1 |
gross |
576 |
// $Id$ |
2 |
|
|
/* |
3 |
|
|
****************************************************************************** |
4 |
|
|
* * |
5 |
|
|
* COPYRIGHT ACcESS 2004 - All Rights Reserved * |
6 |
|
|
* * |
7 |
|
|
* This software is the property of ACcESS. No part of this code * |
8 |
|
|
* may be copied in any form or by any means without the expressed written * |
9 |
|
|
* consent of ACcESS. Copying, use or modification of this software * |
10 |
|
|
* by any unauthorised person is illegal unless that person has a software * |
11 |
|
|
* license agreement with ACcESS. * |
12 |
|
|
* * |
13 |
|
|
****************************************************************************** |
14 |
|
|
*/ |
15 |
|
|
|
16 |
|
|
#if !defined escript_LocalOps_H |
17 |
|
|
#define escript_LocalOps_H |
18 |
gross |
580 |
#include <math.h> |
19 |
gross |
576 |
namespace escript { |
20 |
|
|
|
21 |
|
|
|
22 |
|
|
/** |
23 |
|
|
\brief |
24 |
|
|
solves a 1x1 eigenvalue A*V=ev*V problem |
25 |
|
|
|
26 |
|
|
\param A00 Input - A_00 |
27 |
|
|
\param ev0 Output - eigenvalue |
28 |
|
|
*/ |
29 |
|
|
inline |
30 |
|
|
void eigenvalues1(const double A00,double* ev0) { |
31 |
|
|
|
32 |
gross |
580 |
*ev0=A00; |
33 |
gross |
576 |
|
34 |
|
|
} |
35 |
|
|
/** |
36 |
|
|
\brief |
37 |
|
|
solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A |
38 |
|
|
|
39 |
|
|
\param A00 Input - A_00 |
40 |
|
|
\param A01 Input - A_01 |
41 |
|
|
\param A11 Input - A_11 |
42 |
|
|
\param ev0 Output - smallest eigenvalue |
43 |
|
|
\param ev1 Output - largest eigenvalue |
44 |
|
|
*/ |
45 |
|
|
inline |
46 |
|
|
void eigenvalues2(const double A00,const double A01 |
47 |
|
|
,const double A11, |
48 |
|
|
double* ev0, double* ev1) { |
49 |
gross |
580 |
const register double trA=(A00+A11)/2.; |
50 |
|
|
const register double A_00=A00-trA; |
51 |
|
|
const register double A_11=A11-trA; |
52 |
|
|
const register double s=sqrt(A01*A01-A_00*A_11); |
53 |
|
|
*ev0=trA-s; |
54 |
|
|
*ev1=trA+s; |
55 |
gross |
576 |
} |
56 |
|
|
/** |
57 |
|
|
\brief |
58 |
|
|
solves a 3x3 eigenvalue A*V=ev*V problem for symmetric A |
59 |
|
|
|
60 |
|
|
\param A00 Input - A_00 |
61 |
|
|
\param A01 Input - A_01 |
62 |
|
|
\param A02 Input - A_02 |
63 |
|
|
\param A11 Input - A_11 |
64 |
|
|
\param A12 Input - A_12 |
65 |
|
|
\param A22 Input - A_22 |
66 |
|
|
\param ev0 Output - smallest eigenvalue |
67 |
|
|
\param ev1 Output - eigenvalue |
68 |
|
|
\param ev2 Output - largest eigenvalue |
69 |
|
|
*/ |
70 |
|
|
inline |
71 |
|
|
void eigenvalues3(const double A00, const double A01, const double A02, |
72 |
|
|
const double A11, const double A12, |
73 |
|
|
const double A22, |
74 |
|
|
double* ev0, double* ev1,double* ev2) { |
75 |
|
|
|
76 |
gross |
580 |
const register double trA=(A00+A11+A22)/3.; |
77 |
|
|
const register double A_00=A00-trA; |
78 |
|
|
const register double A_11=A11-trA; |
79 |
|
|
const register double A_22=A22-trA; |
80 |
|
|
const register double A01_2=A01*A01; |
81 |
|
|
const register double A02_2=A02*A02; |
82 |
|
|
const register double A12_2=A12*A12; |
83 |
|
|
const register double p=A02_2+A12_2+A01_2+(A_00*A_00+A_11*A_11+A_22*A_22)/2.; |
84 |
|
|
const register double q=(A02_2*A_11+A12_2*A_00+A01_2*A_22)-(A_00*A_11*A_22+2*A01*A12*A02); |
85 |
|
|
const register double sq_p=sqrt(p/3.); |
86 |
|
|
register double z=-q/(2*pow(sq_p,3)); |
87 |
|
|
if (z<-1.) { |
88 |
|
|
z=-1.; |
89 |
|
|
} else if (z>1.) { |
90 |
|
|
z=1.; |
91 |
|
|
} |
92 |
|
|
const register double alpha_3=acos(z)/3.; |
93 |
|
|
*ev2=trA+2.*sq_p*cos(alpha_3); |
94 |
|
|
*ev1=trA-2.*sq_p*cos(alpha_3+M_PI/3.); |
95 |
|
|
*ev0=trA-2.*sq_p*cos(alpha_3-M_PI/3.); |
96 |
gross |
576 |
} |
97 |
|
|
} // end of namespace |
98 |
|
|
#endif |