1 |
|
2 |
/* $Id$ */ |
3 |
|
4 |
/******************************************************* |
5 |
* |
6 |
* Copyright 2003-2007 by ACceSS MNRF |
7 |
* Copyright 2007 by University of Queensland |
8 |
* |
9 |
* http://esscc.uq.edu.au |
10 |
* Primary Business: Queensland, Australia |
11 |
* Licensed under the Open Software License version 3.0 |
12 |
* http://www.opensource.org/licenses/osl-3.0.php |
13 |
* |
14 |
*******************************************************/ |
15 |
|
16 |
#if !defined escript_LocalOps_H |
17 |
#define escript_LocalOps_H |
18 |
#ifdef __INTEL_COMPILER |
19 |
# include <mathimf.h> |
20 |
#else |
21 |
# include <math.h> |
22 |
#endif |
23 |
#ifndef M_PI |
24 |
# define M_PI 3.14159265358979323846 /* pi */ |
25 |
#endif |
26 |
|
27 |
namespace escript { |
28 |
|
29 |
|
30 |
/** |
31 |
\brief |
32 |
solves a 1x1 eigenvalue A*V=ev*V problem |
33 |
|
34 |
\param A00 Input - A_00 |
35 |
\param ev0 Output - eigenvalue |
36 |
*/ |
37 |
inline |
38 |
void eigenvalues1(const double A00,double* ev0) { |
39 |
|
40 |
*ev0=A00; |
41 |
|
42 |
} |
43 |
/** |
44 |
\brief |
45 |
solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A |
46 |
|
47 |
\param A00 Input - A_00 |
48 |
\param A01 Input - A_01 |
49 |
\param A11 Input - A_11 |
50 |
\param ev0 Output - smallest eigenvalue |
51 |
\param ev1 Output - largest eigenvalue |
52 |
*/ |
53 |
inline |
54 |
void eigenvalues2(const double A00,const double A01,const double A11, |
55 |
double* ev0, double* ev1) { |
56 |
const register double trA=(A00+A11)/2.; |
57 |
const register double A_00=A00-trA; |
58 |
const register double A_11=A11-trA; |
59 |
const register double s=sqrt(A01*A01-A_00*A_11); |
60 |
*ev0=trA-s; |
61 |
*ev1=trA+s; |
62 |
} |
63 |
/** |
64 |
\brief |
65 |
solves a 3x3 eigenvalue A*V=ev*V problem for symmetric A |
66 |
|
67 |
\param A00 Input - A_00 |
68 |
\param A01 Input - A_01 |
69 |
\param A02 Input - A_02 |
70 |
\param A11 Input - A_11 |
71 |
\param A12 Input - A_12 |
72 |
\param A22 Input - A_22 |
73 |
\param ev0 Output - smallest eigenvalue |
74 |
\param ev1 Output - eigenvalue |
75 |
\param ev2 Output - largest eigenvalue |
76 |
*/ |
77 |
inline |
78 |
void eigenvalues3(const double A00, const double A01, const double A02, |
79 |
const double A11, const double A12, |
80 |
const double A22, |
81 |
double* ev0, double* ev1,double* ev2) { |
82 |
|
83 |
const register double trA=(A00+A11+A22)/3.; |
84 |
const register double A_00=A00-trA; |
85 |
const register double A_11=A11-trA; |
86 |
const register double A_22=A22-trA; |
87 |
const register double A01_2=A01*A01; |
88 |
const register double A02_2=A02*A02; |
89 |
const register double A12_2=A12*A12; |
90 |
const register double p=A02_2+A12_2+A01_2+(A_00*A_00+A_11*A_11+A_22*A_22)/2.; |
91 |
if (p<=0.) { |
92 |
*ev2=trA; |
93 |
*ev1=trA; |
94 |
*ev0=trA; |
95 |
|
96 |
} else { |
97 |
const register double q=(A02_2*A_11+A12_2*A_00+A01_2*A_22)-(A_00*A_11*A_22+2*A01*A12*A02); |
98 |
const register double sq_p=sqrt(p/3.); |
99 |
register double z=-q/(2*pow(sq_p,3)); |
100 |
if (z<-1.) { |
101 |
z=-1.; |
102 |
} else if (z>1.) { |
103 |
z=1.; |
104 |
} |
105 |
const register double alpha_3=acos(z)/3.; |
106 |
*ev2=trA+2.*sq_p*cos(alpha_3); |
107 |
*ev1=trA-2.*sq_p*cos(alpha_3+M_PI/3.); |
108 |
*ev0=trA-2.*sq_p*cos(alpha_3-M_PI/3.); |
109 |
} |
110 |
} |
111 |
/** |
112 |
\brief |
113 |
solves a 1x1 eigenvalue A*V=ev*V problem for symmetric A |
114 |
|
115 |
\param A00 Input - A_00 |
116 |
\param ev0 Output - eigenvalue |
117 |
\param V00 Output - eigenvector |
118 |
\param tol Input - tolerance to identify to eigenvalues |
119 |
*/ |
120 |
inline |
121 |
void eigenvalues_and_eigenvectors1(const double A00,double* ev0,double* V00,const double tol) |
122 |
{ |
123 |
eigenvalues1(A00,ev0); |
124 |
*V00=1.; |
125 |
return; |
126 |
} |
127 |
/** |
128 |
\brief |
129 |
returns a non-zero vector in the kernel of [[A00,A01],[A01,A11]] assuming that the kernel dimension is at least 1. |
130 |
|
131 |
\param A00 Input - matrix component |
132 |
\param A10 Input - matrix component |
133 |
\param A01 Input - matrix component |
134 |
\param A11 Input - matrix component |
135 |
\param V0 Output - vector component |
136 |
\param V1 Output - vector component |
137 |
*/ |
138 |
inline |
139 |
void vectorInKernel2(const double A00,const double A10,const double A01,const double A11, |
140 |
double* V0, double*V1) |
141 |
{ |
142 |
register double absA00=fabs(A00); |
143 |
register double absA10=fabs(A10); |
144 |
register double absA01=fabs(A01); |
145 |
register double absA11=fabs(A11); |
146 |
register double m=absA11>absA10 ? absA11 : absA10; |
147 |
if (absA00>m || absA01>m) { |
148 |
*V0=-A01; |
149 |
*V1=A00; |
150 |
} else { |
151 |
if (m<=0) { |
152 |
*V0=1.; |
153 |
*V1=0.; |
154 |
} else { |
155 |
*V0=A11; |
156 |
*V1=-A10; |
157 |
} |
158 |
} |
159 |
} |
160 |
/** |
161 |
\brief |
162 |
returns a non-zero vector in the kernel of [[A00,A01,A02],[A10,A11,A12],[A20,A21,A22]] |
163 |
assuming that the kernel dimension is at least 1 and A00 is non zero. |
164 |
|
165 |
\param A00 Input - matrix component |
166 |
\param A10 Input - matrix component |
167 |
\param A20 Input - matrix component |
168 |
\param A01 Input - matrix component |
169 |
\param A11 Input - matrix component |
170 |
\param A21 Input - matrix component |
171 |
\param A02 Input - matrix component |
172 |
\param A12 Input - matrix component |
173 |
\param A22 Input - matrix component |
174 |
\param V0 Output - vector component |
175 |
\param V1 Output - vector component |
176 |
\param V2 Output - vector component |
177 |
*/ |
178 |
inline |
179 |
void vectorInKernel3__nonZeroA00(const double A00,const double A10,const double A20, |
180 |
const double A01,const double A11,const double A21, |
181 |
const double A02,const double A12,const double A22, |
182 |
double* V0,double* V1,double* V2) |
183 |
{ |
184 |
double TEMP0,TEMP1; |
185 |
register const double I00=1./A00; |
186 |
register const double IA10=I00*A10; |
187 |
register const double IA20=I00*A20; |
188 |
vectorInKernel2(A11-IA10*A01,A12-IA10*A02, |
189 |
A21-IA20*A01,A22-IA20*A02,&TEMP0,&TEMP1); |
190 |
*V0=-(A10*TEMP0+A20*TEMP1); |
191 |
*V1=A00*TEMP0; |
192 |
*V2=A00*TEMP1; |
193 |
} |
194 |
|
195 |
/** |
196 |
\brief |
197 |
solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A. Eigenvectors are |
198 |
ordered by increasing value and eigen vectors are normalizeVector3d such that |
199 |
length is zero and first non-zero component is positive. |
200 |
|
201 |
\param A00 Input - A_00 |
202 |
\param A01 Input - A_01 |
203 |
\param A11 Input - A_11 |
204 |
\param ev0 Output - smallest eigenvalue |
205 |
\param ev1 Output - eigenvalue |
206 |
\param V00 Output - eigenvector componenent coresponding to ev0 |
207 |
\param V10 Output - eigenvector componenent coresponding to ev0 |
208 |
\param V01 Output - eigenvector componenent coresponding to ev1 |
209 |
\param V11 Output - eigenvector componenent coresponding to ev1 |
210 |
\param tol Input - tolerance to identify to eigenvalues |
211 |
*/ |
212 |
inline |
213 |
void eigenvalues_and_eigenvectors2(const double A00,const double A01,const double A11, |
214 |
double* ev0, double* ev1, |
215 |
double* V00, double* V10, double* V01, double* V11, |
216 |
const double tol) |
217 |
{ |
218 |
double TEMP0,TEMP1; |
219 |
eigenvalues2(A00,A01,A11,ev0,ev1); |
220 |
const register double absev0=fabs(*ev0); |
221 |
const register double absev1=fabs(*ev1); |
222 |
register double max_ev=absev0>absev1 ? absev0 : absev1; |
223 |
if (fabs((*ev0)-(*ev1))<tol*max_ev) { |
224 |
*V00=1.; |
225 |
*V10=0.; |
226 |
*V01=0.; |
227 |
*V11=1.; |
228 |
} else { |
229 |
vectorInKernel2(A00-(*ev0),A01,A01,A11-(*ev0),&TEMP0,&TEMP1); |
230 |
const register double scale=1./sqrt(TEMP0*TEMP0+TEMP1*TEMP1); |
231 |
if (TEMP0<0.) { |
232 |
*V00=-TEMP0*scale; |
233 |
*V10=-TEMP1*scale; |
234 |
if (TEMP1<0.) { |
235 |
*V01= *V10; |
236 |
*V11=-(*V00); |
237 |
} else { |
238 |
*V01=-(*V10); |
239 |
*V11= (*V10); |
240 |
} |
241 |
} else if (TEMP0>0.) { |
242 |
*V00=TEMP0*scale; |
243 |
*V10=TEMP1*scale; |
244 |
if (TEMP1<0.) { |
245 |
*V01=-(*V10); |
246 |
*V11= (*V00); |
247 |
} else { |
248 |
*V01= (*V10); |
249 |
*V11=-(*V00); |
250 |
} |
251 |
} else { |
252 |
*V00=0.; |
253 |
*V10=1; |
254 |
*V11=0.; |
255 |
*V01=1.; |
256 |
} |
257 |
} |
258 |
} |
259 |
/** |
260 |
\brief |
261 |
nomalizes a 3-d vector such that length is one and first non-zero component is positive. |
262 |
|
263 |
\param V0 - vector componenent |
264 |
\param V1 - vector componenent |
265 |
\param V2 - vector componenent |
266 |
*/ |
267 |
inline |
268 |
void normalizeVector3(double* V0,double* V1,double* V2) |
269 |
{ |
270 |
register double s; |
271 |
if (*V0>0) { |
272 |
s=1./sqrt((*V0)*(*V0)+(*V1)*(*V1)+(*V2)*(*V2)); |
273 |
*V0*=s; |
274 |
*V1*=s; |
275 |
*V2*=s; |
276 |
} else if (*V0<0) { |
277 |
s=-1./sqrt((*V0)*(*V0)+(*V1)*(*V1)+(*V2)*(*V2)); |
278 |
*V0*=s; |
279 |
*V1*=s; |
280 |
*V2*=s; |
281 |
} else { |
282 |
if (*V1>0) { |
283 |
s=1./sqrt((*V1)*(*V1)+(*V2)*(*V2)); |
284 |
*V1*=s; |
285 |
*V2*=s; |
286 |
} else if (*V1<0) { |
287 |
s=-1./sqrt((*V1)*(*V1)+(*V2)*(*V2)); |
288 |
*V1*=s; |
289 |
*V2*=s; |
290 |
} else { |
291 |
*V2=1.; |
292 |
} |
293 |
} |
294 |
} |
295 |
/** |
296 |
\brief |
297 |
solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A. Eigenvectors are |
298 |
ordered by increasing value and eigen vectors are normalizeVector3d such that |
299 |
length is zero and first non-zero component is positive. |
300 |
|
301 |
\param A00 Input - A_00 |
302 |
\param A01 Input - A_01 |
303 |
\param A11 Input - A_11 |
304 |
\param ev0 Output - smallest eigenvalue |
305 |
\param ev1 Output - eigenvalue |
306 |
\param V00 Output - eigenvector componenent coresponding to ev0 |
307 |
\param V10 Output - eigenvector componenent coresponding to ev0 |
308 |
\param V01 Output - eigenvector componenent coresponding to ev1 |
309 |
\param V11 Output - eigenvector componenent coresponding to ev1 |
310 |
\param tol Input - tolerance to identify to eigenvalues |
311 |
*/ |
312 |
inline |
313 |
void eigenvalues_and_eigenvectors3(const double A00, const double A01, const double A02, |
314 |
const double A11, const double A12, const double A22, |
315 |
double* ev0, double* ev1, double* ev2, |
316 |
double* V00, double* V10, double* V20, |
317 |
double* V01, double* V11, double* V21, |
318 |
double* V02, double* V12, double* V22, |
319 |
const double tol) |
320 |
{ |
321 |
register const double absA01=fabs(A01); |
322 |
register const double absA02=fabs(A02); |
323 |
register const double m=absA01>absA02 ? absA01 : absA02; |
324 |
if (m<=0) { |
325 |
double TEMP_V00,TEMP_V10,TEMP_V01,TEMP_V11,TEMP_EV0,TEMP_EV1; |
326 |
eigenvalues_and_eigenvectors2(A11,A12,A22, |
327 |
&TEMP_EV0,&TEMP_EV1, |
328 |
&TEMP_V00,&TEMP_V10,&TEMP_V01,&TEMP_V11,tol); |
329 |
if (A00<=TEMP_EV0) { |
330 |
*V00=1.; |
331 |
*V10=0.; |
332 |
*V20=0.; |
333 |
*V01=0.; |
334 |
*V11=TEMP_V00; |
335 |
*V21=TEMP_V10; |
336 |
*V02=0.; |
337 |
*V12=TEMP_V01; |
338 |
*V22=TEMP_V11; |
339 |
*ev0=A00; |
340 |
*ev1=TEMP_EV0; |
341 |
*ev2=TEMP_EV1; |
342 |
} else if (A00>TEMP_EV1) { |
343 |
*V02=1.; |
344 |
*V12=0.; |
345 |
*V22=0.; |
346 |
*V00=0.; |
347 |
*V10=TEMP_V00; |
348 |
*V20=TEMP_V10; |
349 |
*V01=0.; |
350 |
*V11=TEMP_V01; |
351 |
*V21=TEMP_V11; |
352 |
*ev0=TEMP_EV0; |
353 |
*ev1=TEMP_EV1; |
354 |
*ev2=A00; |
355 |
} else { |
356 |
*V01=1.; |
357 |
*V11=0.; |
358 |
*V21=0.; |
359 |
*V00=0.; |
360 |
*V10=TEMP_V00; |
361 |
*V20=TEMP_V10; |
362 |
*V02=0.; |
363 |
*V12=TEMP_V01; |
364 |
*V22=TEMP_V11; |
365 |
*ev0=TEMP_EV0; |
366 |
*ev1=A00; |
367 |
*ev2=TEMP_EV1; |
368 |
} |
369 |
} else { |
370 |
eigenvalues3(A00,A01,A02,A11,A12,A22,ev0,ev1,ev2); |
371 |
const register double absev0=fabs(*ev0); |
372 |
const register double absev1=fabs(*ev1); |
373 |
const register double absev2=fabs(*ev2); |
374 |
register double max_ev=absev0>absev1 ? absev0 : absev1; |
375 |
max_ev=max_ev>absev2 ? max_ev : absev2; |
376 |
const register double d_01=fabs((*ev0)-(*ev1)); |
377 |
const register double d_12=fabs((*ev1)-(*ev2)); |
378 |
const register double max_d=d_01>d_12 ? d_01 : d_12; |
379 |
if (max_d<=tol*max_ev) { |
380 |
*V00=1.; |
381 |
*V10=0; |
382 |
*V20=0; |
383 |
*V01=0; |
384 |
*V11=1.; |
385 |
*V21=0; |
386 |
*V02=0; |
387 |
*V12=0; |
388 |
*V22=1.; |
389 |
} else { |
390 |
const register double S00=A00-(*ev0); |
391 |
const register double absS00=fabs(S00); |
392 |
if (fabs(S00)>m) { |
393 |
vectorInKernel3__nonZeroA00(S00,A01,A02,A01,A11-(*ev0),A12,A02,A12,A22-(*ev0),V00,V10,V20); |
394 |
} else if (absA02<m) { |
395 |
vectorInKernel3__nonZeroA00(A01,A11-(*ev0),A12,S00,A01,A02,A02,A12,A22-(*ev0),V00,V10,V20); |
396 |
} else { |
397 |
vectorInKernel3__nonZeroA00(A02,A12,A22-(*ev0),S00,A01,A02,A01,A11-(*ev0),A12,V00,V10,V20); |
398 |
} |
399 |
normalizeVector3(V00,V10,V20);; |
400 |
const register double T00=A00-(*ev2); |
401 |
const register double absT00=fabs(T00); |
402 |
if (fabs(T00)>m) { |
403 |
vectorInKernel3__nonZeroA00(T00,A01,A02,A01,A11-(*ev2),A12,A02,A12,A22-(*ev2),V02,V12,V22); |
404 |
} else if (absA02<m) { |
405 |
vectorInKernel3__nonZeroA00(A01,A11-(*ev2),A12,T00,A01,A02,A02,A12,A22-(*ev2),V02,V12,V22); |
406 |
} else { |
407 |
vectorInKernel3__nonZeroA00(A02,A12,A22-(*ev2),T00,A01,A02,A01,A11-(*ev2),A12,V02,V12,V22); |
408 |
} |
409 |
const register double dot=(*V02)*(*V00)+(*V12)*(*V10)+(*V22)*(*V20); |
410 |
*V02-=dot*(*V00); |
411 |
*V12-=dot*(*V10); |
412 |
*V22-=dot*(*V20); |
413 |
normalizeVector3(V02,V12,V22); |
414 |
*V01=(*V10)*(*V22)-(*V12)*(*V20); |
415 |
*V11=(*V20)*(*V02)-(*V00)*(*V22); |
416 |
*V21=(*V00)*(*V12)-(*V02)*(*V10); |
417 |
normalizeVector3(V01,V11,V21); |
418 |
} |
419 |
} |
420 |
} |
421 |
|
422 |
// General tensor product: arg_2(SL x SR) = arg_0(SL x SM) * arg_1(SM x SR) |
423 |
// SM is the product of the last axis_offset entries in arg_0.getShape(). |
424 |
inline |
425 |
void matrix_matrix_product(const int SL, const int SM, const int SR, const double* A, const double* B, double* C, int transpose) |
426 |
{ |
427 |
if (transpose == 0) { |
428 |
for (int i=0; i<SL; i++) { |
429 |
for (int j=0; j<SR; j++) { |
430 |
double sum = 0.0; |
431 |
for (int l=0; l<SM; l++) { |
432 |
sum += A[i+SL*l] * B[l+SM*j]; |
433 |
} |
434 |
C[i+SL*j] = sum; |
435 |
} |
436 |
} |
437 |
} |
438 |
else if (transpose == 1) { |
439 |
for (int i=0; i<SL; i++) { |
440 |
for (int j=0; j<SR; j++) { |
441 |
double sum = 0.0; |
442 |
for (int l=0; l<SM; l++) { |
443 |
sum += A[i*SM+l] * B[l+SM*j]; |
444 |
} |
445 |
C[i+SL*j] = sum; |
446 |
} |
447 |
} |
448 |
} |
449 |
else if (transpose == 2) { |
450 |
for (int i=0; i<SL; i++) { |
451 |
for (int j=0; j<SR; j++) { |
452 |
double sum = 0.0; |
453 |
for (int l=0; l<SM; l++) { |
454 |
sum += A[i+SL*l] * B[l*SR+j]; |
455 |
} |
456 |
C[i+SL*j] = sum; |
457 |
} |
458 |
} |
459 |
} |
460 |
} |
461 |
|
462 |
template <typename BinaryFunction> |
463 |
inline void tensor_binary_operation(const int size, |
464 |
const double *arg1, |
465 |
const double *arg2, |
466 |
double * argRes, |
467 |
BinaryFunction operation) |
468 |
{ |
469 |
for (int i = 0; i < size; ++i) { |
470 |
argRes[i] = operation(arg1[i], arg2[i]); |
471 |
} |
472 |
return; |
473 |
} |
474 |
|
475 |
template <typename BinaryFunction> |
476 |
inline void tensor_binary_operation(const int size, |
477 |
double arg1, |
478 |
const double *arg2, |
479 |
double *argRes, |
480 |
BinaryFunction operation) |
481 |
{ |
482 |
for (int i = 0; i < size; ++i) { |
483 |
argRes[i] = operation(arg1, arg2[i]); |
484 |
} |
485 |
return; |
486 |
} |
487 |
|
488 |
template <typename BinaryFunction> |
489 |
inline void tensor_binary_operation(const int size, |
490 |
const double *arg1, |
491 |
double arg2, |
492 |
double *argRes, |
493 |
BinaryFunction operation) |
494 |
{ |
495 |
for (int i = 0; i < size; ++i) { |
496 |
argRes[i] = operation(arg1[i], arg2); |
497 |
} |
498 |
return; |
499 |
} |
500 |
|
501 |
} // end of namespace |
502 |
#endif |