207 |
return left->getShape(); |
208 |
} |
209 |
|
210 |
// return the shape for "op left" |
211 |
|
212 |
DataTypes::ShapeType |
213 |
resultShape(DataAbstract_ptr left, ES_optype op, int axis_offset) |
214 |
{ |
215 |
switch(op) |
216 |
{ |
217 |
case TRANS: |
218 |
{ // for the scoping of variables |
219 |
const DataTypes::ShapeType& s=left->getShape(); |
220 |
DataTypes::ShapeType sh; |
221 |
int rank=left->getRank(); |
222 |
if (axis_offset<0 || axis_offset>rank) |
223 |
{ |
224 |
throw DataException("Error - Data::transpose must have 0 <= axis_offset <= rank=" + rank); |
225 |
} |
226 |
for (int i=0; i<rank; i++) |
227 |
{ |
228 |
int index = (axis_offset+i)%rank; |
229 |
sh.push_back(s[index]); // Append to new shape |
230 |
} |
231 |
return sh; |
232 |
} |
233 |
break; |
234 |
case TRACE: |
235 |
{ |
236 |
int rank=left->getRank(); |
237 |
if (rank<2) |
238 |
{ |
239 |
throw DataException("Trace can only be computed for objects with rank 2 or greater."); |
240 |
} |
241 |
if ((axis_offset>rank-2) || (axis_offset<0)) |
242 |
{ |
243 |
throw DataException("Trace: axis offset must lie between 0 and rank-2 inclusive."); |
244 |
} |
245 |
if (rank==2) |
246 |
{ |
247 |
return DataTypes::scalarShape; |
248 |
} |
249 |
else if (rank==3) |
250 |
{ |
251 |
DataTypes::ShapeType sh; |
252 |
if (axis_offset==0) |
253 |
{ |
254 |
sh.push_back(left->getShape()[2]); |
255 |
} |
256 |
else // offset==1 |
257 |
{ |
258 |
sh.push_back(left->getShape()[0]); |
259 |
} |
260 |
return sh; |
261 |
} |
262 |
else if (rank==4) |
263 |
{ |
264 |
DataTypes::ShapeType sh; |
265 |
const DataTypes::ShapeType& s=left->getShape(); |
266 |
if (axis_offset==0) |
267 |
{ |
268 |
sh.push_back(s[2]); |
269 |
sh.push_back(s[3]); |
270 |
} |
271 |
else if (axis_offset==1) |
272 |
{ |
273 |
sh.push_back(s[0]); |
274 |
sh.push_back(s[3]); |
275 |
} |
276 |
else // offset==2 |
277 |
{ |
278 |
sh.push_back(s[0]); |
279 |
sh.push_back(s[1]); |
280 |
} |
281 |
return sh; |
282 |
} |
283 |
else // unknown rank |
284 |
{ |
285 |
throw DataException("Error - Data::trace can only be calculated for rank 2, 3 or 4 object."); |
286 |
} |
287 |
} |
288 |
break; |
289 |
default: |
290 |
throw DataException("Programmer error - resultShape(left,op) can't compute shapes for operator "+opToString(op)+"."); |
291 |
} |
292 |
} |
293 |
|
294 |
DataTypes::ShapeType |
295 |
SwapShape(DataAbstract_ptr left, const int axis0, const int axis1) |
296 |
{ |
297 |
// This code taken from the Data.cpp swapaxes() method |
298 |
// Some of the checks are probably redundant here |
299 |
int axis0_tmp,axis1_tmp; |
300 |
const DataTypes::ShapeType& s=left->getShape(); |
301 |
DataTypes::ShapeType out_shape; |
302 |
// Here's the equivalent of python s_out=s[axis_offset:]+s[:axis_offset] |
303 |
// which goes thru all shape vector elements starting with axis_offset (at index=rank wrap around to 0) |
304 |
int rank=left->getRank(); |
305 |
if (rank<2) { |
306 |
throw DataException("Error - Data::swapaxes argument must have at least rank 2."); |
307 |
} |
308 |
if (axis0<0 || axis0>rank-1) { |
309 |
throw DataException("Error - Data::swapaxes: axis0 must be between 0 and rank-1=" + rank-1); |
310 |
} |
311 |
if (axis1<0 || axis1>rank-1) { |
312 |
throw DataException("Error - Data::swapaxes: axis1 must be between 0 and rank-1=" + rank-1); |
313 |
} |
314 |
if (axis0 == axis1) { |
315 |
throw DataException("Error - Data::swapaxes: axis indices must be different."); |
316 |
} |
317 |
if (axis0 > axis1) { |
318 |
axis0_tmp=axis1; |
319 |
axis1_tmp=axis0; |
320 |
} else { |
321 |
axis0_tmp=axis0; |
322 |
axis1_tmp=axis1; |
323 |
} |
324 |
for (int i=0; i<rank; i++) { |
325 |
if (i == axis0_tmp) { |
326 |
out_shape.push_back(s[axis1_tmp]); |
327 |
} else if (i == axis1_tmp) { |
328 |
out_shape.push_back(s[axis0_tmp]); |
329 |
} else { |
330 |
out_shape.push_back(s[i]); |
331 |
} |
332 |
} |
333 |
return out_shape; |
334 |
} |
335 |
|
336 |
|
337 |
// determine the output shape for the general tensor product operation |
338 |
// the additional parameters return information required later for the product |
339 |
// the majority of this code is copy pasted from C_General_Tensor_Product |
340 |
DataTypes::ShapeType |
341 |
GTPShape(DataAbstract_ptr left, DataAbstract_ptr right, int axis_offset, int transpose, int& SL, int& SM, int& SR) |
342 |
{ |
343 |
|
344 |
// Get rank and shape of inputs |
345 |
int rank0 = left->getRank(); |
346 |
int rank1 = right->getRank(); |
347 |
const DataTypes::ShapeType& shape0 = left->getShape(); |
348 |
const DataTypes::ShapeType& shape1 = right->getShape(); |
349 |
|
350 |
// Prepare for the loops of the product and verify compatibility of shapes |
351 |
int start0=0, start1=0; |
352 |
if (transpose == 0) {} |
353 |
else if (transpose == 1) { start0 = axis_offset; } |
354 |
else if (transpose == 2) { start1 = rank1-axis_offset; } |
355 |
else { throw DataException("DataLazy GeneralTensorProduct Constructor: Error - transpose should be 0, 1 or 2"); } |
356 |
|
357 |
if (rank0<axis_offset) |
358 |
{ |
359 |
throw DataException("DataLazy GeneralTensorProduct Constructor: Error - rank of left < axisoffset"); |
360 |
} |
361 |
|
362 |
// Adjust the shapes for transpose |
363 |
DataTypes::ShapeType tmpShape0(rank0); // pre-sizing the vectors rather |
364 |
DataTypes::ShapeType tmpShape1(rank1); // than using push_back |
365 |
for (int i=0; i<rank0; i++) { tmpShape0[i]=shape0[(i+start0)%rank0]; } |
366 |
for (int i=0; i<rank1; i++) { tmpShape1[i]=shape1[(i+start1)%rank1]; } |
367 |
|
368 |
// Prepare for the loops of the product |
369 |
SL=1, SM=1, SR=1; |
370 |
for (int i=0; i<rank0-axis_offset; i++) { |
371 |
SL *= tmpShape0[i]; |
372 |
} |
373 |
for (int i=rank0-axis_offset; i<rank0; i++) { |
374 |
if (tmpShape0[i] != tmpShape1[i-(rank0-axis_offset)]) { |
375 |
throw DataException("C_GeneralTensorProduct: Error - incompatible shapes"); |
376 |
} |
377 |
SM *= tmpShape0[i]; |
378 |
} |
379 |
for (int i=axis_offset; i<rank1; i++) { |
380 |
SR *= tmpShape1[i]; |
381 |
} |
382 |
|
383 |
// Define the shape of the output (rank of shape is the sum of the loop ranges below) |
384 |
DataTypes::ShapeType shape2(rank0+rank1-2*axis_offset); |
385 |
{ // block to limit the scope of out_index |
386 |
int out_index=0; |
387 |
for (int i=0; i<rank0-axis_offset; i++, ++out_index) { shape2[out_index]=tmpShape0[i]; } // First part of arg_0_Z |
388 |
for (int i=axis_offset; i<rank1; i++, ++out_index) { shape2[out_index]=tmpShape1[i]; } // Last part of arg_1_Z |
389 |
} |
390 |
|
391 |
if (shape2.size()>ESCRIPT_MAX_DATA_RANK) |
392 |
{ |
393 |
ostringstream os; |
394 |
os << "C_GeneralTensorProduct: Error - Attempt to create a rank " << shape2.size() << " object. The maximum rank is " << ESCRIPT_MAX_DATA_RANK << "."; |
395 |
throw DataException(os.str()); |
396 |
} |
397 |
|
398 |
return shape2; |
399 |
} |
400 |
|
401 |
// determine the number of samples requires to evaluate an expression combining left and right |
402 |
// NP1OUT needs an extra buffer because we can't write the answers over the top of the input. |
403 |
// The same goes for G_TENSORPROD |
404 |
// It might seem that pointwise binary ops (G_BINARY) could be written over the top of the lefts. |
405 |
// This would be true were it not for the possibility that the LHS could be a scalar which needs to be examined |
406 |
// multiple times |
407 |
int |
408 |
calcBuffs(const DataLazy_ptr& left, const DataLazy_ptr& right, ES_optype op) |
409 |
{ |
410 |
switch(getOpgroup(op)) |
411 |
{ |
412 |
case G_IDENTITY: return 1; |
413 |
case G_BINARY: return 1+max(left->getBuffsRequired(),right->getBuffsRequired()+1); |
414 |
case G_REDUCTION: |
415 |
case G_UNARY: |
416 |
case G_UNARY_P: return max(left->getBuffsRequired(),1); |
417 |
case G_NP1OUT: return 1+max(left->getBuffsRequired(),1); |
418 |
case G_NP1OUT_P: return 1+max(left->getBuffsRequired(),1); |
419 |
case G_TENSORPROD: return 1+max(left->getBuffsRequired(),right->getBuffsRequired()+1); |
420 |
case G_NP1OUT_2P: return 1+max(left->getBuffsRequired(),1); |
421 |
default: |
422 |
throw DataException("Programmer Error - attempt to calcBuffs() for operator "+opToString(op)+"."); |
423 |
} |
424 |
} |
425 |
|
426 |
|
427 |
} // end anonymous namespace |
428 |
|
429 |
|
430 |
|
431 |
// Return a string representing the operation |
432 |
const std::string& |
433 |
opToString(ES_optype op) |
434 |
{ |
435 |
if (op<0 || op>=ES_opcount) |
436 |
{ |
437 |
op=UNKNOWNOP; |
438 |
} |
439 |
return ES_opstrings[op]; |
440 |
} |
441 |
|
442 |
#ifdef LAZY_NODE_STORAGE |
443 |
void DataLazy::LazyNodeSetup() |
444 |
{ |
445 |
#ifdef _OPENMP |
446 |
int numthreads=omp_get_max_threads(); |
447 |
m_samples.resize(numthreads*m_samplesize); |
448 |
m_sampleids=new int[numthreads]; |
449 |
for (int i=0;i<numthreads;++i) |
450 |
{ |
451 |
m_sampleids[i]=-1; |
452 |
} |
453 |
#else |
454 |
m_samples.resize(m_samplesize); |
455 |
m_sampleids=new int[1]; |
456 |
m_sampleids[0]=-1; |
457 |
#endif // _OPENMP |
458 |
} |
459 |
#endif // LAZY_NODE_STORAGE |
460 |
|
461 |
|
462 |
// Creates an identity node |
463 |
DataLazy::DataLazy(DataAbstract_ptr p) |
464 |
: parent(p->getFunctionSpace(),p->getShape()) |
465 |
#ifdef LAZY_NODE_STORAGE |
466 |
,m_sampleids(0), |
467 |
m_samples(1) |
468 |
#endif |
469 |
{ |
470 |
if (p->isLazy()) |
471 |
{ |
472 |
// I don't want identity of Lazy. |
473 |
// Question: Why would that be so bad? |
474 |
// Answer: We assume that the child of ID is something we can call getVector on |
475 |
throw DataException("Programmer error - attempt to create identity from a DataLazy."); |
476 |
} |
477 |
else |
478 |
{ |
479 |
p->makeLazyShared(); |
480 |
DataReady_ptr dr=dynamic_pointer_cast<DataReady>(p); |
481 |
makeIdentity(dr); |
482 |
LAZYDEBUG(cout << "Wrapping " << dr.get() << " id=" << m_id.get() << endl;) |
483 |
} |
484 |
LAZYDEBUG(cout << "(1)Lazy created with " << m_samplesize << endl;) |
485 |
} |
486 |
|
487 |
DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op) |
488 |
: parent(left->getFunctionSpace(),(getOpgroup(op)!=G_REDUCTION)?left->getShape():DataTypes::scalarShape), |
489 |
m_op(op), |
490 |
m_axis_offset(0), |
491 |
m_transpose(0), |
492 |
m_SL(0), m_SM(0), m_SR(0) |
493 |
{ |
494 |
if ((getOpgroup(op)!=G_UNARY) && (getOpgroup(op)!=G_NP1OUT) && (getOpgroup(op)!=G_REDUCTION)) |
495 |
{ |
496 |
throw DataException("Programmer error - constructor DataLazy(left, op) will only process UNARY operations."); |
497 |
} |
498 |
|
499 |
DataLazy_ptr lleft; |
500 |
if (!left->isLazy()) |
501 |
{ |
502 |
lleft=DataLazy_ptr(new DataLazy(left)); |
503 |
} |
504 |
else |
505 |
{ |
506 |
lleft=dynamic_pointer_cast<DataLazy>(left); |
507 |
} |
508 |
m_readytype=lleft->m_readytype; |
509 |
m_left=lleft; |
510 |
m_buffsRequired=calcBuffs(m_left, m_right,m_op); // yeah m_right will be null at this point |
511 |
m_samplesize=getNumDPPSample()*getNoValues(); |
512 |
m_maxsamplesize=max(m_samplesize,m_left->getMaxSampleSize()); |
513 |
m_children=m_left->m_children+1; |
514 |
m_height=m_left->m_height+1; |
515 |
#ifdef LAZY_NODE_STORAGE |
516 |
LazyNodeSetup(); |
517 |
#endif |
518 |
SIZELIMIT |
519 |
} |
520 |
|
521 |
|
522 |
// In this constructor we need to consider interpolation |
523 |
DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op) |
524 |
: parent(resultFS(left,right,op), resultShape(left,right,op)), |
525 |
m_op(op), |
526 |
m_SL(0), m_SM(0), m_SR(0) |
527 |
{ |
528 |
LAZYDEBUG(cout << "Forming operator with " << left.get() << " " << right.get() << endl;) |
529 |
if ((getOpgroup(op)!=G_BINARY)) |
530 |
{ |
531 |
throw DataException("Programmer error - constructor DataLazy(left, right, op) will only process BINARY operations."); |
532 |
} |
533 |
|
534 |
if (getFunctionSpace()!=left->getFunctionSpace()) // left needs to be interpolated |
535 |
{ |
536 |
FunctionSpace fs=getFunctionSpace(); |
537 |
Data ltemp(left); |
538 |
Data tmp(ltemp,fs); |
539 |
left=tmp.borrowDataPtr(); |
540 |
} |
541 |
if (getFunctionSpace()!=right->getFunctionSpace()) // right needs to be interpolated |
542 |
{ |
543 |
Data tmp(Data(right),getFunctionSpace()); |
544 |
right=tmp.borrowDataPtr(); |
545 |
LAZYDEBUG(cout << "Right interpolation required " << right.get() << endl;) |
546 |
} |
547 |
left->operandCheck(*right); |
548 |
|
549 |
if (left->isLazy()) // the children need to be DataLazy. Wrap them in IDENTITY if required |
550 |
{ |
551 |
m_left=dynamic_pointer_cast<DataLazy>(left); |
552 |
LAZYDEBUG(cout << "Left is " << m_left->toString() << endl;) |
553 |
} |
554 |
else |
555 |
{ |
556 |
m_left=DataLazy_ptr(new DataLazy(left)); |
557 |
LAZYDEBUG(cout << "Left " << left.get() << " wrapped " << m_left->m_id.get() << endl;) |
558 |
} |
559 |
if (right->isLazy()) |
560 |
{ |
561 |
m_right=dynamic_pointer_cast<DataLazy>(right); |
562 |
LAZYDEBUG(cout << "Right is " << m_right->toString() << endl;) |
563 |
} |
564 |
else |
565 |
{ |
566 |
m_right=DataLazy_ptr(new DataLazy(right)); |
567 |
LAZYDEBUG(cout << "Right " << right.get() << " wrapped " << m_right->m_id.get() << endl;) |
568 |
} |
569 |
char lt=m_left->m_readytype; |
570 |
char rt=m_right->m_readytype; |
571 |
if (lt=='E' || rt=='E') |
572 |
{ |
573 |
m_readytype='E'; |
574 |
} |
575 |
else if (lt=='T' || rt=='T') |
576 |
{ |
577 |
m_readytype='T'; |
578 |
} |
579 |
else |
580 |
{ |
581 |
m_readytype='C'; |
582 |
} |
583 |
m_samplesize=getNumDPPSample()*getNoValues(); |
584 |
m_maxsamplesize=max(max(m_samplesize,m_right->getMaxSampleSize()),m_left->getMaxSampleSize()); |
585 |
m_buffsRequired=calcBuffs(m_left, m_right,m_op); |
586 |
m_children=m_left->m_children+m_right->m_children+2; |
587 |
m_height=max(m_left->m_height,m_right->m_height)+1; |
588 |
#ifdef LAZY_NODE_STORAGE |
589 |
LazyNodeSetup(); |
590 |
#endif |
591 |
SIZELIMIT |
592 |
LAZYDEBUG(cout << "(3)Lazy created with " << m_samplesize << endl;) |
593 |
} |
594 |
|
595 |
DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op, int axis_offset, int transpose) |
596 |
: parent(resultFS(left,right,op), GTPShape(left,right, axis_offset, transpose, m_SL,m_SM, m_SR)), |
597 |
m_op(op), |
598 |
m_axis_offset(axis_offset), |
599 |
m_transpose(transpose) |
600 |
{ |
601 |
if ((getOpgroup(op)!=G_TENSORPROD)) |
602 |
{ |
603 |
throw DataException("Programmer error - constructor DataLazy(left, right, op, ax, tr) will only process BINARY operations which require parameters."); |
604 |
} |
605 |
if ((transpose>2) || (transpose<0)) |
606 |
{ |
607 |
throw DataException("DataLazy GeneralTensorProduct constructor: Error - transpose should be 0, 1 or 2"); |
608 |
} |
609 |
if (getFunctionSpace()!=left->getFunctionSpace()) // left needs to be interpolated |
610 |
{ |
611 |
FunctionSpace fs=getFunctionSpace(); |
612 |
Data ltemp(left); |
613 |
Data tmp(ltemp,fs); |
614 |
left=tmp.borrowDataPtr(); |
615 |
} |
616 |
if (getFunctionSpace()!=right->getFunctionSpace()) // right needs to be interpolated |
617 |
{ |
618 |
Data tmp(Data(right),getFunctionSpace()); |
619 |
right=tmp.borrowDataPtr(); |
620 |
} |
621 |
// left->operandCheck(*right); |
622 |
|
623 |
if (left->isLazy()) // the children need to be DataLazy. Wrap them in IDENTITY if required |
624 |
{ |
625 |
m_left=dynamic_pointer_cast<DataLazy>(left); |
626 |
} |
627 |
else |
628 |
{ |
629 |
m_left=DataLazy_ptr(new DataLazy(left)); |
630 |
} |
631 |
if (right->isLazy()) |
632 |
{ |
633 |
m_right=dynamic_pointer_cast<DataLazy>(right); |
634 |
} |
635 |
else |
636 |
{ |
637 |
m_right=DataLazy_ptr(new DataLazy(right)); |
638 |
} |
639 |
char lt=m_left->m_readytype; |
640 |
char rt=m_right->m_readytype; |
641 |
if (lt=='E' || rt=='E') |
642 |
{ |
643 |
m_readytype='E'; |
644 |
} |
645 |
else if (lt=='T' || rt=='T') |
646 |
{ |
647 |
m_readytype='T'; |
648 |
} |
649 |
else |
650 |
{ |
651 |
m_readytype='C'; |
652 |
} |
653 |
m_samplesize=getNumDPPSample()*getNoValues(); |
654 |
m_maxsamplesize=max(max(m_samplesize,m_right->getMaxSampleSize()),m_left->getMaxSampleSize()); |
655 |
m_buffsRequired=calcBuffs(m_left, m_right,m_op); |
656 |
m_children=m_left->m_children+m_right->m_children+2; |
657 |
m_height=max(m_left->m_height,m_right->m_height)+1; |
658 |
#ifdef LAZY_NODE_STORAGE |
659 |
LazyNodeSetup(); |
660 |
#endif |
661 |
SIZELIMIT |
662 |
LAZYDEBUG(cout << "(4)Lazy created with " << m_samplesize << endl;) |
663 |
} |
664 |
|
665 |
|
666 |
DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, int axis_offset) |
667 |
: parent(left->getFunctionSpace(), resultShape(left,op, axis_offset)), |
668 |
m_op(op), |
669 |
m_axis_offset(axis_offset), |
670 |
m_transpose(0), |
671 |
m_tol(0) |
672 |
{ |
673 |
if ((getOpgroup(op)!=G_NP1OUT_P)) |
674 |
{ |
675 |
throw DataException("Programmer error - constructor DataLazy(left, op, ax) will only process UNARY operations which require parameters."); |
676 |
} |
677 |
DataLazy_ptr lleft; |
678 |
if (!left->isLazy()) |
679 |
{ |
680 |
lleft=DataLazy_ptr(new DataLazy(left)); |
681 |
} |
682 |
else |
683 |
{ |
684 |
lleft=dynamic_pointer_cast<DataLazy>(left); |
685 |
} |
686 |
m_readytype=lleft->m_readytype; |
687 |
m_left=lleft; |
688 |
m_buffsRequired=calcBuffs(m_left, m_right,m_op); // yeah m_right will be null at this point |
689 |
m_samplesize=getNumDPPSample()*getNoValues(); |
690 |
m_maxsamplesize=max(m_samplesize,m_left->getMaxSampleSize()); |
691 |
m_children=m_left->m_children+1; |
692 |
m_height=m_left->m_height+1; |
693 |
#ifdef LAZY_NODE_STORAGE |
694 |
LazyNodeSetup(); |
695 |
#endif |
696 |
SIZELIMIT |
697 |
LAZYDEBUG(cout << "(5)Lazy created with " << m_samplesize << endl;) |
698 |
} |
699 |
|
700 |
DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, double tol) |
701 |
: parent(left->getFunctionSpace(), left->getShape()), |
702 |
m_op(op), |
703 |
m_axis_offset(0), |
704 |
m_transpose(0), |
705 |
m_tol(tol) |
706 |
{ |
707 |
if ((getOpgroup(op)!=G_UNARY_P)) |
708 |
{ |
709 |
throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require parameters."); |
710 |
} |
711 |
DataLazy_ptr lleft; |
712 |
if (!left->isLazy()) |
713 |
{ |
714 |
lleft=DataLazy_ptr(new DataLazy(left)); |
715 |
} |
716 |
else |
717 |
{ |
718 |
lleft=dynamic_pointer_cast<DataLazy>(left); |
719 |
} |
720 |
m_readytype=lleft->m_readytype; |
721 |
m_left=lleft; |
722 |
m_buffsRequired=calcBuffs(m_left, m_right,m_op); // yeah m_right will be null at this point |
723 |
m_samplesize=getNumDPPSample()*getNoValues(); |
724 |
m_maxsamplesize=max(m_samplesize,m_left->getMaxSampleSize()); |
725 |
m_children=m_left->m_children+1; |
726 |
m_height=m_left->m_height+1; |
727 |
#ifdef LAZY_NODE_STORAGE |
728 |
LazyNodeSetup(); |
729 |
#endif |
730 |
SIZELIMIT |
731 |
LAZYDEBUG(cout << "(6)Lazy created with " << m_samplesize << endl;) |
732 |
} |
733 |
|
734 |
|
735 |
DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, const int axis0, const int axis1) |
736 |
: parent(left->getFunctionSpace(), SwapShape(left,axis0,axis1)), |
737 |
m_op(op), |
738 |
m_axis_offset(axis0), |
739 |
m_transpose(axis1), |
740 |
m_tol(0) |
741 |
{ |
742 |
if ((getOpgroup(op)!=G_NP1OUT_2P)) |
743 |
{ |
744 |
throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require two integer parameters."); |
745 |
} |
746 |
DataLazy_ptr lleft; |
747 |
if (!left->isLazy()) |
748 |
{ |
749 |
lleft=DataLazy_ptr(new DataLazy(left)); |
750 |
} |
751 |
else |
752 |
{ |
753 |
lleft=dynamic_pointer_cast<DataLazy>(left); |
754 |
} |
755 |
m_readytype=lleft->m_readytype; |
756 |
m_left=lleft; |
757 |
m_buffsRequired=calcBuffs(m_left, m_right,m_op); // yeah m_right will be null at this point |
758 |
m_samplesize=getNumDPPSample()*getNoValues(); |
759 |
m_maxsamplesize=max(m_samplesize,m_left->getMaxSampleSize()); |
760 |
m_children=m_left->m_children+1; |
761 |
m_height=m_left->m_height+1; |
762 |
#ifdef LAZY_NODE_STORAGE |
763 |
LazyNodeSetup(); |
764 |
#endif |
765 |
SIZELIMIT |
766 |
LAZYDEBUG(cout << "(7)Lazy created with " << m_samplesize << endl;) |
767 |
} |
768 |
|
769 |
DataLazy::~DataLazy() |
770 |
{ |
771 |
#ifdef LAZY_NODE_SETUP |
772 |
delete[] m_sampleids; |
773 |
delete[] m_samples; |
774 |
#endif |
775 |
} |
776 |
|
777 |
|
778 |
int |
779 |
DataLazy::getBuffsRequired() const |
780 |
{ |
781 |
return m_buffsRequired; |
782 |
} |
783 |
|
784 |
|
785 |
size_t |
786 |
DataLazy::getMaxSampleSize() const |
787 |
{ |
788 |
return m_maxsamplesize; |
789 |
} |
790 |
|
791 |
|
792 |
|
793 |
size_t |
794 |
DataLazy::getSampleBufferSize() const |
795 |
{ |
796 |
return m_maxsamplesize*(max(1,m_buffsRequired)); |
797 |
} |
798 |
|
799 |
/* |
800 |
\brief Evaluates the expression using methods on Data. |
801 |
This does the work for the collapse method. |
802 |
For reasons of efficiency do not call this method on DataExpanded nodes. |
803 |
*/ |
804 |
DataReady_ptr |
805 |
DataLazy::collapseToReady() |
806 |
{ |
807 |
if (m_readytype=='E') |
808 |
{ // this is more an efficiency concern than anything else |
809 |
throw DataException("Programmer Error - do not use collapse on Expanded data."); |
810 |
} |
811 |
if (m_op==IDENTITY) |
812 |
{ |
813 |
return m_id; |
814 |
} |
815 |
DataReady_ptr pleft=m_left->collapseToReady(); |
816 |
Data left(pleft); |
817 |
Data right; |
818 |
if ((getOpgroup(m_op)==G_BINARY) || (getOpgroup(m_op)==G_TENSORPROD)) |
819 |
{ |
820 |
right=Data(m_right->collapseToReady()); |
821 |
} |
822 |
Data result; |
823 |
switch(m_op) |
824 |
{ |
825 |
case ADD: |
826 |
result=left+right; |
827 |
break; |
828 |
case SUB: |
829 |
result=left-right; |
830 |
break; |
831 |
case MUL: |
832 |
result=left*right; |
833 |
break; |
834 |
case DIV: |
835 |
result=left/right; |
836 |
break; |
837 |
case SIN: |
838 |
result=left.sin(); |
839 |
break; |
840 |
case COS: |
841 |
result=left.cos(); |
842 |
break; |
843 |
case TAN: |
844 |
result=left.tan(); |
845 |
break; |
846 |
case ASIN: |
847 |
result=left.asin(); |
848 |
break; |
849 |
case ACOS: |
850 |
result=left.acos(); |
851 |
break; |
852 |
case ATAN: |
853 |
result=left.atan(); |
854 |
break; |
855 |
case SINH: |
856 |
result=left.sinh(); |
857 |
break; |
858 |
case COSH: |
859 |
result=left.cosh(); |
860 |
break; |
861 |
case TANH: |
862 |
result=left.tanh(); |
863 |
break; |
864 |
case ERF: |
865 |
result=left.erf(); |
866 |
break; |
867 |
case ASINH: |
868 |
result=left.asinh(); |
869 |
break; |
870 |
case ACOSH: |
871 |
result=left.acosh(); |
872 |
break; |
873 |
case ATANH: |
874 |
result=left.atanh(); |
875 |
break; |
876 |
case LOG10: |
877 |
result=left.log10(); |
878 |
break; |
879 |
case LOG: |
880 |
result=left.log(); |
881 |
break; |
882 |
case SIGN: |
883 |
result=left.sign(); |
884 |
break; |
885 |
case ABS: |
886 |
result=left.abs(); |
887 |
break; |
888 |
case NEG: |
889 |
result=left.neg(); |
890 |
break; |
891 |
case POS: |
892 |
// it doesn't mean anything for delayed. |
893 |
// it will just trigger a deep copy of the lazy object |
894 |
throw DataException("Programmer error - POS not supported for lazy data."); |
895 |
break; |
896 |
case EXP: |
897 |
result=left.exp(); |
898 |
break; |
899 |
case SQRT: |
900 |
result=left.sqrt(); |
901 |
break; |
902 |
case RECIP: |
903 |
result=left.oneOver(); |
904 |
break; |
905 |
case GZ: |
906 |
result=left.wherePositive(); |
907 |
break; |
908 |
case LZ: |
909 |
result=left.whereNegative(); |
910 |
break; |
911 |
case GEZ: |
912 |
result=left.whereNonNegative(); |
913 |
break; |
914 |
case LEZ: |
915 |
result=left.whereNonPositive(); |
916 |
break; |
917 |
case NEZ: |
918 |
result=left.whereNonZero(m_tol); |
919 |
break; |
920 |
case EZ: |
921 |
result=left.whereZero(m_tol); |
922 |
break; |
923 |
case SYM: |
924 |
result=left.symmetric(); |
925 |
break; |
926 |
case NSYM: |
927 |
result=left.nonsymmetric(); |
928 |
break; |
929 |
case PROD: |
930 |
result=C_GeneralTensorProduct(left,right,m_axis_offset, m_transpose); |
931 |
break; |
932 |
case TRANS: |
933 |
result=left.transpose(m_axis_offset); |
934 |
break; |
935 |
case TRACE: |
936 |
result=left.trace(m_axis_offset); |
937 |
break; |
938 |
case SWAP: |
939 |
result=left.swapaxes(m_axis_offset, m_transpose); |
940 |
break; |
941 |
case MINVAL: |
942 |
result=left.minval(); |
943 |
break; |
944 |
case MAXVAL: |
945 |
result=left.minval(); |
946 |
break; |
947 |
default: |
948 |
throw DataException("Programmer error - collapseToReady does not know how to resolve operator "+opToString(m_op)+"."); |
949 |
} |
950 |
return result.borrowReadyPtr(); |
951 |
} |
952 |
|
953 |
/* |
954 |
\brief Converts the DataLazy into an IDENTITY storing the value of the expression. |
955 |
This method uses the original methods on the Data class to evaluate the expressions. |
956 |
For this reason, it should not be used on DataExpanded instances. (To do so would defeat |
957 |
the purpose of using DataLazy in the first place). |
958 |
*/ |
959 |
void |
960 |
DataLazy::collapse() |
961 |
{ |
962 |
if (m_op==IDENTITY) |
963 |
{ |
964 |
return; |
965 |
} |
966 |
if (m_readytype=='E') |
967 |
{ // this is more an efficiency concern than anything else |
968 |
throw DataException("Programmer Error - do not use collapse on Expanded data."); |
969 |
} |
970 |
m_id=collapseToReady(); |
971 |
m_op=IDENTITY; |
972 |
} |
973 |
|
974 |
/* |
975 |
\brief Compute the value of the expression (unary operation) for the given sample. |
976 |
\return Vector which stores the value of the subexpression for the given sample. |
977 |
\param v A vector to store intermediate results. |
978 |
\param offset Index in v to begin storing results. |
979 |
\param sampleNo Sample number to evaluate. |
980 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
981 |
|
982 |
The return value will be an existing vector so do not deallocate it. |
983 |
If the result is stored in v it should be stored at the offset given. |
984 |
Everything from offset to the end of v should be considered available for this method to use. |
985 |
*/ |
986 |
DataTypes::ValueType* |
987 |
DataLazy::resolveUnary(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const |
988 |
{ |
989 |
// we assume that any collapsing has been done before we get here |
990 |
// since we only have one argument we don't need to think about only |
991 |
// processing single points. |
992 |
if (m_readytype!='E') |
993 |
{ |
994 |
throw DataException("Programmer error - resolveUnary should only be called on expanded Data."); |
995 |
} |
996 |
const ValueType* vleft=m_left->resolveVectorSample(v,offset,sampleNo,roffset); |
997 |
const double* left=&((*vleft)[roffset]); |
998 |
double* result=&(v[offset]); |
999 |
roffset=offset; |
1000 |
switch (m_op) |
1001 |
{ |
1002 |
case SIN: |
1003 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sin); |
1004 |
break; |
1005 |
case COS: |
1006 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cos); |
1007 |
break; |
1008 |
case TAN: |
1009 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tan); |
1010 |
break; |
1011 |
case ASIN: |
1012 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::asin); |
1013 |
break; |
1014 |
case ACOS: |
1015 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::acos); |
1016 |
break; |
1017 |
case ATAN: |
1018 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::atan); |
1019 |
break; |
1020 |
case SINH: |
1021 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sinh); |
1022 |
break; |
1023 |
case COSH: |
1024 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cosh); |
1025 |
break; |
1026 |
case TANH: |
1027 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tanh); |
1028 |
break; |
1029 |
case ERF: |
1030 |
#if defined (_WIN32) && !defined(__INTEL_COMPILER) |
1031 |
throw DataException("Error - Data:: erf function is not supported on _WIN32 platforms."); |
1032 |
#else |
1033 |
tensor_unary_operation(m_samplesize, left, result, ::erf); |
1034 |
break; |
1035 |
#endif |
1036 |
case ASINH: |
1037 |
#if defined (_WIN32) && !defined(__INTEL_COMPILER) |
1038 |
tensor_unary_operation(m_samplesize, left, result, escript::asinh_substitute); |
1039 |
#else |
1040 |
tensor_unary_operation(m_samplesize, left, result, ::asinh); |
1041 |
#endif |
1042 |
break; |
1043 |
case ACOSH: |
1044 |
#if defined (_WIN32) && !defined(__INTEL_COMPILER) |
1045 |
tensor_unary_operation(m_samplesize, left, result, escript::acosh_substitute); |
1046 |
#else |
1047 |
tensor_unary_operation(m_samplesize, left, result, ::acosh); |
1048 |
#endif |
1049 |
break; |
1050 |
case ATANH: |
1051 |
#if defined (_WIN32) && !defined(__INTEL_COMPILER) |
1052 |
tensor_unary_operation(m_samplesize, left, result, escript::atanh_substitute); |
1053 |
#else |
1054 |
tensor_unary_operation(m_samplesize, left, result, ::atanh); |
1055 |
#endif |
1056 |
break; |
1057 |
case LOG10: |
1058 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log10); |
1059 |
break; |
1060 |
case LOG: |
1061 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log); |
1062 |
break; |
1063 |
case SIGN: |
1064 |
tensor_unary_operation(m_samplesize, left, result, escript::fsign); |
1065 |
break; |
1066 |
case ABS: |
1067 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::fabs); |
1068 |
break; |
1069 |
case NEG: |
1070 |
tensor_unary_operation(m_samplesize, left, result, negate<double>()); |
1071 |
break; |
1072 |
case POS: |
1073 |
// it doesn't mean anything for delayed. |
1074 |
// it will just trigger a deep copy of the lazy object |
1075 |
throw DataException("Programmer error - POS not supported for lazy data."); |
1076 |
break; |
1077 |
case EXP: |
1078 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::exp); |
1079 |
break; |
1080 |
case SQRT: |
1081 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sqrt); |
1082 |
break; |
1083 |
case RECIP: |
1084 |
tensor_unary_operation(m_samplesize, left, result, bind1st(divides<double>(),1.)); |
1085 |
break; |
1086 |
case GZ: |
1087 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(greater<double>(),0.0)); |
1088 |
break; |
1089 |
case LZ: |
1090 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(less<double>(),0.0)); |
1091 |
break; |
1092 |
case GEZ: |
1093 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(greater_equal<double>(),0.0)); |
1094 |
break; |
1095 |
case LEZ: |
1096 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(less_equal<double>(),0.0)); |
1097 |
break; |
1098 |
// There are actually G_UNARY_P but I don't see a compelling reason to treat them differently |
1099 |
case NEZ: |
1100 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(AbsGT(),m_tol)); |
1101 |
break; |
1102 |
case EZ: |
1103 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(AbsLTE(),m_tol)); |
1104 |
break; |
1105 |
|
1106 |
default: |
1107 |
throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+"."); |
1108 |
} |
1109 |
return &v; |
1110 |
} |
1111 |
|
1112 |
|
1113 |
/* |
1114 |
\brief Compute the value of the expression (reduction operation) for the given sample. |
1115 |
\return Vector which stores the value of the subexpression for the given sample. |
1116 |
\param v A vector to store intermediate results. |
1117 |
\param offset Index in v to begin storing results. |
1118 |
\param sampleNo Sample number to evaluate. |
1119 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
1120 |
|
1121 |
The return value will be an existing vector so do not deallocate it. |
1122 |
If the result is stored in v it should be stored at the offset given. |
1123 |
Everything from offset to the end of v should be considered available for this method to use. |
1124 |
*/ |
1125 |
DataTypes::ValueType* |
1126 |
DataLazy::resolveReduction(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const |
1127 |
{ |
1128 |
// we assume that any collapsing has been done before we get here |
1129 |
// since we only have one argument we don't need to think about only |
1130 |
// processing single points. |
1131 |
if (m_readytype!='E') |
1132 |
{ |
1133 |
throw DataException("Programmer error - resolveUnary should only be called on expanded Data."); |
1134 |
} |
1135 |
const ValueType* vleft=m_left->resolveVectorSample(v,offset,sampleNo,roffset); |
1136 |
double* result=&(v[offset]); |
1137 |
roffset=offset; |
1138 |
unsigned int ndpps=getNumDPPSample(); |
1139 |
unsigned int psize=DataTypes::noValues(getShape()); |
1140 |
switch (m_op) |
1141 |
{ |
1142 |
case MINVAL: |
1143 |
{ |
1144 |
for (unsigned int z=0;z<ndpps;++z) |
1145 |
{ |
1146 |
FMin op; |
1147 |
*result=DataMaths::reductionOp(*vleft, m_left->getShape(), roffset, op, numeric_limits<double>::max()); |
1148 |
roffset+=psize; |
1149 |
result++; |
1150 |
} |
1151 |
} |
1152 |
break; |
1153 |
case MAXVAL: |
1154 |
{ |
1155 |
for (unsigned int z=0;z<ndpps;++z) |
1156 |
{ |
1157 |
FMax op; |
1158 |
*result=DataMaths::reductionOp(*vleft, m_left->getShape(), roffset, op, numeric_limits<double>::max()*-1); |
1159 |
roffset+=psize; |
1160 |
result++; |
1161 |
} |
1162 |
} |
1163 |
break; |
1164 |
default: |
1165 |
throw DataException("Programmer error - resolveReduction can not resolve operator "+opToString(m_op)+"."); |
1166 |
} |
1167 |
return &v; |
1168 |
} |
1169 |
|
1170 |
|
1171 |
|
1172 |
/* |
1173 |
\brief Compute the value of the expression (unary operation) for the given sample. |
1174 |
\return Vector which stores the value of the subexpression for the given sample. |
1175 |
\param v A vector to store intermediate results. |
1176 |
\param offset Index in v to begin storing results. |
1177 |
\param sampleNo Sample number to evaluate. |
1178 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
1179 |
|
1180 |
The return value will be an existing vector so do not deallocate it. |
1181 |
If the result is stored in v it should be stored at the offset given. |
1182 |
Everything from offset to the end of v should be considered available for this method to use. |
1183 |
*/ |
1184 |
DataTypes::ValueType* |
1185 |
DataLazy::resolveNP1OUT(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const |
1186 |
{ |
1187 |
// we assume that any collapsing has been done before we get here |
1188 |
// since we only have one argument we don't need to think about only |
1189 |
// processing single points. |
1190 |
if (m_readytype!='E') |
1191 |
{ |
1192 |
throw DataException("Programmer error - resolveNP1OUT should only be called on expanded Data."); |
1193 |
} |
1194 |
// since we can't write the result over the input, we need a result offset further along |
1195 |
size_t subroffset=roffset+m_samplesize; |
1196 |
LAZYDEBUG(cerr << "subroffset=" << subroffset << endl;) |
1197 |
const ValueType* vleft=m_left->resolveVectorSample(v,offset+m_left->m_samplesize,sampleNo,subroffset); |
1198 |
roffset=offset; |
1199 |
size_t loop=0; |
1200 |
size_t numsteps=(m_readytype=='E')?getNumDPPSample():1; |
1201 |
size_t step=getNoValues(); |
1202 |
switch (m_op) |
1203 |
{ |
1204 |
case SYM: |
1205 |
for (loop=0;loop<numsteps;++loop) |
1206 |
{ |
1207 |
DataMaths::symmetric(*vleft,m_left->getShape(),subroffset, v, getShape(), offset); |
1208 |
subroffset+=step; |
1209 |
offset+=step; |
1210 |
} |
1211 |
break; |
1212 |
case NSYM: |
1213 |
for (loop=0;loop<numsteps;++loop) |
1214 |
{ |
1215 |
DataMaths::nonsymmetric(*vleft,m_left->getShape(),subroffset, v, getShape(), offset); |
1216 |
subroffset+=step; |
1217 |
offset+=step; |
1218 |
} |
1219 |
break; |
1220 |
default: |
1221 |
throw DataException("Programmer error - resolveNP1OUT can not resolve operator "+opToString(m_op)+"."); |
1222 |
} |
1223 |
return &v; |
1224 |
} |
1225 |
|
1226 |
/* |
1227 |
\brief Compute the value of the expression (unary operation) for the given sample. |
1228 |
\return Vector which stores the value of the subexpression for the given sample. |
1229 |
\param v A vector to store intermediate results. |
1230 |
\param offset Index in v to begin storing results. |
1231 |
\param sampleNo Sample number to evaluate. |
1232 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
1233 |
|
1234 |
The return value will be an existing vector so do not deallocate it. |
1235 |
If the result is stored in v it should be stored at the offset given. |
1236 |
Everything from offset to the end of v should be considered available for this method to use. |
1237 |
*/ |
1238 |
DataTypes::ValueType* |
1239 |
DataLazy::resolveNP1OUT_P(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const |
1240 |
{ |
1241 |
// we assume that any collapsing has been done before we get here |
1242 |
// since we only have one argument we don't need to think about only |
1243 |
// processing single points. |
1244 |
if (m_readytype!='E') |
1245 |
{ |
1246 |
throw DataException("Programmer error - resolveNP1OUT_P should only be called on expanded Data."); |
1247 |
} |
1248 |
// since we can't write the result over the input, we need a result offset further along |
1249 |
size_t subroffset; |
1250 |
const ValueType* vleft=m_left->resolveVectorSample(v,offset+m_left->m_samplesize,sampleNo,subroffset); |
1251 |
LAZYDEBUG(cerr << "srcsamplesize=" << offset+m_left->m_samplesize << " beg=" << subroffset << endl;) |
1252 |
LAZYDEBUG(cerr << "Offset for 5800=" << getPointOffset(5800/getNumDPPSample(),5800%getNumDPPSample()) << endl;) |
1253 |
roffset=offset; |
1254 |
size_t loop=0; |
1255 |
size_t numsteps=(m_readytype=='E')?getNumDPPSample():1; |
1256 |
size_t outstep=getNoValues(); |
1257 |
size_t instep=m_left->getNoValues(); |
1258 |
LAZYDEBUG(cerr << "instep=" << instep << " outstep=" << outstep<< " numsteps=" << numsteps << endl;) |
1259 |
switch (m_op) |
1260 |
{ |
1261 |
case TRACE: |
1262 |
for (loop=0;loop<numsteps;++loop) |
1263 |
{ |
1264 |
size_t zz=sampleNo*getNumDPPSample()+loop; |
1265 |
if (zz==5800) |
1266 |
{ |
1267 |
LAZYDEBUG(cerr << "point=" << zz<< endl;) |
1268 |
LAZYDEBUG(cerr << "Input to trace=" << DataTypes::pointToString(*vleft,m_left->getShape(),subroffset,"") << endl;) |
1269 |
LAZYDEBUG(cerr << "Offset for point=" << getPointOffset(5800/getNumDPPSample(),5800%getNumDPPSample()) << " vs ";) |
1270 |
LAZYDEBUG(cerr << subroffset << endl;) |
1271 |
LAZYDEBUG(cerr << "output=" << offset << endl;) |
1272 |
} |
1273 |
DataMaths::trace(*vleft,m_left->getShape(),subroffset, v ,getShape(),offset,m_axis_offset); |
1274 |
if (zz==5800) |
1275 |
{ |
1276 |
LAZYDEBUG(cerr << "Result of trace=" << DataTypes::pointToString(v,getShape(),offset,"") << endl;) |
1277 |
} |
1278 |
subroffset+=instep; |
1279 |
offset+=outstep; |
1280 |
} |
1281 |
break; |
1282 |
case TRANS: |
1283 |
for (loop=0;loop<numsteps;++loop) |
1284 |
{ |
1285 |
DataMaths::transpose(*vleft,m_left->getShape(),subroffset, v,getShape(),offset,m_axis_offset); |
1286 |
subroffset+=instep; |
1287 |
offset+=outstep; |
1288 |
} |
1289 |
break; |
1290 |
default: |
1291 |
throw DataException("Programmer error - resolveNP1OUTP can not resolve operator "+opToString(m_op)+"."); |
1292 |
} |
1293 |
return &v; |
1294 |
} |
1295 |
|
1296 |
|
1297 |
/* |
1298 |
\brief Compute the value of the expression (unary operation with int params) for the given sample. |
1299 |
\return Vector which stores the value of the subexpression for the given sample. |
1300 |
\param v A vector to store intermediate results. |
1301 |
\param offset Index in v to begin storing results. |
1302 |
\param sampleNo Sample number to evaluate. |
1303 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
1304 |
|
1305 |
The return value will be an existing vector so do not deallocate it. |
1306 |
If the result is stored in v it should be stored at the offset given. |
1307 |
Everything from offset to the end of v should be considered available for this method to use. |
1308 |
*/ |
1309 |
DataTypes::ValueType* |
1310 |
DataLazy::resolveNP1OUT_2P(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const |
1311 |
{ |
1312 |
// we assume that any collapsing has been done before we get here |
1313 |
// since we only have one argument we don't need to think about only |
1314 |
// processing single points. |
1315 |
if (m_readytype!='E') |
1316 |
{ |
1317 |
throw DataException("Programmer error - resolveNP1OUT_2P should only be called on expanded Data."); |
1318 |
} |
1319 |
// since we can't write the result over the input, we need a result offset further along |
1320 |
size_t subroffset; |
1321 |
const ValueType* vleft=m_left->resolveVectorSample(v,offset+m_left->m_samplesize,sampleNo,subroffset); |
1322 |
LAZYDEBUG(cerr << "srcsamplesize=" << offset+m_left->m_samplesize << " beg=" << subroffset << endl;) |
1323 |
LAZYDEBUG(cerr << "Offset for 5800=" << getPointOffset(5800/getNumDPPSample(),5800%getNumDPPSample()) << endl;) |
1324 |
roffset=offset; |
1325 |
size_t loop=0; |
1326 |
size_t numsteps=(m_readytype=='E')?getNumDPPSample():1; |
1327 |
size_t outstep=getNoValues(); |
1328 |
size_t instep=m_left->getNoValues(); |
1329 |
LAZYDEBUG(cerr << "instep=" << instep << " outstep=" << outstep<< " numsteps=" << numsteps << endl;) |
1330 |
switch (m_op) |
1331 |
{ |
1332 |
case SWAP: |
1333 |
for (loop=0;loop<numsteps;++loop) |
1334 |
{ |
1335 |
DataMaths::swapaxes(*vleft,m_left->getShape(),subroffset, v,getShape(),offset,m_axis_offset, m_transpose); |
1336 |
subroffset+=instep; |
1337 |
offset+=outstep; |
1338 |
} |
1339 |
break; |
1340 |
default: |
1341 |
throw DataException("Programmer error - resolveNP1OUT2P can not resolve operator "+opToString(m_op)+"."); |
1342 |
} |
1343 |
return &v; |
1344 |
} |
1345 |
|
1346 |
|
1347 |
|
1348 |
#define PROC_OP(TYPE,X) \ |
1349 |
for (int j=0;j<onumsteps;++j)\ |
1350 |
{\ |
1351 |
for (int i=0;i<numsteps;++i,resultp+=resultStep) \ |
1352 |
{ \ |
1353 |
LAZYDEBUG(cout << "[left,right]=[" << lroffset << "," << rroffset << "]" << endl;)\ |
1354 |
LAZYDEBUG(cout << "{left,right}={" << (*left)[lroffset] << "," << (*right)[rroffset] << "}\n";)\ |
1355 |
tensor_binary_operation< TYPE >(chunksize, &((*left)[lroffset]), &((*right)[rroffset]), resultp, X); \ |
1356 |
LAZYDEBUG(cout << " result= " << resultp[0] << endl;) \ |
1357 |
lroffset+=leftstep; \ |
1358 |
rroffset+=rightstep; \ |
1359 |
}\ |
1360 |
lroffset+=oleftstep;\ |
1361 |
rroffset+=orightstep;\ |
1362 |
} |
1363 |
|
1364 |
/* |
1365 |
\brief Compute the value of the expression (binary operation) for the given sample. |
1366 |
\return Vector which stores the value of the subexpression for the given sample. |
1367 |
\param v A vector to store intermediate results. |
1368 |
\param offset Index in v to begin storing results. |
1369 |
\param sampleNo Sample number to evaluate. |
1370 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
1371 |
|
1372 |
The return value will be an existing vector so do not deallocate it. |
1373 |
If the result is stored in v it should be stored at the offset given. |
1374 |
Everything from offset to the end of v should be considered available for this method to use. |
1375 |
*/ |
1376 |
// This method assumes that any subexpressions which evaluate to Constant or Tagged Data |
1377 |
// have already been collapsed to IDENTITY. So we must have at least one expanded child. |
1378 |
// If both children are expanded, then we can process them in a single operation (we treat |
1379 |
// the whole sample as one big datapoint. |
1380 |
// If one of the children is not expanded, then we need to treat each point in the sample |
1381 |
// individually. |
1382 |
// There is an additional complication when scalar operations are considered. |
1383 |
// For example, 2+Vector. |
1384 |
// In this case each double within the point is treated individually |
1385 |
DataTypes::ValueType* |
1386 |
DataLazy::resolveBinary(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const |
1387 |
{ |
1388 |
LAZYDEBUG(cout << "Resolve binary: " << toString() << endl;) |
1389 |
|
1390 |
size_t lroffset=0, rroffset=0; // offsets in the left and right result vectors |
1391 |
// first work out which of the children are expanded |
1392 |
bool leftExp=(m_left->m_readytype=='E'); |
1393 |
bool rightExp=(m_right->m_readytype=='E'); |
1394 |
if (!leftExp && !rightExp) |
1395 |
{ |
1396 |
throw DataException("Programmer Error - please use collapse if neither argument has type 'E'."); |
1397 |
} |
1398 |
bool leftScalar=(m_left->getRank()==0); |
1399 |
bool rightScalar=(m_right->getRank()==0); |
1400 |
if ((m_left->getRank()!=m_right->getRank()) && (!leftScalar && !rightScalar)) |
1401 |
{ |
1402 |
throw DataException("resolveBinary - ranks of arguments must match unless one of them is scalar."); |
1403 |
} |
1404 |
size_t leftsize=m_left->getNoValues(); |
1405 |
size_t rightsize=m_right->getNoValues(); |
1406 |
size_t chunksize=1; // how many doubles will be processed in one go |
1407 |
int leftstep=0; // how far should the left offset advance after each step |
1408 |
int rightstep=0; |
1409 |
int numsteps=0; // total number of steps for the inner loop |
1410 |
int oleftstep=0; // the o variables refer to the outer loop |
1411 |
int orightstep=0; // The outer loop is only required in cases where there is an extended scalar |
1412 |
int onumsteps=1; |
1413 |
|
1414 |
bool LES=(leftExp && leftScalar); // Left is an expanded scalar |
1415 |
bool RES=(rightExp && rightScalar); |
1416 |
bool LS=(!leftExp && leftScalar); // left is a single scalar |
1417 |
bool RS=(!rightExp && rightScalar); |
1418 |
bool LN=(!leftExp && !leftScalar); // left is a single non-scalar |
1419 |
bool RN=(!rightExp && !rightScalar); |
1420 |
bool LEN=(leftExp && !leftScalar); // left is an expanded non-scalar |
1421 |
bool REN=(rightExp && !rightScalar); |
1422 |
|
1423 |
if ((LES && RES) || (LEN && REN)) // both are Expanded scalars or both are expanded non-scalars |
1424 |
{ |
1425 |
chunksize=m_left->getNumDPPSample()*leftsize; |
1426 |
leftstep=0; |
1427 |
rightstep=0; |
1428 |
numsteps=1; |
1429 |
} |
1430 |
else if (LES || RES) |
1431 |
{ |
1432 |
chunksize=1; |
1433 |
if (LES) // left is an expanded scalar |
1434 |
{ |
1435 |
if (RS) |
1436 |
{ |
1437 |
leftstep=1; |
1438 |
rightstep=0; |
1439 |
numsteps=m_left->getNumDPPSample(); |
1440 |
} |
1441 |
else // RN or REN |
1442 |
{ |
1443 |
leftstep=0; |
1444 |
oleftstep=1; |
1445 |
rightstep=1; |
1446 |
orightstep=(RN ? -(int)rightsize : 0); |
1447 |
numsteps=rightsize; |
1448 |
onumsteps=m_left->getNumDPPSample(); |
1449 |
} |
1450 |
} |
1451 |
else // right is an expanded scalar |
1452 |
{ |
1453 |
if (LS) |
1454 |
{ |
1455 |
rightstep=1; |
1456 |
leftstep=0; |
1457 |
numsteps=m_right->getNumDPPSample(); |
1458 |
} |
1459 |
else |
1460 |
{ |
1461 |
rightstep=0; |
1462 |
orightstep=1; |
1463 |
leftstep=1; |
1464 |
oleftstep=(LN ? -(int)leftsize : 0); |
1465 |
numsteps=leftsize; |
1466 |
onumsteps=m_right->getNumDPPSample(); |
1467 |
} |
1468 |
} |
1469 |
} |
1470 |
else // this leaves (LEN, RS), (LEN, RN) and their transposes |
1471 |
{ |
1472 |
if (LEN) // and Right will be a single value |
1473 |
{ |
1474 |
chunksize=rightsize; |
1475 |
leftstep=rightsize; |
1476 |
rightstep=0; |
1477 |
numsteps=m_left->getNumDPPSample(); |
1478 |
if (RS) |
1479 |
{ |
1480 |
numsteps*=leftsize; |
1481 |
} |
1482 |
} |
1483 |
else // REN |
1484 |
{ |
1485 |
chunksize=leftsize; |
1486 |
rightstep=leftsize; |
1487 |
leftstep=0; |
1488 |
numsteps=m_right->getNumDPPSample(); |
1489 |
if (LS) |
1490 |
{ |
1491 |
numsteps*=rightsize; |
1492 |
} |
1493 |
} |
1494 |
} |
1495 |
|
1496 |
int resultStep=max(leftstep,rightstep); // only one (at most) should be !=0 |
1497 |
// Get the values of sub-expressions |
1498 |
const ValueType* left=m_left->resolveVectorSample(v,offset+getMaxSampleSize(),sampleNo,lroffset); // see note on |
1499 |
// calcBufss for why we can't put offset as the 2nd param above |
1500 |
const ValueType* right=m_right->resolveVectorSample(v,offset+2*getMaxSampleSize(),sampleNo,rroffset); // Note |
1501 |
// the right child starts further along. |
1502 |
LAZYDEBUG(cout << "Post sub calls in " << toString() << endl;) |
1503 |
LAZYDEBUG(cout << "shapes=" << DataTypes::shapeToString(m_left->getShape()) << "," << DataTypes::shapeToString(m_right->getShape()) << endl;) |
1504 |
LAZYDEBUG(cout << "chunksize=" << chunksize << endl << "leftstep=" << leftstep << " rightstep=" << rightstep;) |
1505 |
LAZYDEBUG(cout << " numsteps=" << numsteps << endl << "oleftstep=" << oleftstep << " orightstep=" << orightstep;) |
1506 |
LAZYDEBUG(cout << "onumsteps=" << onumsteps << endl;) |
1507 |
LAZYDEBUG(cout << " DPPS=" << m_left->getNumDPPSample() << "," <<m_right->getNumDPPSample() << endl;) |
1508 |
LAZYDEBUG(cout << "" << LS << RS << LN << RN << LES << RES <<LEN << REN << endl;) |
1509 |
|
1510 |
|
1511 |
double* resultp=&(v[offset]); // results are stored at the vector offset we recieved |
1512 |
switch(m_op) |
1513 |
{ |
1514 |
case ADD: |
1515 |
PROC_OP(NO_ARG,plus<double>()); |
1516 |
break; |
1517 |
case SUB: |
1518 |
PROC_OP(NO_ARG,minus<double>()); |
1519 |
break; |
1520 |
case MUL: |
1521 |
PROC_OP(NO_ARG,multiplies<double>()); |
1522 |
break; |
1523 |
case DIV: |
1524 |
PROC_OP(NO_ARG,divides<double>()); |
1525 |
break; |
1526 |
case POW: |
1527 |
PROC_OP(double (double,double),::pow); |
1528 |
break; |
1529 |
default: |
1530 |
throw DataException("Programmer error - resolveBinary can not resolve operator "+opToString(m_op)+"."); |
1531 |
} |
1532 |
roffset=offset; |
1533 |
return &v; |
1534 |
} |
1535 |
|
1536 |
|
1537 |
|
1538 |
/* |
1539 |
\brief Compute the value of the expression (tensor product) for the given sample. |
1540 |
\return Vector which stores the value of the subexpression for the given sample. |
1541 |
\param v A vector to store intermediate results. |
1542 |
\param offset Index in v to begin storing results. |
1543 |
\param sampleNo Sample number to evaluate. |
1544 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
1545 |
|
1546 |
The return value will be an existing vector so do not deallocate it. |
1547 |
If the result is stored in v it should be stored at the offset given. |
1548 |
Everything from offset to the end of v should be considered available for this method to use. |
1549 |
*/ |
1550 |
// This method assumes that any subexpressions which evaluate to Constant or Tagged Data |
1551 |
// have already been collapsed to IDENTITY. So we must have at least one expanded child. |
1552 |
// unlike the other resolve helpers, we must treat these datapoints separately. |
1553 |
DataTypes::ValueType* |
1554 |
DataLazy::resolveTProd(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const |
1555 |
{ |
1556 |
LAZYDEBUG(cout << "Resolve TensorProduct: " << toString() << " to offset " << offset<< endl;) |
1557 |
|
1558 |
size_t lroffset=0, rroffset=0; // offsets in the left and right result vectors |
1559 |
// first work out which of the children are expanded |
1560 |
bool leftExp=(m_left->m_readytype=='E'); |
1561 |
bool rightExp=(m_right->m_readytype=='E'); |
1562 |
int steps=getNumDPPSample(); |
1563 |
/* int leftStep=((leftExp && !rightExp)? m_right->getNoValues() : 0); |
1564 |
int rightStep=((rightExp && !leftExp)? m_left->getNoValues() : 0);*/ |
1565 |
int leftStep=(leftExp? m_left->getNoValues() : 0); // do not have scalars as input to this method |
1566 |
int rightStep=(rightExp?m_right->getNoValues() : 0); |
1567 |
|
1568 |
int resultStep=getNoValues(); |
1569 |
// Get the values of sub-expressions (leave a gap of one sample for the result). |
1570 |
int gap=offset+m_samplesize; |
1571 |
|
1572 |
LAZYDEBUG(cout << "Query left with offset=" << gap << endl;) |
1573 |
|
1574 |
const ValueType* left=m_left->resolveVectorSample(v,gap,sampleNo,lroffset); |
1575 |
gap+=m_left->getMaxSampleSize(); |
1576 |
|
1577 |
|
1578 |
LAZYDEBUG(cout << "Query right with offset=" << gap << endl;) |
1579 |
|
1580 |
|
1581 |
const ValueType* right=m_right->resolveVectorSample(v,gap,sampleNo,rroffset); |
1582 |
|
1583 |
LAZYDEBUG(cerr << "[Left shape]=" << DataTypes::shapeToString(m_left->getShape()) << "\n[Right shape]=" << DataTypes::shapeToString(m_right->getShape()) << " result=" <<DataTypes::shapeToString(getShape()) << endl; |
1584 |
cout << getNoValues() << endl;) |
1585 |
LAZYDEBUG(cerr << "Result of left=";) |
1586 |
LAZYDEBUG(cerr << "[" << lroffset << " .. " << lroffset+m_left->getNoValues() << "]" << endl; |
1587 |
|
1588 |
for (int i=lroffset, limit=lroffset+(leftExp?m_left->getNoValues()*m_left->getNumDPPSample():m_left->getNoValues());i<limit;++i) |
1589 |
{ |
1590 |
cout << "[" << setw(2) << i-lroffset << "] " << setw(10) << (*left)[i] << " "; |
1591 |
if (i%4==0) cout << endl; |
1592 |
}) |
1593 |
LAZYDEBUG(cerr << "\nResult of right=" << endl;) |
1594 |
LAZYDEBUG( |
1595 |
for (int i=rroffset, limit=rroffset+(rightExp?m_right->getNoValues()*m_right->getNumDPPSample():m_right->getNoValues());i<limit;++i) |
1596 |
{ |
1597 |
cerr << "[" << setw(2)<< i-rroffset << "] " << setw(10) << (*right)[i] << " "; |
1598 |
if (i%4==0) cout << endl; |
1599 |
} |
1600 |
cerr << endl; |
1601 |
) |
1602 |
LAZYDEBUG(cerr << "Post sub calls: " << toString() << endl;) |
1603 |
LAZYDEBUG(cout << "LeftExp=" << leftExp << " rightExp=" << rightExp << endl;) |
1604 |
LAZYDEBUG(cout << "LeftR=" << m_left->getRank() << " rightExp=" << m_right->getRank() << endl;) |
1605 |
LAZYDEBUG(cout << "LeftSize=" << m_left->getNoValues() << " RightSize=" << m_right->getNoValues() << endl;) |
1606 |
LAZYDEBUG(cout << "m_samplesize=" << m_samplesize << endl;) |
1607 |
LAZYDEBUG(cout << "outputshape=" << DataTypes::shapeToString(getShape()) << endl;) |
1608 |
LAZYDEBUG(cout << "DPPS=" << m_right->getNumDPPSample() <<"."<<endl;) |
1609 |
|
1610 |
double* resultp=&(v[offset]); // results are stored at the vector offset we recieved |
1611 |
switch(m_op) |
1612 |
{ |
1613 |
case PROD: |
1614 |
for (int i=0;i<steps;++i,resultp+=resultStep) |
1615 |
{ |
1616 |
|
1617 |
LAZYDEBUG(cout << "lroffset=" << lroffset << "rroffset=" << rroffset << endl;) |
1618 |
LAZYDEBUG(cout << "l*=" << left << " r*=" << right << endl;) |
1619 |
LAZYDEBUG(cout << "m_SL=" << m_SL << " m_SM=" << m_SM << " m_SR=" << m_SR << endl;) |
1620 |
|
1621 |
const double *ptr_0 = &((*left)[lroffset]); |
1622 |
const double *ptr_1 = &((*right)[rroffset]); |
1623 |
|
1624 |
LAZYDEBUG(cout << DataTypes::pointToString(*left, m_left->getShape(),lroffset,"LEFT") << endl;) |
1625 |
LAZYDEBUG(cout << DataTypes::pointToString(*right,m_right->getShape(),rroffset, "RIGHT") << endl;) |
1626 |
|
1627 |
matrix_matrix_product(m_SL, m_SM, m_SR, ptr_0, ptr_1, resultp, m_transpose); |
1628 |
|
1629 |
LAZYDEBUG(cout << "Results--\n"; |
1630 |
{ |
1631 |
DataVector dv(getNoValues()); |
1632 |
for (int z=0;z<getNoValues();++z) |
1633 |
{ |
1634 |
cout << "[" << setw(2) << z<< "] " << setw(10) << resultp[z] << " "; |
1635 |
if (z%4==0) cout << endl; |
1636 |
dv[z]=resultp[z]; |
1637 |
} |
1638 |
cout << endl << DataTypes::pointToString(dv,getShape(),0,"RESLT"); |
1639 |
cout << "\nWritten to: " << resultp << " resultStep=" << resultStep << endl; |
1640 |
} |
1641 |
) |
1642 |
lroffset+=leftStep; |
1643 |
rroffset+=rightStep; |
1644 |
} |
1645 |
break; |
1646 |
default: |
1647 |
throw DataException("Programmer error - resolveTProduct can not resolve operator "+opToString(m_op)+"."); |
1648 |
} |
1649 |
roffset=offset; |
1650 |
return &v; |
1651 |
} |
1652 |
|
1653 |
|
1654 |
#ifdef LAZY_NODE_STORAGE |
1655 |
|
1656 |
// The result will be stored in m_samples |
1657 |
// The return value is a pointer to the DataVector, offset is the offset within the return value |
1658 |
const DataTypes::ValueType* |
1659 |
DataLazy::resolveNodeSample(int tid, int sampleNo, size_t& roffset) |
1660 |
{ |
1661 |
LAZYDEBUG(cout << "Resolve sample " << toString() << endl;) |
1662 |
// collapse so we have a 'E' node or an IDENTITY for some other type |
1663 |
if (m_readytype!='E' && m_op!=IDENTITY) |
1664 |
{ |
1665 |
collapse(); |
1666 |
} |
1667 |
if (m_op==IDENTITY) |
1668 |
{ |
1669 |
const ValueType& vec=m_id->getVectorRO(); |
1670 |
// if (m_readytype=='C') |
1671 |
// { |
1672 |
// roffset=0; // all samples read from the same position |
1673 |
// return &(m_samples); |
1674 |
// } |
1675 |
roffset=m_id->getPointOffset(sampleNo, 0); |
1676 |
return &(vec); |
1677 |
} |
1678 |
if (m_readytype!='E') |
1679 |
{ |
1680 |
throw DataException("Programmer Error - Collapse did not produce an expanded node."); |
1681 |
} |
1682 |
if (m_sampleids[tid]==sampleNo) |
1683 |
{ |
1684 |
roffset=tid*m_samplesize; |
1685 |
return &(m_samples); // sample is already resolved |
1686 |
} |
1687 |
m_sampleids[tid]=sampleNo; |
1688 |
switch (getOpgroup(m_op)) |
1689 |
{ |
1690 |
case G_UNARY: |
1691 |
case G_UNARY_P: return resolveNodeUnary(tid, sampleNo, roffset); |
1692 |
case G_BINARY: return resolveNodeBinary(tid, sampleNo, roffset); |
1693 |
case G_NP1OUT: return resolveNodeNP1OUT(tid, sampleNo, roffset); |
1694 |
case G_NP1OUT_P: return resolveNodeNP1OUT_P(tid, sampleNo, roffset); |
1695 |
case G_TENSORPROD: return resolveNodeTProd(tid, sampleNo, roffset); |
1696 |
case G_NP1OUT_2P: return resolveNodeNP1OUT_2P(tid, sampleNo, roffset); |
1697 |
case G_REDUCTION: return resolveNodeReduction(tid, sampleNo, roffset); |
1698 |
default: |
1699 |
throw DataException("Programmer Error - resolveSample does not know how to process "+opToString(m_op)+"."); |
1700 |
} |
1701 |
} |
1702 |
|
1703 |
const DataTypes::ValueType* |
1704 |
DataLazy::resolveNodeUnary(int tid, int sampleNo, size_t& roffset) |
1705 |
{ |
1706 |
// we assume that any collapsing has been done before we get here |
1707 |
// since we only have one argument we don't need to think about only |
1708 |
// processing single points. |
1709 |
// we will also know we won't get identity nodes |
1710 |
if (m_readytype!='E') |
1711 |
{ |
1712 |
throw DataException("Programmer error - resolveUnary should only be called on expanded Data."); |
1713 |
} |
1714 |
if (m_op==IDENTITY) |
1715 |
{ |
1716 |
throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes."); |
1717 |
} |
1718 |
const DataTypes::ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, roffset); |
1719 |
const double* left=&((*leftres)[roffset]); |
1720 |
roffset=m_samplesize*tid; |
1721 |
double* result=&(m_samples[roffset]); |
1722 |
switch (m_op) |
1723 |
{ |
1724 |
case SIN: |
1725 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sin); |
1726 |
break; |
1727 |
case COS: |
1728 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cos); |
1729 |
break; |
1730 |
case TAN: |
1731 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tan); |
1732 |
break; |
1733 |
case ASIN: |
1734 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::asin); |
1735 |
break; |
1736 |
case ACOS: |
1737 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::acos); |
1738 |
break; |
1739 |
case ATAN: |
1740 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::atan); |
1741 |
break; |
1742 |
case SINH: |
1743 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sinh); |
1744 |
break; |
1745 |
case COSH: |
1746 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cosh); |
1747 |
break; |
1748 |
case TANH: |
1749 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tanh); |
1750 |
break; |
1751 |
case ERF: |
1752 |
#if defined (_WIN32) && !defined(__INTEL_COMPILER) |
1753 |
throw DataException("Error - Data:: erf function is not supported on _WIN32 platforms."); |
1754 |
#else |
1755 |
tensor_unary_operation(m_samplesize, left, result, ::erf); |
1756 |
break; |
1757 |
#endif |
1758 |
case ASINH: |
1759 |
#if defined (_WIN32) && !defined(__INTEL_COMPILER) |
1760 |
tensor_unary_operation(m_samplesize, left, result, escript::asinh_substitute); |
1761 |
#else |
1762 |
tensor_unary_operation(m_samplesize, left, result, ::asinh); |
1763 |
#endif |
1764 |
break; |
1765 |
case ACOSH: |
1766 |
#if defined (_WIN32) && !defined(__INTEL_COMPILER) |
1767 |
tensor_unary_operation(m_samplesize, left, result, escript::acosh_substitute); |
1768 |
#else |
1769 |
tensor_unary_operation(m_samplesize, left, result, ::acosh); |
1770 |
#endif |
1771 |
break; |
1772 |
case ATANH: |
1773 |
#if defined (_WIN32) && !defined(__INTEL_COMPILER) |
1774 |
tensor_unary_operation(m_samplesize, left, result, escript::atanh_substitute); |
1775 |
#else |
1776 |
tensor_unary_operation(m_samplesize, left, result, ::atanh); |
1777 |
#endif |
1778 |
break; |
1779 |
case LOG10: |
1780 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log10); |
1781 |
break; |
1782 |
case LOG: |
1783 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log); |
1784 |
break; |
1785 |
case SIGN: |
1786 |
tensor_unary_operation(m_samplesize, left, result, escript::fsign); |
1787 |
break; |
1788 |
case ABS: |
1789 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::fabs); |
1790 |
break; |
1791 |
case NEG: |
1792 |
tensor_unary_operation(m_samplesize, left, result, negate<double>()); |
1793 |
break; |
1794 |
case POS: |
1795 |
// it doesn't mean anything for delayed. |
1796 |
// it will just trigger a deep copy of the lazy object |
1797 |
throw DataException("Programmer error - POS not supported for lazy data."); |
1798 |
break; |
1799 |
case EXP: |
1800 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::exp); |
1801 |
break; |
1802 |
case SQRT: |
1803 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sqrt); |
1804 |
break; |
1805 |
case RECIP: |
1806 |
tensor_unary_operation(m_samplesize, left, result, bind1st(divides<double>(),1.)); |
1807 |
break; |
1808 |
case GZ: |
1809 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(greater<double>(),0.0)); |
1810 |
break; |
1811 |
case LZ: |
1812 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(less<double>(),0.0)); |
1813 |
break; |
1814 |
case GEZ: |
1815 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(greater_equal<double>(),0.0)); |
1816 |
break; |
1817 |
case LEZ: |
1818 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(less_equal<double>(),0.0)); |
1819 |
break; |
1820 |
// There are actually G_UNARY_P but I don't see a compelling reason to treat them differently |
1821 |
case NEZ: |
1822 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(AbsGT(),m_tol)); |
1823 |
break; |
1824 |
case EZ: |
1825 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(AbsLTE(),m_tol)); |
1826 |
break; |
1827 |
|
1828 |
default: |
1829 |
throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+"."); |
1830 |
} |
1831 |
return &(m_samples); |
1832 |
} |
1833 |
|
1834 |
|
1835 |
const DataTypes::ValueType* |
1836 |
DataLazy::resolveNodeReduction(int tid, int sampleNo, size_t& roffset) |
1837 |
{ |
1838 |
// we assume that any collapsing has been done before we get here |
1839 |
// since we only have one argument we don't need to think about only |
1840 |
// processing single points. |
1841 |
// we will also know we won't get identity nodes |
1842 |
if (m_readytype!='E') |
1843 |
{ |
1844 |
throw DataException("Programmer error - resolveUnary should only be called on expanded Data."); |
1845 |
} |
1846 |
if (m_op==IDENTITY) |
1847 |
{ |
1848 |
throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes."); |
1849 |
} |
1850 |
size_t loffset=0; |
1851 |
const DataTypes::ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, loffset); |
1852 |
|
1853 |
roffset=m_samplesize*tid; |
1854 |
unsigned int ndpps=getNumDPPSample(); |
1855 |
unsigned int psize=DataTypes::noValues(getShape()); |
1856 |
double* result=&(m_samples[roffset]); |
1857 |
switch (m_op) |
1858 |
{ |
1859 |
case MINVAL: |
1860 |
{ |
1861 |
for (unsigned int z=0;z<ndpps;++z) |
1862 |
{ |
1863 |
FMin op; |
1864 |
*result=DataMaths::reductionOp(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max()); |
1865 |
loffset+=psize; |
1866 |
result++; |
1867 |
} |
1868 |
} |
1869 |
break; |
1870 |
case MAXVAL: |
1871 |
{ |
1872 |
for (unsigned int z=0;z<ndpps;++z) |
1873 |
{ |
1874 |
FMax op; |
1875 |
*result=DataMaths::reductionOp(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max()*-1); |
1876 |
loffset+=psize; |
1877 |
result++; |
1878 |
} |
1879 |
} |
1880 |
break; |
1881 |
default: |
1882 |
throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+"."); |
1883 |
} |
1884 |
return &(m_samples); |
1885 |
} |
1886 |
|
1887 |
const DataTypes::ValueType* |
1888 |
DataLazy::resolveNodeNP1OUT(int tid, int sampleNo, size_t& roffset) |
1889 |
{ |
1890 |
// we assume that any collapsing has been done before we get here |
1891 |
// since we only have one argument we don't need to think about only |
1892 |
// processing single points. |
1893 |
if (m_readytype!='E') |
1894 |
{ |
1895 |
throw DataException("Programmer error - resolveNodeNP1OUT should only be called on expanded Data."); |
1896 |
} |
1897 |
if (m_op==IDENTITY) |
1898 |
{ |
1899 |
throw DataException("Programmer error - resolveNodeNP1OUT should not be called on identity nodes."); |
1900 |
} |
1901 |
size_t subroffset; |
1902 |
const ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset); |
1903 |
roffset=m_samplesize*tid; |
1904 |
size_t loop=0; |
1905 |
size_t numsteps=(m_readytype=='E')?getNumDPPSample():1; |
1906 |
size_t step=getNoValues(); |
1907 |
size_t offset=roffset; |
1908 |
switch (m_op) |
1909 |
{ |
1910 |
case SYM: |
1911 |
for (loop=0;loop<numsteps;++loop) |
1912 |
{ |
1913 |
DataMaths::symmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset); |
1914 |
subroffset+=step; |
1915 |
offset+=step; |
1916 |
} |
1917 |
break; |
1918 |
case NSYM: |
1919 |
for (loop=0;loop<numsteps;++loop) |
1920 |
{ |
1921 |
DataMaths::nonsymmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset); |
1922 |
subroffset+=step; |
1923 |
offset+=step; |
1924 |
} |
1925 |
break; |
1926 |
default: |
1927 |
throw DataException("Programmer error - resolveNP1OUT can not resolve operator "+opToString(m_op)+"."); |
1928 |
} |
1929 |
return &m_samples; |
1930 |
} |
1931 |
|
1932 |
const DataTypes::ValueType* |
1933 |
DataLazy::resolveNodeNP1OUT_P(int tid, int sampleNo, size_t& roffset) |
1934 |
{ |
1935 |
// we assume that any collapsing has been done before we get here |
1936 |
// since we only have one argument we don't need to think about only |
1937 |
// processing single points. |
1938 |
if (m_readytype!='E') |
1939 |
{ |
1940 |
throw DataException("Programmer error - resolveNodeNP1OUT_P should only be called on expanded Data."); |
1941 |
} |
1942 |
if (m_op==IDENTITY) |
1943 |
{ |
1944 |
throw DataException("Programmer error - resolveNodeNP1OUT_P should not be called on identity nodes."); |
1945 |
} |
1946 |
size_t subroffset; |
1947 |
size_t offset; |
1948 |
const ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset); |
1949 |
roffset=m_samplesize*tid; |
1950 |
offset=roffset; |
1951 |
size_t loop=0; |
1952 |
size_t numsteps=(m_readytype=='E')?getNumDPPSample():1; |
1953 |
size_t outstep=getNoValues(); |
1954 |
size_t instep=m_left->getNoValues(); |
1955 |
switch (m_op) |
1956 |
{ |
1957 |
case TRACE: |
1958 |
for (loop=0;loop<numsteps;++loop) |
1959 |
{ |
1960 |
DataMaths::trace(*leftres,m_left->getShape(),subroffset, m_samples ,getShape(),offset,m_axis_offset); |
1961 |
subroffset+=instep; |
1962 |
offset+=outstep; |
1963 |
} |
1964 |
break; |
1965 |
case TRANS: |
1966 |
for (loop=0;loop<numsteps;++loop) |
1967 |
{ |
1968 |
DataMaths::transpose(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset,m_axis_offset); |
1969 |
subroffset+=instep; |
1970 |
offset+=outstep; |
1971 |
} |
1972 |
break; |
1973 |
default: |
1974 |
throw DataException("Programmer error - resolveNP1OUTP can not resolve operator "+opToString(m_op)+"."); |
1975 |
} |
1976 |
return &m_samples; |
1977 |
} |
1978 |
|
1979 |
|
1980 |
const DataTypes::ValueType* |
1981 |
DataLazy::resolveNodeNP1OUT_2P(int tid, int sampleNo, size_t& roffset) |
1982 |
{ |
1983 |
if (m_readytype!='E') |
1984 |
{ |
1985 |
throw DataException("Programmer error - resolveNodeNP1OUT_2P should only be called on expanded Data."); |
1986 |
} |
1987 |
if (m_op==IDENTITY) |
1988 |
{ |
1989 |
throw DataException("Programmer error - resolveNodeNP1OUT_2P should not be called on identity nodes."); |
1990 |
} |
1991 |
size_t subroffset; |
1992 |
size_t offset; |
1993 |
const ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset); |
1994 |
roffset=m_samplesize*tid; |
1995 |
offset=roffset; |
1996 |
size_t loop=0; |
1997 |
size_t numsteps=(m_readytype=='E')?getNumDPPSample():1; |
1998 |
size_t outstep=getNoValues(); |
1999 |
size_t instep=m_left->getNoValues(); |
2000 |
switch (m_op) |
2001 |
{ |
2002 |
case SWAP: |
2003 |
for (loop=0;loop<numsteps;++loop) |
2004 |
{ |
2005 |
DataMaths::swapaxes(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset, m_axis_offset, m_transpose); |
2006 |
subroffset+=instep; |
2007 |
offset+=outstep; |
2008 |
} |
2009 |
break; |
2010 |
default: |
2011 |
throw DataException("Programmer error - resolveNodeNP1OUT2P can not resolve operator "+opToString(m_op)+"."); |
2012 |
} |
2013 |
return &m_samples; |
2014 |
} |
2015 |
|
2016 |
|
2017 |
|
2018 |
// This method assumes that any subexpressions which evaluate to Constant or Tagged Data |
2019 |
// have already been collapsed to IDENTITY. So we must have at least one expanded child. |
2020 |
// If both children are expanded, then we can process them in a single operation (we treat |
2021 |
// the whole sample as one big datapoint. |
2022 |
// If one of the children is not expanded, then we need to treat each point in the sample |
2023 |
// individually. |
2024 |
// There is an additional complication when scalar operations are considered. |
2025 |
// For example, 2+Vector. |
2026 |
// In this case each double within the point is treated individually |
2027 |
const DataTypes::ValueType* |
2028 |
DataLazy::resolveNodeBinary(int tid, int sampleNo, size_t& roffset) |
2029 |
{ |
2030 |
LAZYDEBUG(cout << "Resolve binary: " << toString() << endl;) |
2031 |
|
2032 |
size_t lroffset=0, rroffset=0; // offsets in the left and right result vectors |
2033 |
// first work out which of the children are expanded |
2034 |
bool leftExp=(m_left->m_readytype=='E'); |
2035 |
bool rightExp=(m_right->m_readytype=='E'); |
2036 |
if (!leftExp && !rightExp) |
2037 |
{ |
2038 |
throw DataException("Programmer Error - please use collapse if neither argument has type 'E'."); |
2039 |
} |
2040 |
bool leftScalar=(m_left->getRank()==0); |
2041 |
bool rightScalar=(m_right->getRank()==0); |
2042 |
if ((m_left->getRank()!=m_right->getRank()) && (!leftScalar && !rightScalar)) |
2043 |
{ |
2044 |
throw DataException("resolveBinary - ranks of arguments must match unless one of them is scalar."); |
2045 |
} |
2046 |
size_t leftsize=m_left->getNoValues(); |
2047 |
size_t rightsize=m_right->getNoValues(); |
2048 |
size_t chunksize=1; // how many doubles will be processed in one go |
2049 |
int leftstep=0; // how far should the left offset advance after each step |
2050 |
int rightstep=0; |
2051 |
int numsteps=0; // total number of steps for the inner loop |
2052 |
int oleftstep=0; // the o variables refer to the outer loop |
2053 |
int orightstep=0; // The outer loop is only required in cases where there is an extended scalar |
2054 |
int onumsteps=1; |
2055 |
|
2056 |
bool LES=(leftExp && leftScalar); // Left is an expanded scalar |
2057 |
bool RES=(rightExp && rightScalar); |
2058 |
bool LS=(!leftExp && leftScalar); // left is a single scalar |
2059 |
bool RS=(!rightExp && rightScalar); |
2060 |
bool LN=(!leftExp && !leftScalar); // left is a single non-scalar |
2061 |
bool RN=(!rightExp && !rightScalar); |
2062 |
bool LEN=(leftExp && !leftScalar); // left is an expanded non-scalar |
2063 |
bool REN=(rightExp && !rightScalar); |
2064 |
|
2065 |
if ((LES && RES) || (LEN && REN)) // both are Expanded scalars or both are expanded non-scalars |
2066 |
{ |
2067 |
chunksize=m_left->getNumDPPSample()*leftsize; |
2068 |
leftstep=0; |
2069 |
rightstep=0; |
2070 |
numsteps=1; |
2071 |
} |
2072 |
else if (LES || RES) |
2073 |
{ |
2074 |
chunksize=1; |
2075 |
if (LES) // left is an expanded scalar |
2076 |
{ |
2077 |
if (RS) |
2078 |
{ |
2079 |
leftstep=1; |
2080 |
rightstep=0; |
2081 |
numsteps=m_left->getNumDPPSample(); |
2082 |
} |
2083 |
else // RN or REN |
2084 |
{ |
2085 |
leftstep=0; |
2086 |
oleftstep=1; |
2087 |
rightstep=1; |
2088 |
orightstep=(RN ? -(int)rightsize : 0); |
2089 |
numsteps=rightsize; |
2090 |
onumsteps=m_left->getNumDPPSample(); |
2091 |
} |
2092 |
} |
2093 |
else // right is an expanded scalar |
2094 |
{ |
2095 |
if (LS) |
2096 |
{ |
2097 |
rightstep=1; |
2098 |
leftstep=0; |
2099 |
numsteps=m_right->getNumDPPSample(); |
2100 |
} |
2101 |
else |
2102 |
{ |
2103 |
rightstep=0; |
2104 |
orightstep=1; |
2105 |
leftstep=1; |
2106 |
oleftstep=(LN ? -(int)leftsize : 0); |
2107 |
numsteps=leftsize; |
2108 |
onumsteps=m_right->getNumDPPSample(); |
2109 |
} |
2110 |
} |
2111 |
} |
2112 |
else // this leaves (LEN, RS), (LEN, RN) and their transposes |
2113 |
{ |
2114 |
if (LEN) // and Right will be a single value |
2115 |
{ |
2116 |
chunksize=rightsize; |
2117 |
leftstep=rightsize; |
2118 |
rightstep=0; |
2119 |
numsteps=m_left->getNumDPPSample(); |
2120 |
if (RS) |
2121 |
{ |
2122 |
numsteps*=leftsize; |
2123 |
} |
2124 |
} |
2125 |
else // REN |
2126 |
{ |
2127 |
chunksize=leftsize; |
2128 |
rightstep=leftsize; |
2129 |
leftstep=0; |
2130 |
numsteps=m_right->getNumDPPSample(); |
2131 |
if (LS) |
2132 |
{ |
2133 |
numsteps*=rightsize; |
2134 |
} |
2135 |
} |
2136 |
} |
2137 |
|
2138 |
int resultStep=max(leftstep,rightstep); // only one (at most) should be !=0 |
2139 |
// Get the values of sub-expressions |
2140 |
const ValueType* left=m_left->resolveNodeSample(tid,sampleNo,lroffset); |
2141 |
const ValueType* right=m_right->resolveNodeSample(tid,sampleNo,rroffset); |
2142 |
LAZYDEBUG(cout << "Post sub calls in " << toString() << endl;) |
2143 |
LAZYDEBUG(cout << "shapes=" << DataTypes::shapeToString(m_left->getShape()) << "," << DataTypes::shapeToString(m_right->getShape()) << endl;) |
2144 |
LAZYDEBUG(cout << "chunksize=" << chunksize << endl << "leftstep=" << leftstep << " rightstep=" << rightstep;) |
2145 |
LAZYDEBUG(cout << " numsteps=" << numsteps << endl << "oleftstep=" << oleftstep << " orightstep=" << orightstep;) |
2146 |
LAZYDEBUG(cout << "onumsteps=" << onumsteps << endl;) |
2147 |
LAZYDEBUG(cout << " DPPS=" << m_left->getNumDPPSample() << "," <<m_right->getNumDPPSample() << endl;) |
2148 |
LAZYDEBUG(cout << "" << LS << RS << LN << RN << LES << RES <<LEN << REN << endl;) |
2149 |
|
2150 |
LAZYDEBUG(cout << "Left res["<< lroffset<< "]=" << (*left)[lroffset] << endl;) |
2151 |
LAZYDEBUG(cout << "Right res["<< rroffset<< "]=" << (*right)[rroffset] << endl;) |
2152 |
|
2153 |
|
2154 |
roffset=m_samplesize*tid; |
2155 |
double* resultp=&(m_samples[roffset]); // results are stored at the vector offset we recieved |
2156 |
switch(m_op) |
2157 |
{ |
2158 |
case ADD: |
2159 |
PROC_OP(NO_ARG,plus<double>()); |
2160 |
break; |
2161 |
case SUB: |
2162 |
PROC_OP(NO_ARG,minus<double>()); |
2163 |
break; |
2164 |
case MUL: |
2165 |
PROC_OP(NO_ARG,multiplies<double>()); |
2166 |
break; |
2167 |
case DIV: |
2168 |
PROC_OP(NO_ARG,divides<double>()); |
2169 |
break; |
2170 |
case POW: |
2171 |
PROC_OP(double (double,double),::pow); |
2172 |
break; |
2173 |
default: |
2174 |
throw DataException("Programmer error - resolveBinary can not resolve operator "+opToString(m_op)+"."); |
2175 |
} |
2176 |
LAZYDEBUG(cout << "Result res[" << roffset<< "]" << m_samples[roffset] << endl;) |
2177 |
return &m_samples; |
2178 |
} |
2179 |
|
2180 |
|
2181 |
// This method assumes that any subexpressions which evaluate to Constant or Tagged Data |
2182 |
// have already been collapsed to IDENTITY. So we must have at least one expanded child. |
2183 |
// unlike the other resolve helpers, we must treat these datapoints separately. |
2184 |
const DataTypes::ValueType* |
2185 |
DataLazy::resolveNodeTProd(int tid, int sampleNo, size_t& roffset) |
2186 |
{ |
2187 |
LAZYDEBUG(cout << "Resolve TensorProduct: " << toString() << endl;) |
2188 |
|
2189 |
size_t lroffset=0, rroffset=0; // offsets in the left and right result vectors |
2190 |
// first work out which of the children are expanded |
2191 |
bool leftExp=(m_left->m_readytype=='E'); |
2192 |
bool rightExp=(m_right->m_readytype=='E'); |
2193 |
int steps=getNumDPPSample(); |
2194 |
int leftStep=(leftExp? m_left->getNoValues() : 0); // do not have scalars as input to this method |
2195 |
int rightStep=(rightExp?m_right->getNoValues() : 0); |
2196 |
|
2197 |
int resultStep=getNoValues(); |
2198 |
roffset=m_samplesize*tid; |
2199 |
size_t offset=roffset; |
2200 |
|
2201 |
const ValueType* left=m_left->resolveNodeSample(tid, sampleNo, lroffset); |
2202 |
|
2203 |
const ValueType* right=m_right->resolveNodeSample(tid, sampleNo, rroffset); |
2204 |
|
2205 |
LAZYDEBUG(cerr << "[Left shape]=" << DataTypes::shapeToString(m_left->getShape()) << "\n[Right shape]=" << DataTypes::shapeToString(m_right->getShape()) << " result=" <<DataTypes::shapeToString(getShape()) << endl; |
2206 |
cout << getNoValues() << endl;) |
2207 |
|
2208 |
|
2209 |
LAZYDEBUG(cerr << "Post sub calls: " << toString() << endl;) |
2210 |
LAZYDEBUG(cout << "LeftExp=" << leftExp << " rightExp=" << rightExp << endl;) |
2211 |
LAZYDEBUG(cout << "LeftR=" << m_left->getRank() << " rightExp=" << m_right->getRank() << endl;) |
2212 |
LAZYDEBUG(cout << "LeftSize=" << m_left->getNoValues() << " RightSize=" << m_right->getNoValues() << endl;) |
2213 |
LAZYDEBUG(cout << "m_samplesize=" << m_samplesize << endl;) |
2214 |
LAZYDEBUG(cout << "outputshape=" << DataTypes::shapeToString(getShape()) << endl;) |
2215 |
LAZYDEBUG(cout << "DPPS=" << m_right->getNumDPPSample() <<"."<<endl;) |
2216 |
|
2217 |
double* resultp=&(m_samples[offset]); // results are stored at the vector offset we recieved |
2218 |
switch(m_op) |
2219 |
{ |
2220 |
case PROD: |
2221 |
for (int i=0;i<steps;++i,resultp+=resultStep) |
2222 |
{ |
2223 |
const double *ptr_0 = &((*left)[lroffset]); |
2224 |
const double *ptr_1 = &((*right)[rroffset]); |
2225 |
|
2226 |
LAZYDEBUG(cout << DataTypes::pointToString(*left, m_left->getShape(),lroffset,"LEFT") << endl;) |
2227 |
LAZYDEBUG(cout << DataTypes::pointToString(*right,m_right->getShape(),rroffset, "RIGHT") << endl;) |
2228 |
|
2229 |
matrix_matrix_product(m_SL, m_SM, m_SR, ptr_0, ptr_1, resultp, m_transpose); |
2230 |
|
2231 |
lroffset+=leftStep; |
2232 |
rroffset+=rightStep; |
2233 |
} |
2234 |
break; |
2235 |
default: |
2236 |
throw DataException("Programmer error - resolveTProduct can not resolve operator "+opToString(m_op)+"."); |
2237 |
} |
2238 |
roffset=offset; |
2239 |
return &m_samples; |
2240 |
} |
2241 |
#endif //LAZY_NODE_STORAGE |
2242 |
|
2243 |
/* |
2244 |
\brief Compute the value of the expression for the given sample. |
2245 |
\return Vector which stores the value of the subexpression for the given sample. |
2246 |
\param v A vector to store intermediate results. |
2247 |
\param offset Index in v to begin storing results. |
2248 |
\param sampleNo Sample number to evaluate. |
2249 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
2250 |
|
2251 |
The return value will be an existing vector so do not deallocate it. |
2252 |
*/ |
2253 |
// the vector and the offset are a place where the method could write its data if it wishes |
2254 |
// it is not obligated to do so. For example, if it has its own storage already, it can use that. |
2255 |
// Hence the return value to indicate where the data is actually stored. |
2256 |
// Regardless, the storage should be assumed to be used, even if it isn't. |
2257 |
|
2258 |
// the roffset is the offset within the returned vector where the data begins |
2259 |
const DataTypes::ValueType* |
2260 |
DataLazy::resolveVectorSample(ValueType& v, size_t offset, int sampleNo, size_t& roffset) |
2261 |
{ |
2262 |
LAZYDEBUG(cout << "Resolve sample " << toString() << endl;) |
2263 |
// collapse so we have a 'E' node or an IDENTITY for some other type |
2264 |
if (m_readytype!='E' && m_op!=IDENTITY) |
2265 |
{ |
2266 |
collapse(); |
2267 |
} |
2268 |
if (m_op==IDENTITY) |
2269 |
{ |
2270 |
const ValueType& vec=m_id->getVectorRO(); |
2271 |
if (m_readytype=='C') |
2272 |
{ |
2273 |
roffset=0; |
2274 |
LAZYDEBUG(cout << "Finish sample " << toString() << endl;) |
2275 |
return &(vec); |
2276 |
} |
2277 |
roffset=m_id->getPointOffset(sampleNo, 0); |
2278 |
LAZYDEBUG(cout << "Finish sample " << toString() << endl;) |
2279 |
return &(vec); |
2280 |
} |
2281 |
if (m_readytype!='E') |
2282 |
{ |
2283 |
throw DataException("Programmer Error - Collapse did not produce an expanded node."); |
2284 |
} |
2285 |
switch (getOpgroup(m_op)) |
2286 |
{ |
2287 |
case G_UNARY: |
2288 |
case G_UNARY_P: return resolveUnary(v, offset,sampleNo,roffset); |
2289 |
case G_BINARY: return resolveBinary(v, offset,sampleNo,roffset); |
2290 |
case G_NP1OUT: return resolveNP1OUT(v, offset, sampleNo,roffset); |
2291 |
case G_NP1OUT_P: return resolveNP1OUT_P(v, offset, sampleNo,roffset); |
2292 |
case G_TENSORPROD: return resolveTProd(v,offset, sampleNo,roffset); |
2293 |
case G_NP1OUT_2P: return resolveNP1OUT_2P(v, offset, sampleNo, roffset); |
2294 |
case G_REDUCTION: return resolveReduction(v, offset, sampleNo, roffset); |
2295 |
default: |
2296 |
throw DataException("Programmer Error - resolveSample does not know how to process "+opToString(m_op)+"."); |
2297 |
} |
2298 |
|
2299 |
} |
2300 |
|
2301 |
const DataTypes::ValueType* |
2302 |
DataLazy::resolveSample(BufferGroup& bg, int sampleNo, size_t& roffset) |
2303 |
{ |
2304 |
#ifdef _OPENMP |
2305 |
int tid=omp_get_thread_num(); |
2306 |
#else |
2307 |
int tid=0; |
2308 |
#endif |
2309 |
#ifdef LAZY_NODE_STORAGE |
2310 |
return resolveNodeSample(tid, sampleNo, roffset); |
2311 |
#else |
2312 |
return resolveVectorSample(bg.getBuffer(tid),bg.getOffset(tid),sampleNo,roffset); |
2313 |
#endif |
2314 |
} |
2315 |
|
2316 |
|
2317 |
// This needs to do the work of the identity constructor |
2318 |
void |
2319 |
DataLazy::resolveToIdentity() |
2320 |
{ |
2321 |
if (m_op==IDENTITY) |
2322 |
return; |
2323 |
#ifndef LAZY_NODE_STORAGE |
2324 |
DataReady_ptr p=resolveVectorWorker(); |
2325 |
#else |
2326 |
DataReady_ptr p=resolveNodeWorker(); |
2327 |
#endif |
2328 |
makeIdentity(p); |
2329 |
} |
2330 |
|
2331 |
void DataLazy::makeIdentity(const DataReady_ptr& p) |
2332 |
{ |
2333 |
m_op=IDENTITY; |
2334 |
m_axis_offset=0; |
2335 |
m_transpose=0; |
2336 |
m_SL=m_SM=m_SR=0; |
2337 |
m_children=m_height=0; |
2338 |
m_id=p; |
2339 |
if(p->isConstant()) {m_readytype='C';} |
2340 |
else if(p->isExpanded()) {m_readytype='E';} |
2341 |
else if (p->isTagged()) {m_readytype='T';} |
2342 |
else {throw DataException("Unknown DataReady instance in convertToIdentity constructor.");} |
2343 |
m_buffsRequired=1; |
2344 |
m_samplesize=p->getNumDPPSample()*p->getNoValues(); |
2345 |
m_maxsamplesize=m_samplesize; |
2346 |
m_left.reset(); |
2347 |
m_right.reset(); |
2348 |
} |
2349 |
|
2350 |
|
2351 |
DataReady_ptr |
2352 |
DataLazy::resolve() |
2353 |
{ |
2354 |
resolveToIdentity(); |
2355 |
return m_id; |
2356 |
} |
2357 |
|
2358 |
#ifdef LAZY_NODE_STORAGE |
2359 |
|
2360 |
// This version of resolve uses storage in each node to hold results |
2361 |
DataReady_ptr |
2362 |
DataLazy::resolveNodeWorker() |
2363 |
{ |
2364 |
if (m_readytype!='E') // if the whole sub-expression is Constant or Tagged, then evaluate it normally |
2365 |
{ |
2366 |
collapse(); |
2367 |
} |
2368 |
if (m_op==IDENTITY) // So a lazy expression of Constant or Tagged data will be returned here. |
2369 |
{ |
2370 |
return m_id; |
2371 |
} |
2372 |
// from this point on we must have m_op!=IDENTITY and m_readytype=='E' |
2373 |
DataExpanded* result=new DataExpanded(getFunctionSpace(),getShape(), ValueType(getNoValues())); |
2374 |
ValueType& resvec=result->getVectorRW(); |
2375 |
DataReady_ptr resptr=DataReady_ptr(result); |
2376 |
|
2377 |
int sample; |
2378 |
int totalsamples=getNumSamples(); |
2379 |
const ValueType* res=0; // Storage for answer |
2380 |
LAZYDEBUG(cout << "Total number of samples=" <<totalsamples << endl;) |
2381 |
#pragma omp parallel for private(sample,res) schedule(static) |
2382 |
for (sample=0;sample<totalsamples;++sample) |
2383 |
{ |
2384 |
size_t roffset=0; |
2385 |
#ifdef _OPENMP |
2386 |
res=resolveNodeSample(omp_get_thread_num(),sample,roffset); |
2387 |
#else |
2388 |
res=resolveNodeSample(0,sample,roffset); |
2389 |
#endif |
2390 |
LAZYDEBUG(cout << "Sample #" << sample << endl;) |
2391 |
LAZYDEBUG(cout << "Final res[" << roffset<< "]=" << (*res)[roffset] << (*res)[roffset]<< endl; ) |
2392 |
DataVector::size_type outoffset=result->getPointOffset(sample,0); |
2393 |
memcpy(&(resvec[outoffset]),&((*res)[roffset]),m_samplesize*sizeof(DataVector::ElementType)); |
2394 |
} |
2395 |
return resptr; |
2396 |
} |
2397 |
|
2398 |
#endif // LAZY_NODE_STORAGE |
2399 |
|
2400 |
// To simplify the memory management, all threads operate on one large vector, rather than one each. |
2401 |
// Each sample is evaluated independently and copied into the result DataExpanded. |
2402 |
DataReady_ptr |
2403 |
DataLazy::resolveVectorWorker() |
2404 |
{ |
2405 |
|
2406 |
LAZYDEBUG(cout << "Sample size=" << m_samplesize << endl;) |
2407 |
LAZYDEBUG(cout << "Buffers=" << m_buffsRequired << endl;) |
2408 |
if (m_readytype!='E') // if the whole sub-expression is Constant or Tagged, then evaluate it normally |
2409 |
{ |
2410 |
collapse(); |
2411 |
} |
2412 |
if (m_op==IDENTITY) // So a lazy expression of Constant or Tagged data will be returned here. |
2413 |
{ |
2414 |
return m_id; |
2415 |
} |
2416 |
// from this point on we must have m_op!=IDENTITY and m_readytype=='E' |
2417 |
size_t threadbuffersize=m_maxsamplesize*(max(1,m_buffsRequired)); // Each thread needs to have enough |
2418 |
// storage to evaluate its expression |
2419 |
int numthreads=1; |
2420 |
#ifdef _OPENMP |
2421 |
numthreads=omp_get_max_threads(); |
2422 |
#endif |
2423 |
ValueType v(numthreads*threadbuffersize); |
2424 |
LAZYDEBUG(cout << "Buffer created with size=" << v.size() << endl;) |
2425 |
DataExpanded* result=new DataExpanded(getFunctionSpace(),getShape(), ValueType(getNoValues())); |
2426 |
ValueType& resvec=result->getVectorRW(); |
2427 |
DataReady_ptr resptr=DataReady_ptr(result); |
2428 |
int sample; |
2429 |
size_t outoffset; // offset in the output data |
2430 |
int totalsamples=getNumSamples(); |
2431 |
const ValueType* res=0; // Vector storing the answer |
2432 |
size_t resoffset=0; // where in the vector to find the answer |
2433 |
LAZYDEBUG(cout << "Total number of samples=" <<totalsamples << endl;) |
2434 |
#pragma omp parallel for private(sample,resoffset,outoffset,res) schedule(static) |
2435 |
for (sample=0;sample<totalsamples;++sample) |
2436 |
{ |
2437 |
LAZYDEBUG(cout << "################################# " << sample << endl;) |
2438 |
#ifdef _OPENMP |
2439 |
res=resolveVectorSample(v,threadbuffersize*omp_get_thread_num(),sample,resoffset); |
2440 |
#else |
2441 |
res=resolveVectorSample(v,0,sample,resoffset); // res would normally be v, but not if its a single IDENTITY op. |
2442 |
#endif |
2443 |
LAZYDEBUG(cerr << "-------------------------------- " << endl;) |
2444 |
LAZYDEBUG(cerr<< "Copying sample#" << sample << endl;) |
2445 |
outoffset=result->getPointOffset(sample,0); |
2446 |
LAZYDEBUG(cerr << "offset=" << outoffset << " from offset=" << resoffset << " " << m_samplesize << " doubles" << endl;) |
2447 |
for (unsigned int i=0;i<m_samplesize;++i,++outoffset,++resoffset) // copy values into the output vector |
2448 |
{ |
2449 |
LAZYDEBUG(cerr << "outoffset=" << outoffset << " resoffset=" << resoffset << " " << (*res)[resoffset]<< endl;) |
2450 |
resvec[outoffset]=(*res)[resoffset]; |
2451 |
} |
2452 |
LAZYDEBUG(cerr << DataTypes::pointToString(resvec,getShape(),outoffset-m_samplesize+DataTypes::noValues(getShape()),"Final result:") << endl;) |
2453 |
LAZYDEBUG(cerr << "*********************************" << endl;) |
2454 |
} |
2455 |
return resptr; |
2456 |
} |
2457 |
|
2458 |
std::string |
2459 |
DataLazy::toString() const |
2460 |
{ |
2461 |
ostringstream oss; |
2462 |
oss << "Lazy Data:"; |
2463 |
if (escriptParams.getPRINT_LAZY_TREE()==0) |
2464 |
{ |
2465 |
intoString(oss); |
2466 |
} |
2467 |
else |
2468 |
{ |
2469 |
oss << endl; |
2470 |
intoTreeString(oss,""); |
2471 |
} |
2472 |
return oss.str(); |
2473 |
} |
2474 |
|
2475 |
|
2476 |
void |
2477 |
DataLazy::intoString(ostringstream& oss) const |
2478 |
{ |
2479 |
// oss << "[" << m_children <<";"<<m_height <<"]"; |
2480 |
switch (getOpgroup(m_op)) |
2481 |
{ |
2482 |
case G_IDENTITY: |
2483 |
if (m_id->isExpanded()) |
2484 |
{ |
2485 |
oss << "E"; |
2486 |
} |
2487 |
else if (m_id->isTagged()) |
2488 |
{ |
2489 |
oss << "T"; |
2490 |
} |
2491 |
else if (m_id->isConstant()) |
2492 |
{ |
2493 |
oss << "C"; |
2494 |
} |
2495 |
else |
2496 |
{ |
2497 |
oss << "?"; |
2498 |
} |
2499 |
oss << '@' << m_id.get(); |
2500 |
break; |
2501 |
case G_BINARY: |
2502 |
oss << '('; |
2503 |
m_left->intoString(oss); |
2504 |
oss << ' ' << opToString(m_op) << ' '; |
2505 |
m_right->intoString(oss); |
2506 |
oss << ')'; |
2507 |
break; |
2508 |
case G_UNARY: |
2509 |
case G_UNARY_P: |
2510 |
case G_NP1OUT: |
2511 |
case G_NP1OUT_P: |
2512 |
case G_REDUCTION: |
2513 |
oss << opToString(m_op) << '('; |
2514 |
m_left->intoString(oss); |
2515 |
oss << ')'; |
2516 |
break; |
2517 |
case G_TENSORPROD: |
2518 |
oss << opToString(m_op) << '('; |
2519 |
m_left->intoString(oss); |
2520 |
oss << ", "; |
2521 |
m_right->intoString(oss); |
2522 |
oss << ')'; |
2523 |
break; |
2524 |
case G_NP1OUT_2P: |
2525 |
oss << opToString(m_op) << '('; |
2526 |
m_left->intoString(oss); |
2527 |
oss << ", " << m_axis_offset << ", " << m_transpose; |
2528 |
oss << ')'; |
2529 |
break; |
2530 |
default: |
2531 |
oss << "UNKNOWN"; |
2532 |
} |
2533 |
} |
2534 |
|
2535 |
|
2536 |
void |
2537 |
DataLazy::intoTreeString(ostringstream& oss, string indent) const |
2538 |
{ |
2539 |
oss << '[' << m_rank << ':' << setw(3) << m_samplesize << "] " << indent; |
2540 |
switch (getOpgroup(m_op)) |
2541 |
{ |
2542 |
case G_IDENTITY: |
2543 |
if (m_id->isExpanded()) |
2544 |
{ |
2545 |
oss << "E"; |
2546 |
} |
2547 |
else if (m_id->isTagged()) |
2548 |
{ |
2549 |
oss << "T"; |
2550 |
} |
2551 |
else if (m_id->isConstant()) |
2552 |
{ |
2553 |
oss << "C"; |
2554 |
} |
2555 |
else |
2556 |
{ |
2557 |
oss << "?"; |
2558 |
} |
2559 |
oss << '@' << m_id.get() << endl; |
2560 |
break; |
2561 |
case G_BINARY: |
2562 |
oss << opToString(m_op) << endl; |
2563 |
indent+='.'; |
2564 |
m_left->intoTreeString(oss, indent); |
2565 |
m_right->intoTreeString(oss, indent); |
2566 |
break; |
2567 |
case G_UNARY: |
2568 |
case G_UNARY_P: |
2569 |
case G_NP1OUT: |
2570 |
case G_NP1OUT_P: |
2571 |
case G_REDUCTION: |
2572 |
oss << opToString(m_op) << endl; |
2573 |
indent+='.'; |
2574 |
m_left->intoTreeString(oss, indent); |
2575 |
break; |
2576 |
case G_TENSORPROD: |
2577 |
oss << opToString(m_op) << endl; |
2578 |
indent+='.'; |
2579 |
m_left->intoTreeString(oss, indent); |
2580 |
m_right->intoTreeString(oss, indent); |
2581 |
break; |
2582 |
case G_NP1OUT_2P: |
2583 |
oss << opToString(m_op) << ", " << m_axis_offset << ", " << m_transpose<< endl; |
2584 |
indent+='.'; |
2585 |
m_left->intoTreeString(oss, indent); |
2586 |
break; |
2587 |
default: |
2588 |
oss << "UNKNOWN"; |
2589 |
} |
2590 |
} |
2591 |
|
2592 |
|
2593 |
DataAbstract* |
2594 |
DataLazy::deepCopy() |
2595 |
{ |
2596 |
switch (getOpgroup(m_op)) |
2597 |
{ |
2598 |
case G_IDENTITY: return new DataLazy(m_id->deepCopy()->getPtr()); |
2599 |
case G_UNARY: |
2600 |
case G_REDUCTION: return new DataLazy(m_left->deepCopy()->getPtr(),m_op); |
2601 |
case G_UNARY_P: return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_tol); |
2602 |
case G_BINARY: return new DataLazy(m_left->deepCopy()->getPtr(),m_right->deepCopy()->getPtr(),m_op); |
2603 |
case G_NP1OUT: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(),m_op); |
2604 |
case G_TENSORPROD: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose); |
2605 |
case G_NP1OUT_P: return new DataLazy(m_left->deepCopy()->getPtr(),m_op, m_axis_offset); |
2606 |
case G_NP1OUT_2P: return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose); |
2607 |
default: |
2608 |
throw DataException("Programmer error - do not know how to deepcopy operator "+opToString(m_op)+"."); |
2609 |
} |
2610 |
} |
2611 |
|
2612 |
|
2613 |
|
2614 |
// There is no single, natural interpretation of getLength on DataLazy. |
2615 |
// Instances of DataReady can look at the size of their vectors. |
2616 |
// For lazy though, it could be the size the data would be if it were resolved; |
2617 |
// or it could be some function of the lengths of the DataReady instances which |
2618 |
// form part of the expression. |
2619 |
// Rather than have people making assumptions, I have disabled the method. |
2620 |
DataTypes::ValueType::size_type |
2621 |
DataLazy::getLength() const |
2622 |
{ |
2623 |
throw DataException("getLength() does not make sense for lazy data."); |
2624 |
} |
2625 |
|
2626 |
|
2627 |
DataAbstract* |
2628 |
DataLazy::getSlice(const DataTypes::RegionType& region) const |
2629 |
{ |
2630 |
throw DataException("getSlice - not implemented for Lazy objects."); |
2631 |
} |
2632 |
|
2633 |
|
2634 |
// To do this we need to rely on our child nodes |
2635 |
DataTypes::ValueType::size_type |
2636 |
DataLazy::getPointOffset(int sampleNo, |
2637 |
int dataPointNo) |
2638 |
{ |
2639 |
if (m_op==IDENTITY) |
2640 |
{ |
2641 |
return m_id->getPointOffset(sampleNo,dataPointNo); |
2642 |
} |
2643 |
if (m_readytype!='E') |
2644 |
{ |
2645 |
collapse(); |
2646 |
return m_id->getPointOffset(sampleNo,dataPointNo); |
2647 |
} |
2648 |
// at this point we do not have an identity node and the expression will be Expanded |
2649 |
// so we only need to know which child to ask |
2650 |
if (m_left->m_readytype=='E') |
2651 |
{ |
2652 |
return m_left->getPointOffset(sampleNo,dataPointNo); |
2653 |
} |
2654 |
else |
2655 |
{ |
2656 |
return m_right->getPointOffset(sampleNo,dataPointNo); |
2657 |
} |
2658 |
} |
2659 |
|
2660 |
// To do this we need to rely on our child nodes |
2661 |
DataTypes::ValueType::size_type |
2662 |
DataLazy::getPointOffset(int sampleNo, |
2663 |
int dataPointNo) const |
2664 |
{ |
2665 |
if (m_op==IDENTITY) |
2666 |
{ |
2667 |
return m_id->getPointOffset(sampleNo,dataPointNo); |
2668 |
} |
2669 |
if (m_readytype=='E') |
2670 |
{ |
2671 |
// at this point we do not have an identity node and the expression will be Expanded |
2672 |
// so we only need to know which child to ask |
2673 |
if (m_left->m_readytype=='E') |
2674 |
{ |
2675 |
return m_left->getPointOffset(sampleNo,dataPointNo); |
2676 |
} |
2677 |
else |
2678 |
{ |
2679 |
return m_right->getPointOffset(sampleNo,dataPointNo); |
2680 |
} |
2681 |
} |
2682 |
if (m_readytype=='C') |
2683 |
{ |
2684 |
return m_left->getPointOffset(sampleNo,dataPointNo); // which child doesn't matter |
2685 |
} |
2686 |
throw DataException("Programmer error - getPointOffset on lazy data may require collapsing (but this object is marked const)."); |
2687 |
} |
2688 |
|
2689 |
|
2690 |
// I have decided to let Data:: handle this issue. |
2691 |
void |
2692 |
DataLazy::setToZero() |
2693 |
{ |
2694 |
// DataTypes::ValueType v(getNoValues(),0); |
2695 |
// m_id=DataReady_ptr(new DataConstant(getFunctionSpace(),getShape(),v)); |
2696 |
// m_op=IDENTITY; |
2697 |
// m_right.reset(); |
2698 |
// m_left.reset(); |
2699 |
// m_readytype='C'; |
2700 |
// m_buffsRequired=1; |
2701 |
|
2702 |
privdebug=privdebug; // to stop the compiler complaining about unused privdebug |
2703 |
throw DataException("Programmer error - setToZero not supported for DataLazy (DataLazy objects should be read only)."); |
2704 |
} |
2705 |
|
2706 |
bool |
2707 |
DataLazy::actsExpanded() const |
2708 |
{ |
2709 |
return (m_readytype=='E'); |
2710 |
} |
2711 |
|
2712 |
} // end namespace |