1 |
|
2 |
/******************************************************* |
3 |
* |
4 |
* Copyright (c) 2003-2009 by University of Queensland |
5 |
* Earth Systems Science Computational Center (ESSCC) |
6 |
* http://www.uq.edu.au/esscc |
7 |
* |
8 |
* Primary Business: Queensland, Australia |
9 |
* Licensed under the Open Software License version 3.0 |
10 |
* http://www.opensource.org/licenses/osl-3.0.php |
11 |
* |
12 |
*******************************************************/ |
13 |
|
14 |
|
15 |
#if !defined escript_LocalOps_H |
16 |
#define escript_LocalOps_H |
17 |
#if defined(_WIN32) && defined(__INTEL_COMPILER) |
18 |
# include <mathimf.h> |
19 |
#else |
20 |
# include <math.h> |
21 |
#endif |
22 |
#ifndef M_PI |
23 |
# define M_PI 3.14159265358979323846 /* pi */ |
24 |
#endif |
25 |
|
26 |
|
27 |
/** |
28 |
\file LocalOps.h |
29 |
\brief Describes binary operations performed on double*. |
30 |
|
31 |
For operations on DataAbstract see BinaryOp.h. |
32 |
For operations on DataVector see DataMaths.h. |
33 |
*/ |
34 |
|
35 |
namespace escript { |
36 |
|
37 |
/** |
38 |
\brief acts as a wrapper to isnan. |
39 |
\warning if compiler does not support FP_NAN this function will always return false. |
40 |
*/ |
41 |
inline |
42 |
bool nancheck(double d) |
43 |
{ |
44 |
#ifndef isnan // Q: so why not just test d!=d? |
45 |
return false; // A: Coz it doesn't always work [I've checked]. |
46 |
#else // One theory is that the optimizer skips the test. |
47 |
return isnan(d); |
48 |
#endif |
49 |
} |
50 |
|
51 |
/** |
52 |
\brief returns a NaN. |
53 |
\warning Should probably only used where you know you can test for NaNs |
54 |
*/ |
55 |
inline |
56 |
double makeNaN() |
57 |
{ |
58 |
#ifdef isnan |
59 |
return nan(""); |
60 |
#else |
61 |
return sqrt(-1); |
62 |
#endif |
63 |
|
64 |
} |
65 |
|
66 |
|
67 |
/** |
68 |
\brief |
69 |
solves a 1x1 eigenvalue A*V=ev*V problem |
70 |
|
71 |
\param A00 Input - A_00 |
72 |
\param ev0 Output - eigenvalue |
73 |
*/ |
74 |
inline |
75 |
void eigenvalues1(const double A00,double* ev0) { |
76 |
|
77 |
*ev0=A00; |
78 |
|
79 |
} |
80 |
/** |
81 |
\brief |
82 |
solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A |
83 |
|
84 |
\param A00 Input - A_00 |
85 |
\param A01 Input - A_01 |
86 |
\param A11 Input - A_11 |
87 |
\param ev0 Output - smallest eigenvalue |
88 |
\param ev1 Output - largest eigenvalue |
89 |
*/ |
90 |
inline |
91 |
void eigenvalues2(const double A00,const double A01,const double A11, |
92 |
double* ev0, double* ev1) { |
93 |
const register double trA=(A00+A11)/2.; |
94 |
const register double A_00=A00-trA; |
95 |
const register double A_11=A11-trA; |
96 |
const register double s=sqrt(A01*A01-A_00*A_11); |
97 |
*ev0=trA-s; |
98 |
*ev1=trA+s; |
99 |
} |
100 |
/** |
101 |
\brief |
102 |
solves a 3x3 eigenvalue A*V=ev*V problem for symmetric A |
103 |
|
104 |
\param A00 Input - A_00 |
105 |
\param A01 Input - A_01 |
106 |
\param A02 Input - A_02 |
107 |
\param A11 Input - A_11 |
108 |
\param A12 Input - A_12 |
109 |
\param A22 Input - A_22 |
110 |
\param ev0 Output - smallest eigenvalue |
111 |
\param ev1 Output - eigenvalue |
112 |
\param ev2 Output - largest eigenvalue |
113 |
*/ |
114 |
inline |
115 |
void eigenvalues3(const double A00, const double A01, const double A02, |
116 |
const double A11, const double A12, |
117 |
const double A22, |
118 |
double* ev0, double* ev1,double* ev2) { |
119 |
|
120 |
const register double trA=(A00+A11+A22)/3.; |
121 |
const register double A_00=A00-trA; |
122 |
const register double A_11=A11-trA; |
123 |
const register double A_22=A22-trA; |
124 |
const register double A01_2=A01*A01; |
125 |
const register double A02_2=A02*A02; |
126 |
const register double A12_2=A12*A12; |
127 |
const register double p=A02_2+A12_2+A01_2+(A_00*A_00+A_11*A_11+A_22*A_22)/2.; |
128 |
if (p<=0.) { |
129 |
*ev2=trA; |
130 |
*ev1=trA; |
131 |
*ev0=trA; |
132 |
|
133 |
} else { |
134 |
const register double q=(A02_2*A_11+A12_2*A_00+A01_2*A_22)-(A_00*A_11*A_22+2*A01*A12*A02); |
135 |
const register double sq_p=sqrt(p/3.); |
136 |
register double z=-q/(2*pow(sq_p,3)); |
137 |
if (z<-1.) { |
138 |
z=-1.; |
139 |
} else if (z>1.) { |
140 |
z=1.; |
141 |
} |
142 |
const register double alpha_3=acos(z)/3.; |
143 |
*ev2=trA+2.*sq_p*cos(alpha_3); |
144 |
*ev1=trA-2.*sq_p*cos(alpha_3+M_PI/3.); |
145 |
*ev0=trA-2.*sq_p*cos(alpha_3-M_PI/3.); |
146 |
} |
147 |
} |
148 |
/** |
149 |
\brief |
150 |
solves a 1x1 eigenvalue A*V=ev*V problem for symmetric A |
151 |
|
152 |
\param A00 Input - A_00 |
153 |
\param ev0 Output - eigenvalue |
154 |
\param V00 Output - eigenvector |
155 |
\param tol Input - tolerance to identify to eigenvalues |
156 |
*/ |
157 |
inline |
158 |
void eigenvalues_and_eigenvectors1(const double A00,double* ev0,double* V00,const double tol) |
159 |
{ |
160 |
eigenvalues1(A00,ev0); |
161 |
*V00=1.; |
162 |
return; |
163 |
} |
164 |
/** |
165 |
\brief |
166 |
returns a non-zero vector in the kernel of [[A00,A01],[A01,A11]] assuming that the kernel dimension is at least 1. |
167 |
|
168 |
\param A00 Input - matrix component |
169 |
\param A10 Input - matrix component |
170 |
\param A01 Input - matrix component |
171 |
\param A11 Input - matrix component |
172 |
\param V0 Output - vector component |
173 |
\param V1 Output - vector component |
174 |
*/ |
175 |
inline |
176 |
void vectorInKernel2(const double A00,const double A10,const double A01,const double A11, |
177 |
double* V0, double*V1) |
178 |
{ |
179 |
register double absA00=fabs(A00); |
180 |
register double absA10=fabs(A10); |
181 |
register double absA01=fabs(A01); |
182 |
register double absA11=fabs(A11); |
183 |
register double m=absA11>absA10 ? absA11 : absA10; |
184 |
if (absA00>m || absA01>m) { |
185 |
*V0=-A01; |
186 |
*V1=A00; |
187 |
} else { |
188 |
if (m<=0) { |
189 |
*V0=1.; |
190 |
*V1=0.; |
191 |
} else { |
192 |
*V0=A11; |
193 |
*V1=-A10; |
194 |
} |
195 |
} |
196 |
} |
197 |
/** |
198 |
\brief |
199 |
returns a non-zero vector in the kernel of [[A00,A01,A02],[A10,A11,A12],[A20,A21,A22]] |
200 |
assuming that the kernel dimension is at least 1 and A00 is non zero. |
201 |
|
202 |
\param A00 Input - matrix component |
203 |
\param A10 Input - matrix component |
204 |
\param A20 Input - matrix component |
205 |
\param A01 Input - matrix component |
206 |
\param A11 Input - matrix component |
207 |
\param A21 Input - matrix component |
208 |
\param A02 Input - matrix component |
209 |
\param A12 Input - matrix component |
210 |
\param A22 Input - matrix component |
211 |
\param V0 Output - vector component |
212 |
\param V1 Output - vector component |
213 |
\param V2 Output - vector component |
214 |
*/ |
215 |
inline |
216 |
void vectorInKernel3__nonZeroA00(const double A00,const double A10,const double A20, |
217 |
const double A01,const double A11,const double A21, |
218 |
const double A02,const double A12,const double A22, |
219 |
double* V0,double* V1,double* V2) |
220 |
{ |
221 |
double TEMP0,TEMP1; |
222 |
register const double I00=1./A00; |
223 |
register const double IA10=I00*A10; |
224 |
register const double IA20=I00*A20; |
225 |
vectorInKernel2(A11-IA10*A01,A12-IA10*A02, |
226 |
A21-IA20*A01,A22-IA20*A02,&TEMP0,&TEMP1); |
227 |
*V0=-(A10*TEMP0+A20*TEMP1); |
228 |
*V1=A00*TEMP0; |
229 |
*V2=A00*TEMP1; |
230 |
} |
231 |
|
232 |
/** |
233 |
\brief |
234 |
solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A. Eigenvectors are |
235 |
ordered by increasing value and eigen vectors are normalizeVector3d such that |
236 |
length is zero and first non-zero component is positive. |
237 |
|
238 |
\param A00 Input - A_00 |
239 |
\param A01 Input - A_01 |
240 |
\param A11 Input - A_11 |
241 |
\param ev0 Output - smallest eigenvalue |
242 |
\param ev1 Output - eigenvalue |
243 |
\param V00 Output - eigenvector componenent coresponding to ev0 |
244 |
\param V10 Output - eigenvector componenent coresponding to ev0 |
245 |
\param V01 Output - eigenvector componenent coresponding to ev1 |
246 |
\param V11 Output - eigenvector componenent coresponding to ev1 |
247 |
\param tol Input - tolerance to identify to eigenvalues |
248 |
*/ |
249 |
inline |
250 |
void eigenvalues_and_eigenvectors2(const double A00,const double A01,const double A11, |
251 |
double* ev0, double* ev1, |
252 |
double* V00, double* V10, double* V01, double* V11, |
253 |
const double tol) |
254 |
{ |
255 |
double TEMP0,TEMP1; |
256 |
eigenvalues2(A00,A01,A11,ev0,ev1); |
257 |
const register double absev0=fabs(*ev0); |
258 |
const register double absev1=fabs(*ev1); |
259 |
register double max_ev=absev0>absev1 ? absev0 : absev1; |
260 |
if (fabs((*ev0)-(*ev1))<tol*max_ev) { |
261 |
*V00=1.; |
262 |
*V10=0.; |
263 |
*V01=0.; |
264 |
*V11=1.; |
265 |
} else { |
266 |
vectorInKernel2(A00-(*ev0),A01,A01,A11-(*ev0),&TEMP0,&TEMP1); |
267 |
const register double scale=1./sqrt(TEMP0*TEMP0+TEMP1*TEMP1); |
268 |
if (TEMP0<0.) { |
269 |
*V00=-TEMP0*scale; |
270 |
*V10=-TEMP1*scale; |
271 |
if (TEMP1<0.) { |
272 |
*V01= *V10; |
273 |
*V11=-(*V00); |
274 |
} else { |
275 |
*V01=-(*V10); |
276 |
*V11= (*V10); |
277 |
} |
278 |
} else if (TEMP0>0.) { |
279 |
*V00=TEMP0*scale; |
280 |
*V10=TEMP1*scale; |
281 |
if (TEMP1<0.) { |
282 |
*V01=-(*V10); |
283 |
*V11= (*V00); |
284 |
} else { |
285 |
*V01= (*V10); |
286 |
*V11=-(*V00); |
287 |
} |
288 |
} else { |
289 |
*V00=0.; |
290 |
*V10=1; |
291 |
*V11=0.; |
292 |
*V01=1.; |
293 |
} |
294 |
} |
295 |
} |
296 |
/** |
297 |
\brief |
298 |
nomalizes a 3-d vector such that length is one and first non-zero component is positive. |
299 |
|
300 |
\param V0 - vector componenent |
301 |
\param V1 - vector componenent |
302 |
\param V2 - vector componenent |
303 |
*/ |
304 |
inline |
305 |
void normalizeVector3(double* V0,double* V1,double* V2) |
306 |
{ |
307 |
register double s; |
308 |
if (*V0>0) { |
309 |
s=1./sqrt((*V0)*(*V0)+(*V1)*(*V1)+(*V2)*(*V2)); |
310 |
*V0*=s; |
311 |
*V1*=s; |
312 |
*V2*=s; |
313 |
} else if (*V0<0) { |
314 |
s=-1./sqrt((*V0)*(*V0)+(*V1)*(*V1)+(*V2)*(*V2)); |
315 |
*V0*=s; |
316 |
*V1*=s; |
317 |
*V2*=s; |
318 |
} else { |
319 |
if (*V1>0) { |
320 |
s=1./sqrt((*V1)*(*V1)+(*V2)*(*V2)); |
321 |
*V1*=s; |
322 |
*V2*=s; |
323 |
} else if (*V1<0) { |
324 |
s=-1./sqrt((*V1)*(*V1)+(*V2)*(*V2)); |
325 |
*V1*=s; |
326 |
*V2*=s; |
327 |
} else { |
328 |
*V2=1.; |
329 |
} |
330 |
} |
331 |
} |
332 |
/** |
333 |
\brief |
334 |
solves a 2x2 eigenvalue A*V=ev*V problem for symmetric A. Eigenvectors are |
335 |
ordered by increasing value and eigen vectors are normalizeVector3d such that |
336 |
length is zero and first non-zero component is positive. |
337 |
|
338 |
\param A00 Input - A_00 |
339 |
\param A01 Input - A_01 |
340 |
\param A02 Input - A_02 |
341 |
\param A11 Input - A_11 |
342 |
\param A12 Input - A_12 |
343 |
\param A22 Input - A_22 |
344 |
\param ev0 Output - smallest eigenvalue |
345 |
\param ev1 Output - eigenvalue |
346 |
\param ev2 Output - |
347 |
\param V00 Output - eigenvector componenent coresponding to ev0 |
348 |
\param V10 Output - eigenvector componenent coresponding to ev0 |
349 |
\param V20 Output - |
350 |
\param V01 Output - eigenvector componenent coresponding to ev1 |
351 |
\param V11 Output - eigenvector componenent coresponding to ev1 |
352 |
\param V21 Output - |
353 |
\param V02 Output - |
354 |
\param V12 Output - |
355 |
\param V22 Output - |
356 |
\param tol Input - tolerance to identify to eigenvalues |
357 |
*/ |
358 |
inline |
359 |
void eigenvalues_and_eigenvectors3(const double A00, const double A01, const double A02, |
360 |
const double A11, const double A12, const double A22, |
361 |
double* ev0, double* ev1, double* ev2, |
362 |
double* V00, double* V10, double* V20, |
363 |
double* V01, double* V11, double* V21, |
364 |
double* V02, double* V12, double* V22, |
365 |
const double tol) |
366 |
{ |
367 |
register const double absA01=fabs(A01); |
368 |
register const double absA02=fabs(A02); |
369 |
register const double m=absA01>absA02 ? absA01 : absA02; |
370 |
if (m<=0) { |
371 |
double TEMP_V00,TEMP_V10,TEMP_V01,TEMP_V11,TEMP_EV0,TEMP_EV1; |
372 |
eigenvalues_and_eigenvectors2(A11,A12,A22, |
373 |
&TEMP_EV0,&TEMP_EV1, |
374 |
&TEMP_V00,&TEMP_V10,&TEMP_V01,&TEMP_V11,tol); |
375 |
if (A00<=TEMP_EV0) { |
376 |
*V00=1.; |
377 |
*V10=0.; |
378 |
*V20=0.; |
379 |
*V01=0.; |
380 |
*V11=TEMP_V00; |
381 |
*V21=TEMP_V10; |
382 |
*V02=0.; |
383 |
*V12=TEMP_V01; |
384 |
*V22=TEMP_V11; |
385 |
*ev0=A00; |
386 |
*ev1=TEMP_EV0; |
387 |
*ev2=TEMP_EV1; |
388 |
} else if (A00>TEMP_EV1) { |
389 |
*V02=1.; |
390 |
*V12=0.; |
391 |
*V22=0.; |
392 |
*V00=0.; |
393 |
*V10=TEMP_V00; |
394 |
*V20=TEMP_V10; |
395 |
*V01=0.; |
396 |
*V11=TEMP_V01; |
397 |
*V21=TEMP_V11; |
398 |
*ev0=TEMP_EV0; |
399 |
*ev1=TEMP_EV1; |
400 |
*ev2=A00; |
401 |
} else { |
402 |
*V01=1.; |
403 |
*V11=0.; |
404 |
*V21=0.; |
405 |
*V00=0.; |
406 |
*V10=TEMP_V00; |
407 |
*V20=TEMP_V10; |
408 |
*V02=0.; |
409 |
*V12=TEMP_V01; |
410 |
*V22=TEMP_V11; |
411 |
*ev0=TEMP_EV0; |
412 |
*ev1=A00; |
413 |
*ev2=TEMP_EV1; |
414 |
} |
415 |
} else { |
416 |
eigenvalues3(A00,A01,A02,A11,A12,A22,ev0,ev1,ev2); |
417 |
const register double absev0=fabs(*ev0); |
418 |
const register double absev1=fabs(*ev1); |
419 |
const register double absev2=fabs(*ev2); |
420 |
register double max_ev=absev0>absev1 ? absev0 : absev1; |
421 |
max_ev=max_ev>absev2 ? max_ev : absev2; |
422 |
const register double d_01=fabs((*ev0)-(*ev1)); |
423 |
const register double d_12=fabs((*ev1)-(*ev2)); |
424 |
const register double max_d=d_01>d_12 ? d_01 : d_12; |
425 |
if (max_d<=tol*max_ev) { |
426 |
*V00=1.; |
427 |
*V10=0; |
428 |
*V20=0; |
429 |
*V01=0; |
430 |
*V11=1.; |
431 |
*V21=0; |
432 |
*V02=0; |
433 |
*V12=0; |
434 |
*V22=1.; |
435 |
} else { |
436 |
const register double S00=A00-(*ev0); |
437 |
const register double absS00=fabs(S00); |
438 |
if (absS00>m) { |
439 |
vectorInKernel3__nonZeroA00(S00,A01,A02,A01,A11-(*ev0),A12,A02,A12,A22-(*ev0),V00,V10,V20); |
440 |
} else if (absA02<m) { |
441 |
vectorInKernel3__nonZeroA00(A01,A11-(*ev0),A12,S00,A01,A02,A02,A12,A22-(*ev0),V00,V10,V20); |
442 |
} else { |
443 |
vectorInKernel3__nonZeroA00(A02,A12,A22-(*ev0),S00,A01,A02,A01,A11-(*ev0),A12,V00,V10,V20); |
444 |
} |
445 |
normalizeVector3(V00,V10,V20);; |
446 |
const register double T00=A00-(*ev2); |
447 |
const register double absT00=fabs(T00); |
448 |
if (absT00>m) { |
449 |
vectorInKernel3__nonZeroA00(T00,A01,A02,A01,A11-(*ev2),A12,A02,A12,A22-(*ev2),V02,V12,V22); |
450 |
} else if (absA02<m) { |
451 |
vectorInKernel3__nonZeroA00(A01,A11-(*ev2),A12,T00,A01,A02,A02,A12,A22-(*ev2),V02,V12,V22); |
452 |
} else { |
453 |
vectorInKernel3__nonZeroA00(A02,A12,A22-(*ev2),T00,A01,A02,A01,A11-(*ev2),A12,V02,V12,V22); |
454 |
} |
455 |
const register double dot=(*V02)*(*V00)+(*V12)*(*V10)+(*V22)*(*V20); |
456 |
*V02-=dot*(*V00); |
457 |
*V12-=dot*(*V10); |
458 |
*V22-=dot*(*V20); |
459 |
normalizeVector3(V02,V12,V22); |
460 |
*V01=(*V10)*(*V22)-(*V12)*(*V20); |
461 |
*V11=(*V20)*(*V02)-(*V00)*(*V22); |
462 |
*V21=(*V00)*(*V12)-(*V02)*(*V10); |
463 |
normalizeVector3(V01,V11,V21); |
464 |
} |
465 |
} |
466 |
} |
467 |
|
468 |
// General tensor product: arg_2(SL x SR) = arg_0(SL x SM) * arg_1(SM x SR) |
469 |
// SM is the product of the last axis_offset entries in arg_0.getShape(). |
470 |
inline |
471 |
void matrix_matrix_product(const int SL, const int SM, const int SR, const double* A, const double* B, double* C, int transpose) |
472 |
{ |
473 |
if (transpose == 0) { |
474 |
for (int i=0; i<SL; i++) { |
475 |
for (int j=0; j<SR; j++) { |
476 |
double sum = 0.0; |
477 |
for (int l=0; l<SM; l++) { |
478 |
sum += A[i+SL*l] * B[l+SM*j]; |
479 |
} |
480 |
C[i+SL*j] = sum; |
481 |
} |
482 |
} |
483 |
} |
484 |
else if (transpose == 1) { |
485 |
for (int i=0; i<SL; i++) { |
486 |
for (int j=0; j<SR; j++) { |
487 |
double sum = 0.0; |
488 |
for (int l=0; l<SM; l++) { |
489 |
sum += A[i*SM+l] * B[l+SM*j]; |
490 |
} |
491 |
C[i+SL*j] = sum; |
492 |
} |
493 |
} |
494 |
} |
495 |
else if (transpose == 2) { |
496 |
for (int i=0; i<SL; i++) { |
497 |
for (int j=0; j<SR; j++) { |
498 |
double sum = 0.0; |
499 |
for (int l=0; l<SM; l++) { |
500 |
sum += A[i+SL*l] * B[l*SR+j]; |
501 |
} |
502 |
C[i+SL*j] = sum; |
503 |
} |
504 |
} |
505 |
} |
506 |
} |
507 |
|
508 |
template <typename UnaryFunction> |
509 |
inline void tensor_unary_operation(const int size, |
510 |
const double *arg1, |
511 |
double * argRes, |
512 |
UnaryFunction operation) |
513 |
{ |
514 |
for (int i = 0; i < size; ++i) { |
515 |
argRes[i] = operation(arg1[i]); |
516 |
} |
517 |
return; |
518 |
} |
519 |
|
520 |
template <typename BinaryFunction> |
521 |
inline void tensor_binary_operation(const int size, |
522 |
const double *arg1, |
523 |
const double *arg2, |
524 |
double * argRes, |
525 |
BinaryFunction operation) |
526 |
{ |
527 |
for (int i = 0; i < size; ++i) { |
528 |
argRes[i] = operation(arg1[i], arg2[i]); |
529 |
} |
530 |
return; |
531 |
} |
532 |
|
533 |
template <typename BinaryFunction> |
534 |
inline void tensor_binary_operation(const int size, |
535 |
double arg1, |
536 |
const double *arg2, |
537 |
double *argRes, |
538 |
BinaryFunction operation) |
539 |
{ |
540 |
for (int i = 0; i < size; ++i) { |
541 |
argRes[i] = operation(arg1, arg2[i]); |
542 |
} |
543 |
return; |
544 |
} |
545 |
|
546 |
template <typename BinaryFunction> |
547 |
inline void tensor_binary_operation(const int size, |
548 |
const double *arg1, |
549 |
double arg2, |
550 |
double *argRes, |
551 |
BinaryFunction operation) |
552 |
{ |
553 |
for (int i = 0; i < size; ++i) { |
554 |
argRes[i] = operation(arg1[i], arg2); |
555 |
} |
556 |
return; |
557 |
} |
558 |
|
559 |
} // end of namespace |
560 |
#endif |