1 |
gross |
576 |
// $Id$ |
2 |
|
|
/* |
3 |
|
|
****************************************************************************** |
4 |
|
|
* * |
5 |
|
|
* COPYRIGHT ACcESS 2004 - All Rights Reserved * |
6 |
|
|
* * |
7 |
|
|
* This software is the property of ACcESS. No part of this code * |
8 |
|
|
* may be copied in any form or by any means without the expressed written * |
9 |
|
|
* consent of ACcESS. Copying, use or modification of this software * |
10 |
|
|
* by any unauthorised person is illegal unless that person has a software * |
11 |
|
|
* license agreement with ACcESS. * |
12 |
|
|
* * |
13 |
|
|
****************************************************************************** |
14 |
|
|
*/ |
15 |
|
|
|
16 |
|
|
#if !defined escript_LocalOps_H |
17 |
|
|
#define escript_LocalOps_H |
18 |
gross |
580 |
#include <math.h> |
19 |
gross |
576 |
namespace escript { |
20 |
|
|
|
21 |
|
|
|
22 |
|
|
/** |
23 |
|
|
\brief |
24 |
|
|
solves a 1x1 eigenvalue A*V=ev*V problem |
25 |
|
|
|
26 |
|
|
\param A00 Input - A_00 |
27 |
|
|
\param ev0 Output - eigenvalue |
28 |
|
|
*/ |
29 |
|
|
inline |
30 |
|
|
void eigenvalues1(const double A00,double* ev0) { |
31 |
|
|
|
32 |
gross |
580 |
*ev0=A00; |
33 |
gross |
576 |
|
34 |
|
|
} |
35 |
|
|
/** |
36 |
|
|
\brief |
37 |
|
|
solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A |
38 |
|
|
|
39 |
|
|
\param A00 Input - A_00 |
40 |
|
|
\param A01 Input - A_01 |
41 |
|
|
\param A11 Input - A_11 |
42 |
|
|
\param ev0 Output - smallest eigenvalue |
43 |
|
|
\param ev1 Output - largest eigenvalue |
44 |
|
|
*/ |
45 |
|
|
inline |
46 |
gross |
583 |
void eigenvalues2(const double A00,const double A01,const double A11, |
47 |
gross |
576 |
double* ev0, double* ev1) { |
48 |
gross |
580 |
const register double trA=(A00+A11)/2.; |
49 |
|
|
const register double A_00=A00-trA; |
50 |
|
|
const register double A_11=A11-trA; |
51 |
|
|
const register double s=sqrt(A01*A01-A_00*A_11); |
52 |
|
|
*ev0=trA-s; |
53 |
|
|
*ev1=trA+s; |
54 |
gross |
576 |
} |
55 |
|
|
/** |
56 |
|
|
\brief |
57 |
|
|
solves a 3x3 eigenvalue A*V=ev*V problem for symmetric A |
58 |
|
|
|
59 |
|
|
\param A00 Input - A_00 |
60 |
|
|
\param A01 Input - A_01 |
61 |
|
|
\param A02 Input - A_02 |
62 |
|
|
\param A11 Input - A_11 |
63 |
|
|
\param A12 Input - A_12 |
64 |
|
|
\param A22 Input - A_22 |
65 |
|
|
\param ev0 Output - smallest eigenvalue |
66 |
|
|
\param ev1 Output - eigenvalue |
67 |
|
|
\param ev2 Output - largest eigenvalue |
68 |
|
|
*/ |
69 |
|
|
inline |
70 |
|
|
void eigenvalues3(const double A00, const double A01, const double A02, |
71 |
|
|
const double A11, const double A12, |
72 |
|
|
const double A22, |
73 |
|
|
double* ev0, double* ev1,double* ev2) { |
74 |
|
|
|
75 |
gross |
580 |
const register double trA=(A00+A11+A22)/3.; |
76 |
|
|
const register double A_00=A00-trA; |
77 |
|
|
const register double A_11=A11-trA; |
78 |
|
|
const register double A_22=A22-trA; |
79 |
|
|
const register double A01_2=A01*A01; |
80 |
|
|
const register double A02_2=A02*A02; |
81 |
|
|
const register double A12_2=A12*A12; |
82 |
|
|
const register double p=A02_2+A12_2+A01_2+(A_00*A_00+A_11*A_11+A_22*A_22)/2.; |
83 |
gross |
585 |
if (p<=0.) { |
84 |
|
|
*ev2=trA; |
85 |
|
|
*ev1=trA; |
86 |
|
|
*ev0=trA; |
87 |
|
|
|
88 |
|
|
} else { |
89 |
|
|
const register double q=(A02_2*A_11+A12_2*A_00+A01_2*A_22)-(A_00*A_11*A_22+2*A01*A12*A02); |
90 |
|
|
const register double sq_p=sqrt(p/3.); |
91 |
|
|
register double z=-q/(2*pow(sq_p,3)); |
92 |
|
|
if (z<-1.) { |
93 |
|
|
z=-1.; |
94 |
|
|
} else if (z>1.) { |
95 |
|
|
z=1.; |
96 |
|
|
} |
97 |
|
|
const register double alpha_3=acos(z)/3.; |
98 |
|
|
*ev2=trA+2.*sq_p*cos(alpha_3); |
99 |
|
|
*ev1=trA-2.*sq_p*cos(alpha_3+M_PI/3.); |
100 |
|
|
*ev0=trA-2.*sq_p*cos(alpha_3-M_PI/3.); |
101 |
gross |
580 |
} |
102 |
gross |
576 |
} |
103 |
gross |
583 |
/** |
104 |
|
|
\brief |
105 |
|
|
solves a 1x1 eigenvalue A*V=ev*V problem for symmetric A |
106 |
|
|
|
107 |
|
|
\param A00 Input - A_00 |
108 |
|
|
\param ev0 Output - eigenvalue |
109 |
|
|
\param V00 Output - eigenvector |
110 |
|
|
\param tol Input - tolerance to identify to eigenvalues |
111 |
|
|
*/ |
112 |
|
|
inline |
113 |
|
|
void eigenvalues_and_eigenvectors1(const double A00,double* ev0,double* V00,const double tol) |
114 |
|
|
{ |
115 |
|
|
eigenvalues1(A00,ev0); |
116 |
|
|
*V00=1.; |
117 |
|
|
return; |
118 |
|
|
} |
119 |
|
|
/** |
120 |
|
|
\brief |
121 |
|
|
returns a non-zero vector in the kernel of [[A00,A01],[A01,A11]] assuming that the kernel dimension is at least 1. |
122 |
|
|
|
123 |
|
|
\param A00 Input - matrix component |
124 |
|
|
\param A10 Input - matrix component |
125 |
|
|
\param A01 Input - matrix component |
126 |
|
|
\param A11 Input - matrix component |
127 |
|
|
\param V0 Output - vector component |
128 |
|
|
\param V1 Output - vector component |
129 |
|
|
*/ |
130 |
|
|
inline |
131 |
|
|
void vectorInKernel2(const double A00,const double A10,const double A01,const double A11, |
132 |
|
|
double* V0, double*V1) |
133 |
|
|
{ |
134 |
|
|
register double absA00=fabs(A00); |
135 |
|
|
register double absA01=fabs(A01); |
136 |
|
|
register double absA10=fabs(A10); |
137 |
|
|
register double absA11=fabs(A11); |
138 |
|
|
register double m=absA11>absA01 ? absA11 : absA01; |
139 |
|
|
if (absA00>m || absA10>m) { |
140 |
|
|
*V0=-A10; |
141 |
|
|
*V1=A00; |
142 |
|
|
} else { |
143 |
|
|
if (m<=0) { |
144 |
|
|
*V0=1.; |
145 |
|
|
*V1=0.; |
146 |
|
|
} else { |
147 |
|
|
*V0=A11; |
148 |
|
|
*V1=-A01; |
149 |
|
|
} |
150 |
|
|
} |
151 |
|
|
} |
152 |
|
|
/** |
153 |
|
|
\brief |
154 |
|
|
returns a non-zero vector in the kernel of [[A00,A01,A02],[A10,A11,A12],[A20,A21,A22]] |
155 |
|
|
assuming that the kernel dimension is at least 1 and A00 is non zero. |
156 |
|
|
|
157 |
|
|
\param A00 Input - matrix component |
158 |
|
|
\param A10 Input - matrix component |
159 |
|
|
\param A20 Input - matrix component |
160 |
|
|
\param A01 Input - matrix component |
161 |
|
|
\param A11 Input - matrix component |
162 |
|
|
\param A21 Input - matrix component |
163 |
|
|
\param A02 Input - matrix component |
164 |
|
|
\param A12 Input - matrix component |
165 |
|
|
\param A22 Input - matrix component |
166 |
|
|
\param V0 Output - vector component |
167 |
|
|
\param V1 Output - vector component |
168 |
|
|
\param V2 Output - vector component |
169 |
|
|
*/ |
170 |
|
|
inline |
171 |
|
|
void vectorInKernel3__nonZeroA00(const double A00,const double A10,const double A20, |
172 |
|
|
const double A01,const double A11,const double A21, |
173 |
|
|
const double A02,const double A12,const double A22, |
174 |
|
|
double* V0,double* V1,double* V2) |
175 |
|
|
{ |
176 |
|
|
double TEMP0,TEMP1; |
177 |
|
|
register const double I00=1./A00; |
178 |
|
|
register const double IA10=I00*A10; |
179 |
|
|
register const double IA20=I00*A20; |
180 |
|
|
vectorInKernel2(A11-IA10*A01,A21-IA20*A01,A12-IA10*A02,A22-IA20*A02,&TEMP0,&TEMP1); |
181 |
|
|
*V0=-(A10*TEMP0+A20*TEMP1); |
182 |
|
|
*V1=A00*TEMP0; |
183 |
|
|
*V2=A00*TEMP1; |
184 |
|
|
} |
185 |
|
|
|
186 |
|
|
/** |
187 |
|
|
\brief |
188 |
|
|
solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A. Eigenvectors are |
189 |
|
|
ordered by increasing value and eigen vectors are normalizeVector3d such that |
190 |
|
|
length is zero and first non-zero component is positive. |
191 |
|
|
|
192 |
|
|
\param A00 Input - A_00 |
193 |
|
|
\param A01 Input - A_01 |
194 |
|
|
\param A11 Input - A_11 |
195 |
|
|
\param ev0 Output - smallest eigenvalue |
196 |
|
|
\param ev1 Output - eigenvalue |
197 |
|
|
\param V00 Output - eigenvector componenent coresponding to ev0 |
198 |
|
|
\param V10 Output - eigenvector componenent coresponding to ev0 |
199 |
|
|
\param V01 Output - eigenvector componenent coresponding to ev1 |
200 |
|
|
\param V11 Output - eigenvector componenent coresponding to ev1 |
201 |
|
|
\param tol Input - tolerance to identify to eigenvalues |
202 |
|
|
*/ |
203 |
|
|
inline |
204 |
|
|
void eigenvalues_and_eigenvectors2(const double A00,const double A01,const double A11, |
205 |
|
|
double* ev0, double* ev1, |
206 |
|
|
double* V00, double* V10, double* V01, double* V11, |
207 |
|
|
const double tol) |
208 |
|
|
{ |
209 |
|
|
double TEMP0,TEMP1; |
210 |
|
|
eigenvalues2(A00,A01,A11,ev0,ev1); |
211 |
|
|
const register double absev0=fabs(*ev0); |
212 |
|
|
const register double absev1=fabs(*ev1); |
213 |
|
|
register double max_ev=absev0>absev1 ? absev0 : absev1; |
214 |
|
|
if (fabs((*ev0)-(*ev1))<tol*max_ev) { |
215 |
|
|
*V00=1.; |
216 |
|
|
*V10=0.; |
217 |
|
|
*V01=0.; |
218 |
|
|
*V11=1.; |
219 |
|
|
} else { |
220 |
|
|
vectorInKernel2(A00-(*ev0),A01,A01,A11-(*ev0),&TEMP0,&TEMP1); |
221 |
|
|
const register double scale=1./sqrt(TEMP0*TEMP0+TEMP1*TEMP1); |
222 |
|
|
if (TEMP0<0.) { |
223 |
|
|
*V00=-TEMP0*scale; |
224 |
|
|
*V10=-TEMP1*scale; |
225 |
|
|
if (TEMP1<0.) { |
226 |
|
|
*V01= *V10; |
227 |
|
|
*V11=-(*V00); |
228 |
|
|
} else { |
229 |
|
|
*V01=-(*V10); |
230 |
|
|
*V11= (*V00); |
231 |
|
|
} |
232 |
|
|
} else if (TEMP0>0.) { |
233 |
|
|
*V00=TEMP0*scale; |
234 |
|
|
*V10=TEMP1*scale; |
235 |
|
|
if (TEMP1<0.) { |
236 |
|
|
*V01=-(*V10); |
237 |
|
|
*V11= (*V00); |
238 |
|
|
} else { |
239 |
|
|
*V01= (*V10); |
240 |
|
|
*V11=-(*V00); |
241 |
|
|
} |
242 |
|
|
} else { |
243 |
|
|
*V00=0.; |
244 |
|
|
*V10=1; |
245 |
|
|
*V11=0.; |
246 |
|
|
*V01=1.; |
247 |
|
|
} |
248 |
|
|
} |
249 |
|
|
} |
250 |
|
|
/** |
251 |
|
|
\brief |
252 |
|
|
nomalizes a 3-d vector such that length is one and first non-zero component is positive. |
253 |
|
|
|
254 |
|
|
\param V0 - vector componenent |
255 |
|
|
\param V1 - vector componenent |
256 |
|
|
\param V2 - vector componenent |
257 |
|
|
*/ |
258 |
|
|
inline |
259 |
|
|
void normalizeVector3(double* V0,double* V1,double* V2) |
260 |
|
|
{ |
261 |
|
|
register double s; |
262 |
|
|
if (*V0>0) { |
263 |
|
|
s=1./sqrt((*V0)*(*V0)+(*V1)*(*V1)+(*V2)*(*V2)); |
264 |
|
|
*V0*=s; |
265 |
|
|
*V1*=s; |
266 |
|
|
*V2*=s; |
267 |
|
|
} else if (*V0<0) { |
268 |
|
|
s=-1./sqrt((*V0)*(*V0)+(*V1)*(*V1)+(*V2)*(*V2)); |
269 |
|
|
*V0*=s; |
270 |
|
|
*V1*=s; |
271 |
|
|
*V2*=s; |
272 |
|
|
} else { |
273 |
|
|
if (*V1>0) { |
274 |
|
|
s=1./sqrt((*V1)*(*V1)+(*V2)*(*V2)); |
275 |
|
|
*V1*=s; |
276 |
|
|
*V2*=s; |
277 |
|
|
} else if (*V1<0) { |
278 |
|
|
s=-1./sqrt((*V1)*(*V1)+(*V2)*(*V2)); |
279 |
|
|
*V1*=s; |
280 |
|
|
*V2*=s; |
281 |
|
|
} else { |
282 |
|
|
*V2=1.; |
283 |
|
|
} |
284 |
|
|
} |
285 |
|
|
} |
286 |
|
|
/** |
287 |
|
|
\brief |
288 |
|
|
solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A. Eigenvectors are |
289 |
|
|
ordered by increasing value and eigen vectors are normalizeVector3d such that |
290 |
|
|
length is zero and first non-zero component is positive. |
291 |
|
|
|
292 |
|
|
\param A00 Input - A_00 |
293 |
|
|
\param A01 Input - A_01 |
294 |
|
|
\param A11 Input - A_11 |
295 |
|
|
\param ev0 Output - smallest eigenvalue |
296 |
|
|
\param ev1 Output - eigenvalue |
297 |
|
|
\param V00 Output - eigenvector componenent coresponding to ev0 |
298 |
|
|
\param V10 Output - eigenvector componenent coresponding to ev0 |
299 |
|
|
\param V01 Output - eigenvector componenent coresponding to ev1 |
300 |
|
|
\param V11 Output - eigenvector componenent coresponding to ev1 |
301 |
|
|
\param tol Input - tolerance to identify to eigenvalues |
302 |
|
|
*/ |
303 |
|
|
inline |
304 |
|
|
void eigenvalues_and_eigenvectors3(const double A00, const double A01, const double A02, |
305 |
|
|
const double A11, const double A12, const double A22, |
306 |
|
|
double* ev0, double* ev1, double* ev2, |
307 |
|
|
double* V00, double* V10, double* V20, |
308 |
|
|
double* V01, double* V11, double* V21, |
309 |
|
|
double* V02, double* V12, double* V22, |
310 |
|
|
const double tol) |
311 |
|
|
{ |
312 |
|
|
register const double absA01=fabs(A01); |
313 |
|
|
register const double absA02=fabs(A02); |
314 |
|
|
register const double m=absA01>absA02 ? absA01 : absA02; |
315 |
|
|
if (m<=0) { |
316 |
|
|
double TEMP_V00,TEMP_V10,TEMP_V01,TEMP_V11,TEMP_EV0,TEMP_EV1; |
317 |
|
|
eigenvalues_and_eigenvectors2(A11,A12,A22, |
318 |
|
|
&TEMP_EV0,&TEMP_EV1, |
319 |
|
|
&TEMP_V00,&TEMP_V10,&TEMP_V01,&TEMP_V11,tol); |
320 |
|
|
if (A00<=TEMP_EV0) { |
321 |
|
|
*V00=1.; |
322 |
|
|
*V10=0.; |
323 |
|
|
*V20=0.; |
324 |
|
|
*V01=0.; |
325 |
|
|
*V11=TEMP_V00; |
326 |
|
|
*V21=TEMP_V10; |
327 |
|
|
*V02=0.; |
328 |
|
|
*V12=TEMP_V01; |
329 |
|
|
*V22=TEMP_V11; |
330 |
|
|
*ev0=A00; |
331 |
|
|
*ev1=TEMP_EV0; |
332 |
|
|
*ev2=TEMP_EV1; |
333 |
|
|
} else if (A00>TEMP_EV1) { |
334 |
|
|
*V00=TEMP_V00; |
335 |
|
|
*V10=TEMP_V10; |
336 |
|
|
*V20=0.; |
337 |
|
|
*V01=TEMP_V01; |
338 |
|
|
*V11=TEMP_V11; |
339 |
|
|
*V21=0.; |
340 |
|
|
*V02=0.; |
341 |
|
|
*V12=0.; |
342 |
|
|
*V22=1.; |
343 |
|
|
*ev0=TEMP_EV0; |
344 |
|
|
*ev1=TEMP_EV1; |
345 |
|
|
*ev0=A00; |
346 |
|
|
} else { |
347 |
|
|
*V00=TEMP_V00; |
348 |
|
|
*V10=0; |
349 |
|
|
*V20=TEMP_V10; |
350 |
|
|
*V01=0.; |
351 |
|
|
*V11=1.; |
352 |
|
|
*V21=0.; |
353 |
|
|
*V02=TEMP_V01; |
354 |
|
|
*V12=0.; |
355 |
|
|
*V22=TEMP_V11; |
356 |
|
|
*ev0=TEMP_EV0; |
357 |
|
|
*ev1=A00; |
358 |
|
|
*ev2=TEMP_EV1; |
359 |
|
|
} |
360 |
|
|
} else { |
361 |
|
|
eigenvalues3(A00,A01,A02,A11,A12,A22,ev0,ev1,ev2); |
362 |
|
|
const register double absev0=fabs(*ev0); |
363 |
|
|
const register double absev1=fabs(*ev1); |
364 |
|
|
const register double absev2=fabs(*ev2); |
365 |
|
|
register double max_ev=absev0>absev1 ? absev0 : absev1; |
366 |
|
|
max_ev=max_ev>absev2 ? max_ev : absev2; |
367 |
|
|
const register double d_01=fabs((*ev0)-(*ev1)); |
368 |
|
|
const register double d_12=fabs((*ev1)-(*ev2)); |
369 |
|
|
const register double max_d=d_01>d_12 ? d_01 : d_12; |
370 |
|
|
if (max_d<=tol*max_ev) { |
371 |
|
|
*V00=1.; |
372 |
|
|
*V10=0; |
373 |
|
|
*V20=0; |
374 |
|
|
*V01=0; |
375 |
|
|
*V11=1.; |
376 |
|
|
*V21=0; |
377 |
|
|
*V02=0; |
378 |
|
|
*V12=0; |
379 |
|
|
*V22=1.; |
380 |
|
|
} else { |
381 |
|
|
const register double S00=A00-(*ev0); |
382 |
|
|
const register double absS00=fabs(S00); |
383 |
|
|
if (fabs(S00)>m) { |
384 |
|
|
vectorInKernel3__nonZeroA00(S00,A01,A02,A01,A11-(*ev0),A12,A02,A12,A22-(*ev0),V00,V10,V20); |
385 |
|
|
} else if (absA02<m) { |
386 |
|
|
vectorInKernel3__nonZeroA00(A01,A11-(*ev0),A12,S00,A01,A02,A02,A12,A22-(*ev0),V00,V10,V20); |
387 |
|
|
} else { |
388 |
|
|
vectorInKernel3__nonZeroA00(A02,A12,A22-(*ev0),S00,A01,A02,A01,A11-(*ev0),A12,V00,V10,V20); |
389 |
|
|
} |
390 |
|
|
normalizeVector3(V00,V10,V20);; |
391 |
|
|
const register double T00=A00-(*ev2); |
392 |
|
|
const register double absT00=fabs(T00); |
393 |
|
|
if (fabs(T00)>m) { |
394 |
|
|
vectorInKernel3__nonZeroA00(T00,A01,A02,A01,A11-(*ev2),A12,A02,A12,A22-(*ev2),V02,V12,V22); |
395 |
|
|
} else if (absA02<m) { |
396 |
|
|
vectorInKernel3__nonZeroA00(A01,A11-(*ev2),A12,T00,A01,A02,A02,A12,A22-(*ev2),V02,V12,V22); |
397 |
|
|
} else { |
398 |
|
|
vectorInKernel3__nonZeroA00(A02,A12,A22-(*ev2),T00,A01,A02,A01,A11-(*ev2),A12,V02,V12,V22); |
399 |
|
|
} |
400 |
|
|
const register double dot=(*V02)*(*V00)+(*V12)*(*V10)+(*V22)*(*V20); |
401 |
|
|
*V02-=dot*(*V00); |
402 |
|
|
*V12-=dot*(*V10); |
403 |
|
|
*V22-=dot*(*V20); |
404 |
|
|
normalizeVector3(V02,V12,V22); |
405 |
|
|
*V01=(*V10)*(*V22)-(*V12)*(*V20); |
406 |
|
|
*V11=(*V20)*(*V02)-(*V00)*(*V22); |
407 |
|
|
*V21=(*V00)*(*V12)-(*V02)*(*V10); |
408 |
|
|
normalizeVector3(V01,V11,V21); |
409 |
|
|
} |
410 |
|
|
} |
411 |
|
|
} |
412 |
gross |
576 |
} // end of namespace |
413 |
|
|
#endif |