1 |
|
2 |
/******************************************************* |
3 |
* |
4 |
* Copyright (c) 2003-2009 by University of Queensland |
5 |
* Earth Systems Science Computational Center (ESSCC) |
6 |
* http://www.uq.edu.au/esscc |
7 |
* |
8 |
* Primary Business: Queensland, Australia |
9 |
* Licensed under the Open Software License version 3.0 |
10 |
* http://www.opensource.org/licenses/osl-3.0.php |
11 |
* |
12 |
*******************************************************/ |
13 |
|
14 |
|
15 |
#if !defined escript_DataLazy_20081008_H |
16 |
#define escript_DataLazy_20081008_H |
17 |
#include "system_dep.h" |
18 |
|
19 |
#include "DataAbstract.h" |
20 |
|
21 |
#include <string> |
22 |
#include <functional> |
23 |
|
24 |
#include "LocalOps.h" // for tensor_binary_op |
25 |
#include "BufferGroup.h" |
26 |
#include "DataVector.h" // for ElementType |
27 |
|
28 |
|
29 |
#define LAZY_NODE_STORAGE |
30 |
|
31 |
namespace escript { |
32 |
|
33 |
// For the purposes of unit testing and maintaining sanity, it is important that this enum be contiguous |
34 |
enum ES_optype |
35 |
{ |
36 |
UNKNOWNOP=0, |
37 |
IDENTITY=1, |
38 |
ADD=2, |
39 |
SUB=3, |
40 |
MUL=4, |
41 |
DIV=5, |
42 |
POW=6, |
43 |
SIN=POW+1, |
44 |
COS=SIN+1, |
45 |
TAN=SIN+2, |
46 |
ASIN=SIN+3, |
47 |
ACOS=SIN+4, |
48 |
ATAN=SIN+5, |
49 |
SINH=SIN+6, |
50 |
COSH=SIN+7, |
51 |
TANH=SIN+8, |
52 |
ERF=SIN+9, |
53 |
ASINH=SIN+10, |
54 |
ACOSH=SIN+11, |
55 |
ATANH=SIN+12, |
56 |
LOG10=ATANH+1, |
57 |
LOG=LOG10+1, |
58 |
SIGN=LOG10+2, |
59 |
ABS=LOG10+3, |
60 |
NEG=LOG10+4, |
61 |
POS=LOG10+5, |
62 |
EXP=LOG10+6, |
63 |
SQRT=LOG10+7, |
64 |
RECIP=LOG10+8, |
65 |
GZ=RECIP+1, |
66 |
LZ=GZ+1, |
67 |
GEZ=GZ+2, |
68 |
LEZ=GZ+3, |
69 |
NEZ=GZ+4, |
70 |
EZ=GZ+5, |
71 |
SYM=EZ+1, |
72 |
NSYM=SYM+1, |
73 |
PROD=NSYM+1, |
74 |
TRANS=PROD+1, |
75 |
TRACE=TRANS+1, |
76 |
SWAP=TRACE+1, |
77 |
MINVAL=SWAP+1, |
78 |
MAXVAL=MINVAL+1 |
79 |
}; |
80 |
|
81 |
ESCRIPT_DLL_API |
82 |
const std::string& |
83 |
opToString(ES_optype op); |
84 |
|
85 |
/** |
86 |
\class escript::DataLazy |
87 |
\brief Wraps an expression tree of other DataObjects. |
88 |
The data will be evaluated when required. |
89 |
|
90 |
|
91 |
NOTE: This class assumes that the Data being pointed at are immutable. |
92 |
*/ |
93 |
|
94 |
class DataLazy; |
95 |
|
96 |
typedef POINTER_WRAPPER_CLASS(DataLazy) DataLazy_ptr; |
97 |
typedef POINTER_WRAPPER_CLASS(const DataLazy) const_DataLazy_ptr; |
98 |
|
99 |
class DataLazy : public DataAbstract |
100 |
{ |
101 |
|
102 |
typedef DataAbstract parent; |
103 |
typedef DataTypes::ValueType ValueType; |
104 |
typedef DataTypes::ShapeType ShapeType; |
105 |
|
106 |
public: |
107 |
/** |
108 |
\brief Create an IDENTITY DataLazy for the given DataAbstract. |
109 |
\param p DataAbstract to be wrapped. |
110 |
\throws DataException if p is lazy data or it is not constant, tagged or expanded. |
111 |
*/ |
112 |
ESCRIPT_DLL_API |
113 |
DataLazy(DataAbstract_ptr p); |
114 |
|
115 |
|
116 |
/** |
117 |
\brief Produce a DataLazy for a unary operation. |
118 |
\param left DataAbstract to be operated on. |
119 |
\param op unary operation to perform. |
120 |
\throws DataException if op is not a unary operation or if p cannot be converted to a DataLazy. |
121 |
Note that IDENTITY is not considered a unary operation. |
122 |
*/ |
123 |
ESCRIPT_DLL_API |
124 |
DataLazy(DataAbstract_ptr left, ES_optype op); |
125 |
|
126 |
/** |
127 |
\brief Produce a DataLazy for a unary operation. |
128 |
\param left DataAbstract to be operated on. |
129 |
\param op unary operation to perform. |
130 |
\param tol tolerance for operation |
131 |
\throws DataException if op is not a unary operation or if p cannot be converted to a DataLazy. |
132 |
Note that IDENTITY is not considered a unary operation. |
133 |
*/ |
134 |
ESCRIPT_DLL_API |
135 |
DataLazy(DataAbstract_ptr left, ES_optype op, double tol); |
136 |
|
137 |
/** |
138 |
\brief Produce a DataLazy for a unary operation which requires a parameter. |
139 |
\param left DataAbstract to be operated on. |
140 |
\param op unary operation to perform. |
141 |
\param axis_offset the parameter for the operation |
142 |
\throws DataException if op is not a unary operation or if p cannot be converted to a DataLazy. |
143 |
Note that IDENTITY is not considered a unary operation. |
144 |
*/ |
145 |
ESCRIPT_DLL_API |
146 |
DataLazy(DataAbstract_ptr left, ES_optype op, int axis_offset); |
147 |
|
148 |
|
149 |
/** |
150 |
\brief Produce a DataLazy for a binary operation. |
151 |
\param left left operand |
152 |
\param right right operand |
153 |
\param op unary operation to perform. |
154 |
\throws DataException if op is not a binary operation or if left or right cannot be converted to a DataLazy. |
155 |
*/ |
156 |
ESCRIPT_DLL_API |
157 |
DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op); |
158 |
|
159 |
/** |
160 |
\brief Produce a DataLazy for a binary operation with additional paramters. |
161 |
\param left left operand |
162 |
\param right right operand |
163 |
\param op unary operation to perform. |
164 |
\param axis_offset |
165 |
\param transpose |
166 |
\throws DataException if op is not a binary operation requiring parameters or if left or right cannot be converted to a DataLazy. |
167 |
*/ |
168 |
ESCRIPT_DLL_API |
169 |
DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op, int axis_offset, int transpose); |
170 |
|
171 |
/** |
172 |
\brief Produce a DataLazy for a unary operation which requires two integer parameters. |
173 |
\param left DataAbstract to be operated on. |
174 |
\param op unary operation to perform. |
175 |
\param axis0 the first parameter for the operation |
176 |
\param axis1 the second parameter for the operation |
177 |
\throws DataException if op is not a unary operation or if p cannot be converted to a DataLazy. |
178 |
Note that IDENTITY is not considered a unary operation. |
179 |
*/ |
180 |
ESCRIPT_DLL_API |
181 |
DataLazy(DataAbstract_ptr left, ES_optype op, const int axis0, const int axis1); |
182 |
|
183 |
ESCRIPT_DLL_API |
184 |
~DataLazy(); |
185 |
|
186 |
/** |
187 |
\brief Evaluate the lazy expression. |
188 |
\return A DataReady with the value of the lazy expresion. |
189 |
*/ |
190 |
ESCRIPT_DLL_API |
191 |
DataReady_ptr |
192 |
resolve(); |
193 |
|
194 |
ESCRIPT_DLL_API |
195 |
std::string |
196 |
toString() const; |
197 |
|
198 |
ESCRIPT_DLL_API |
199 |
DataAbstract* |
200 |
deepCopy(); |
201 |
|
202 |
|
203 |
/** |
204 |
\brief |
205 |
This method throws an exception. It does not really make sense to ask this question of lazy data. |
206 |
*/ |
207 |
ESCRIPT_DLL_API |
208 |
ValueType::size_type |
209 |
getLength() const; |
210 |
|
211 |
|
212 |
ESCRIPT_DLL_API |
213 |
DataAbstract* |
214 |
getSlice(const DataTypes::RegionType& region) const; |
215 |
|
216 |
|
217 |
DataTypes::ValueType::size_type |
218 |
getPointOffset(int sampleNo, |
219 |
int dataPointNo) const; |
220 |
|
221 |
DataTypes::ValueType::size_type |
222 |
getPointOffset(int sampleNo, |
223 |
int dataPointNo); |
224 |
|
225 |
|
226 |
/** |
227 |
\return the number of samples which need to be stored to evaluate the expression. |
228 |
*/ |
229 |
ESCRIPT_DLL_API |
230 |
int |
231 |
getBuffsRequired() const; |
232 |
|
233 |
/** |
234 |
\return the largest samplesize required to evaluate the expression. |
235 |
*/ |
236 |
ESCRIPT_DLL_API |
237 |
size_t |
238 |
getMaxSampleSize() const; |
239 |
|
240 |
/** |
241 |
\return the size of the buffer required to evaulate a sample for this object |
242 |
*/ |
243 |
ESCRIPT_DLL_API |
244 |
size_t |
245 |
getSampleBufferSize() const; |
246 |
|
247 |
/** |
248 |
\brief Compute the value of the expression for the given sample. |
249 |
\return Vector which stores the value of the subexpression for the given sample. |
250 |
\param bg A BufferGroup to store intermediate results. |
251 |
\param sampleNo Sample number to evaluate. |
252 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
253 |
|
254 |
The return value will be an existing vector so do not deallocate it. |
255 |
*/ |
256 |
ESCRIPT_DLL_API |
257 |
const ValueType* |
258 |
resolveSample(BufferGroup& bg, int sampleNo, size_t& roffset); |
259 |
|
260 |
/** |
261 |
\brief if resolve() was called would it produce expanded data. |
262 |
*/ |
263 |
ESCRIPT_DLL_API |
264 |
bool |
265 |
actsExpanded() const; |
266 |
|
267 |
/** |
268 |
\brief Produces an IDENTITY DataLazy containing zero. |
269 |
The result will have the same shape and functionspace as before. |
270 |
*/ |
271 |
ESCRIPT_DLL_API |
272 |
virtual void |
273 |
setToZero(); |
274 |
|
275 |
private: |
276 |
DataReady_ptr m_id; // For IDENTITY nodes, stores a wrapped value. |
277 |
DataLazy_ptr m_left, m_right; // operands for operation. |
278 |
ES_optype m_op; // operation to perform. |
279 |
|
280 |
int m_buffsRequired; // how many samples are required to evaluate this expression |
281 |
size_t m_samplesize; // number of values required to store a sample |
282 |
|
283 |
char m_readytype; // E for expanded, T for tagged, C for constant |
284 |
|
285 |
int m_axis_offset; // required extra info for general tensor product |
286 |
int m_transpose; // offset and transpose are used for swapaxes as well |
287 |
int m_SL, m_SM, m_SR; // computed properties used in general tensor product |
288 |
|
289 |
|
290 |
double m_tol; // required extra info for <>0 and ==0 |
291 |
|
292 |
size_t m_maxsamplesize; // largest samplesize required by any node in the expression |
293 |
size_t m_children; |
294 |
size_t m_height; |
295 |
|
296 |
#ifdef LAZY_NODE_STORAGE |
297 |
|
298 |
int* m_sampleids; // may be NULL |
299 |
DataVector m_samples; |
300 |
|
301 |
#endif // LAZY_NODE_STORAGE |
302 |
|
303 |
|
304 |
#ifdef LAZY_NODE_STORAGE |
305 |
/** |
306 |
Allocates sample storage at each node |
307 |
*/ |
308 |
void LazyNodeSetup(); |
309 |
|
310 |
|
311 |
const DataTypes::ValueType* |
312 |
resolveNodeUnary(int tid, int sampleNo, size_t& roffset); |
313 |
|
314 |
|
315 |
const DataTypes::ValueType* |
316 |
resolveNodeReduction(int tid, int sampleNo, size_t& roffset); |
317 |
|
318 |
const DataTypes::ValueType* |
319 |
resolveNodeSample(int tid, int sampleNo, size_t& roffset); |
320 |
|
321 |
const DataTypes::ValueType* |
322 |
resolveNodeBinary(int tid, int sampleNo, size_t& roffset); |
323 |
|
324 |
const DataTypes::ValueType* |
325 |
resolveNodeNP1OUT(int tid, int sampleNo, size_t& roffset); |
326 |
|
327 |
const DataTypes::ValueType* |
328 |
resolveNodeNP1OUT_P(int tid, int sampleNo, size_t& roffset); |
329 |
|
330 |
const DataTypes::ValueType* |
331 |
resolveNodeTProd(int tid, int sampleNo, size_t& roffset); |
332 |
|
333 |
const DataTypes::ValueType* |
334 |
resolveNodeNP1OUT_2P(int tid, int sampleNo, size_t& roffset); |
335 |
|
336 |
#endif |
337 |
|
338 |
/** |
339 |
Does the work for toString. |
340 |
*/ |
341 |
void |
342 |
intoString(std::ostringstream& oss) const; |
343 |
|
344 |
/** |
345 |
\warning internal use only!! |
346 |
*/ |
347 |
void |
348 |
intoTreeString(std::ostringstream& oss,std::string indent) const; |
349 |
|
350 |
/** |
351 |
\brief Converts the DataLazy into an IDENTITY storing the value of the expression. |
352 |
This method uses the original methods on the Data class to evaluate the expressions. |
353 |
For this reason, it should not be used on DataExpanded instances. (To do so would defeat |
354 |
the purpose of using DataLazy in the first place). |
355 |
*/ |
356 |
void |
357 |
collapse(); // converts the node into an IDENTITY node |
358 |
|
359 |
|
360 |
/** |
361 |
\brief Evaluates the expression using methods on Data. |
362 |
This does the work for the collapse method. |
363 |
For reasons of efficiency do not call this method on DataExpanded nodes. |
364 |
*/ |
365 |
DataReady_ptr |
366 |
collapseToReady(); |
367 |
|
368 |
/** |
369 |
\brief resolve the expression can store it in the current node |
370 |
The current node will be converted to an identity node. |
371 |
*/ |
372 |
void |
373 |
resolveToIdentity(); |
374 |
|
375 |
/** |
376 |
\brief helper method for resolveToIdentity and the identity constructor |
377 |
*/ |
378 |
void |
379 |
makeIdentity(const DataReady_ptr& p); |
380 |
|
381 |
/** |
382 |
\brief resolve to a ReadyData object using a vector buffer. |
383 |
*/ |
384 |
DataReady_ptr |
385 |
resolveVectorWorker(); |
386 |
|
387 |
#ifdef LAZY_NODE_STORAGE |
388 |
/** |
389 |
\brief resolve to a ReadyData object using storage at nodes |
390 |
*/ |
391 |
DataReady_ptr |
392 |
resolveNodeWorker(); |
393 |
#endif |
394 |
|
395 |
/** |
396 |
\brief Compute the value of the expression for the given sample - using the vector buffer approach. |
397 |
\return Vector which stores the value of the subexpression for the given sample. |
398 |
\param v A vector to store intermediate results. |
399 |
\param offset Index in v to begin storing results. |
400 |
\param sampleNo Sample number to evaluate. |
401 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
402 |
|
403 |
The return value will be an existing vector so do not deallocate it. |
404 |
*/ |
405 |
ESCRIPT_DLL_API |
406 |
const ValueType* |
407 |
resolveVectorSample(ValueType& v, size_t offset, int sampleNo, size_t& roffset); |
408 |
|
409 |
|
410 |
/** |
411 |
\brief Compute the value of the expression (unary operation) for the given sample. |
412 |
\return Vector which stores the value of the subexpression for the given sample. |
413 |
\param v A vector to store intermediate results. |
414 |
\param offset Index in v to begin storing results. |
415 |
\param sampleNo Sample number to evaluate. |
416 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
417 |
|
418 |
The return value will be an existing vector so do not deallocate it. |
419 |
If the result is stored in v it should be stored at the offset given. |
420 |
Everything from offset to the end of v should be considered available for this method to use. |
421 |
*/ |
422 |
ValueType* |
423 |
resolveUnary(ValueType& v, size_t offset,int sampleNo, size_t& roffset) const; |
424 |
|
425 |
/** |
426 |
\brief Compute the value of the expression (reduction operation) for the given sample. |
427 |
\return Vector which stores the value of the subexpression for the given sample. |
428 |
\param v A vector to store intermediate results. |
429 |
\param offset Index in v to begin storing results. |
430 |
\param sampleNo Sample number to evaluate. |
431 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
432 |
|
433 |
The return value will be an existing vector so do not deallocate it. |
434 |
If the result is stored in v it should be stored at the offset given. |
435 |
Everything from offset to the end of v should be considered available for this method to use. |
436 |
*/ |
437 |
ValueType* |
438 |
resolveReduction(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const; |
439 |
|
440 |
/** |
441 |
\brief Compute the value of the expression (unary non-pointwise operation) for the given sample. |
442 |
\return Vector which stores the value of the subexpression for the given sample. |
443 |
\param v A vector to store intermediate results. |
444 |
\param offset Index in v to begin storing results. |
445 |
\param sampleNo Sample number to evaluate. |
446 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
447 |
|
448 |
The return value will be an existing vector so do not deallocate it. |
449 |
If the result is stored in v it should be stored at the offset given. |
450 |
Everything from offset to the end of v should be considered available for this method to use. |
451 |
|
452 |
This method differs from the one above in that deals with operations that are not |
453 |
point-wise. That is, the answer cannot just be written on top of the input. |
454 |
Extra buffers are required for these operations. |
455 |
*/ |
456 |
|
457 |
ValueType* |
458 |
resolveNP1OUT(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const; |
459 |
|
460 |
/** |
461 |
\brief Compute the value of the expression (unary operation) for the given sample. |
462 |
\return Vector which stores the value of the subexpression for the given sample. |
463 |
\param v A vector to store intermediate results. |
464 |
\param offset Index in v to begin storing results. |
465 |
\param sampleNo Sample number to evaluate. |
466 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
467 |
|
468 |
The return value will be an existing vector so do not deallocate it. |
469 |
If the result is stored in v it should be stored at the offset given. |
470 |
Everything from offset to the end of v should be considered available for this method to use. |
471 |
*/ |
472 |
DataTypes::ValueType* |
473 |
resolveNP1OUT_P(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const; |
474 |
|
475 |
/** |
476 |
\brief Compute the value of the expression (unary operation with int params) for the given sample. |
477 |
\return Vector which stores the value of the subexpression for the given sample. |
478 |
\param v A vector to store intermediate results. |
479 |
\param offset Index in v to begin storing results. |
480 |
\param sampleNo Sample number to evaluate. |
481 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
482 |
|
483 |
The return value will be an existing vector so do not deallocate it. |
484 |
If the result is stored in v it should be stored at the offset given. |
485 |
Everything from offset to the end of v should be considered available for this method to use. |
486 |
*/ |
487 |
DataTypes::ValueType* |
488 |
resolveNP1OUT_2P(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const; |
489 |
|
490 |
|
491 |
/** |
492 |
\brief Compute the value of the expression (binary operation) for the given sample. |
493 |
\return Vector which stores the value of the subexpression for the given sample. |
494 |
\param v A vector to store intermediate results. |
495 |
\param offset Index in v to begin storing results. |
496 |
\param sampleNo Sample number to evaluate. |
497 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
498 |
|
499 |
The return value will be an existing vector so do not deallocate it. |
500 |
If the result is stored in v it should be stored at the offset given. |
501 |
Everything from offset to the end of v should be considered available for this method to use. |
502 |
*/ |
503 |
ValueType* |
504 |
resolveBinary(ValueType& v, size_t offset,int sampleNo, size_t& roffset) const; |
505 |
|
506 |
/** |
507 |
\brief Compute the value of the expression (tensor product) for the given sample. |
508 |
\return Vector which stores the value of the subexpression for the given sample. |
509 |
\param v A vector to store intermediate results. |
510 |
\param offset Index in v to begin storing results. |
511 |
\param sampleNo Sample number to evaluate. |
512 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
513 |
|
514 |
The return value will be an existing vector so do not deallocate it. |
515 |
If the result is stored in v it should be stored at the offset given. |
516 |
Everything from offset to the end of v should be considered available for this method to use. |
517 |
*/ |
518 |
DataTypes::ValueType* |
519 |
resolveTProd(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const; |
520 |
|
521 |
}; |
522 |
|
523 |
} |
524 |
#endif |