1 |
# $Id$ |
# $Id$ |
|
from types import StringType |
|
2 |
|
|
3 |
class Link: |
from types import StringType,IntType,FloatType,BooleanType,ListType,DictType |
4 |
""" """ |
from sys import stdout |
|
def __init__(self,object,attribute=None): |
|
|
self.__object=object |
|
|
self.setAttributeName(attribute) |
|
|
|
|
|
def setAttributeName(self,name): |
|
|
if not name==None: |
|
|
if not hasattr(self.__object,name): |
|
|
raise AttributeError("Link: object %s has no attribute %s."%(self.__object,name)) |
|
|
self.__attribute=name |
|
|
|
|
|
def hasAttributeName(self): |
|
|
if self.__attribute==None: |
|
|
return False |
|
|
else: |
|
|
return True |
|
|
|
|
|
def __str__(self): |
|
|
if self.hasAttributeName(): |
|
|
return "reference to %s of %s"%(self.__attribute,self.__object) |
|
|
else: |
|
|
return "reference to object %s"%self.__object |
|
|
|
|
|
def getValue(self,name=None): |
|
|
if not self.hasAttributeName(): |
|
|
out=getattr(self.__object,name) |
|
|
else: |
|
|
out=getattr(self.__object,self.__attribute) |
|
|
if callable(out): |
|
|
return out() |
|
|
else: |
|
|
return out |
|
|
|
|
|
class Model: |
|
|
""" the Model class provides a framework to run a time-dependent simulation. A Model has a set of parameter which |
|
|
may be fixed or altered by the Model itself or other Models over time. |
|
|
|
|
|
The parameters of a models are declared at instantion, e.g. |
|
|
|
|
|
m=Model({"message" : "none" }) |
|
|
|
|
|
creates a Model with parameters p1 and p2 with inital values 1 and 2. Typically a particular model is defined as a subclass of Model: |
|
|
|
|
|
class Messenger(Model): |
|
|
def __init__(self): |
|
|
Model.__init__(self,parameters={"message" : "none" }) |
|
|
|
|
|
m=MyModel() |
|
|
|
|
|
There are various ways how model parameters can be changed: |
|
5 |
|
|
6 |
1) use object attributes: |
from xml.dom import minidom |
7 |
|
|
8 |
m.message="Hello World!" |
_HEADER_START="<?xml version=\"1.0\"?><ESyS>\n" |
9 |
|
_HEADER_END="<\ESyS>\n" |
10 |
|
|
11 |
2) use setParamter method |
def dataNode(document, tagName, data): |
12 |
|
t = document.createTextNode(str(data)) |
13 |
|
n = document.createElement(tagName) |
14 |
m.setParameters(message="Hello World!") |
n.appendChild(t) |
15 |
|
return n |
16 |
|
|
17 |
|
def esysDoc(): |
18 |
|
doc = minidom.Document() |
19 |
|
esys = doc.createElement('ESys') |
20 |
|
doc.appendChild(esys) |
21 |
|
return doc, esys |
22 |
|
|
23 |
3) or dictonaries |
class Link: |
24 |
|
""" |
25 |
d={ message : "Hello World!" } |
a Link makes an attribute of an object callable: |
26 |
m.setParameters(**d) |
o.object() |
27 |
|
o.a=8 |
28 |
|
l=Link(o,"a") |
29 |
A model executed buy staring the run method of the model: |
assert l()==8 |
30 |
|
""" |
31 |
m=Messenger() |
|
32 |
m.run() |
def __init__(self,target=None,attribute=None): |
33 |
|
"""creates a link to the object target. If attribute is given, the link is |
34 |
The run methods marches through time. It first calls the |
establised to this attribute of the target. Otherwise the attribute is |
35 |
doInitialization() method of the Model to set up the process. In each time step the doStep() method is called |
undefined.""" |
36 |
to get from the current to the next time step. The step size is defined by calling the getSafeTimeStepSize() method. |
self.__target=target |
37 |
The time integration process is terminated when the finalize() methods return true. Final the doFinalization() method |
self.setAttributeName(attribute) |
38 |
is called to finalize the process. To implement a particular model a subclass |
|
39 |
of the Model class is defined. The subclass overwrites the default methods of Model. |
def setAttributeName(self,name): |
40 |
|
"""set a new attribute name to be collected from the target object. The |
41 |
The following class defines a messenger printing in the doStep method what ever the current value of its parameter message is: |
target object must have the attribute with name name.""" |
42 |
|
if not name==None: |
43 |
class Messenger(Model): |
if not hasattr(self.__target,name): |
44 |
def __init__(self): |
raise AttributeError("%s: target %s has no attribute %s."%(self,self.__target,name)) |
45 |
Model.__init__(self,parameters={"message" : "none" }) |
self.__attribute=name |
46 |
|
|
47 |
def doInitialization(self): |
def hasDefinedAttributeName(self): |
48 |
print "I start talking now!" |
"""returns true if an attribute name is set""" |
49 |
|
if self.__attribute==None: |
50 |
def doStep(self,t): |
return False |
51 |
print "Message (time %e) : %s "%(t,self.message) |
else: |
52 |
|
return True |
53 |
def doFinalization(self): |
|
54 |
print "I have no more to say!" |
def __str__(self): |
55 |
|
"""returns a string representation of the link""" |
56 |
If a instance of the Messenger class is run, it will print the initialization and finalization message only. |
if self.hasDefinedAttributeName(): |
57 |
This is because the default method for finalize() does always returns True and therefore the transition is |
return "reference to attribute %s of %s"%(self.__attribute,self.__target) |
58 |
terminated startcht away. |
else: |
59 |
|
return "reference to target %s"%self.__target |
60 |
Following example for solving the ODE using a forward euler scheme: |
|
61 |
|
def __call__(self,name=None): |
62 |
u(t=0)=u0 |
"""returns the value of the attribute of the target object. If the |
63 |
u_t=a*u**2 for all 0<t<=ten |
atrribute is callable then the return value of the call is returned.""" |
64 |
|
if not name == None: |
65 |
exact solution is given by u(t)=1/(1/u0-a*t) |
out=getattr(self.__target, name) |
66 |
|
else: |
67 |
class Ode1(Model): |
out=getattr(self.__target, self.__attribute) |
68 |
def __init__(self,**args): |
if callable(out): |
69 |
Model.__init__(self,parameters={"tend" : 1., "dt" : 0.0001 ,"a" : 0.1 ,"u" : 1. },name="test",debug=True) |
return out() |
70 |
|
else: |
71 |
def doInitialization(self): |
return out |
72 |
self._tn=0 |
|
73 |
|
def toDom(self, document, node): |
74 |
def doStep(self,t): |
""" toDom method of Link. Creates a Link node and appends it to the current XML |
75 |
self.u=self.u+(t-self._tn)*self.a*self.u**2 |
document """ |
76 |
self._tn=t |
link = document.createElement('link') |
77 |
|
link.appendChild(dataNode(document, 'target', id(self.__target))) |
78 |
def doFinalization(self): |
link.appendChild(dataNode(document, 'attribute', self.__attribute)) |
79 |
print "all done final error = ",abs(self.u-1./(1./3.-self.a*self._tn)) |
node.appendChild(link) |
80 |
|
|
81 |
def getSafeTimeStepSize(self): |
def writeXML(self,ostream=stdout): |
82 |
return self.dt |
"""writes an XML representation of self to the output stream ostream. |
83 |
|
If ostream is nor present the standart output stream is used. If |
84 |
def finalize(self): |
esysheader==True the esys XML header is written""" |
85 |
return self._tn>=self.tend |
|
86 |
|
document, rootnode = esysDoc() |
87 |
In some cases at a given time step an iteration process has to be performed to get the state of the Model for the next time step. ` |
self.toDom(document, rootnode) |
88 |
In this case the doStep() method is replaced by a sequance of methods which implements this iterative process. |
|
89 |
The method then will control the iteration process by initializing the iteration through calling the |
ostream.write(document.toprettyxml()) |
90 |
doIterationInitialization() method. The iteration is preformed by calling the doIterationStep() method until |
|
91 |
the terminate() method returns True. The doIterationFinalization() method is called to end the iteration. |
class LinkableObject(object): |
92 |
For a particular model these methods have to overwritten by a suitable subclass without touching the doStep() method. |
"""an object that allows to link its attributes to attributes of other |
93 |
|
objects via a Link object. For instance |
94 |
following example is a modification of the example above. Here an implicit euler scheme is used. in each time step the problem |
|
95 |
|
p=LinkableObject() |
96 |
0= u_{n+1}-u_{n}+a*dt*u_{n+1}**2 |
p.x=Link(o,"name") |
97 |
|
print p.x |
98 |
has to be solved for u_{n+1}. The Newton scheme is used to solve this non-linear problem. |
|
99 |
|
links attribute x of p to the attribute name of object o. p.x will print |
100 |
|
the current value of attribute name of object o. if the value is |
101 |
class Ode2(Model): |
callable p.x will rturn the return value of the call. |
102 |
|
""" |
103 |
|
|
104 |
|
def __init__(self,debug=False): |
105 |
|
"""initiates a model from a list of subsimulations. """ |
106 |
|
self.setDebug(debug) |
107 |
|
self.__linked_attributes={} |
108 |
|
# |
109 |
|
# some basic fuctions: |
110 |
|
# |
111 |
|
def debugOn(self): |
112 |
|
"""sets debugging to on""" |
113 |
|
self.__debug=True |
114 |
|
def debugOff(self): |
115 |
|
"""sets debugging to off""" |
116 |
|
self.__debug=False |
117 |
|
def debug(self): |
118 |
|
"""returns True if debug mode is set to on""" |
119 |
|
return self.__debug |
120 |
|
def setDebug(self,flag=False): |
121 |
|
"""sets debugging to flag""" |
122 |
|
if flag: |
123 |
|
self.debugOn() |
124 |
|
else: |
125 |
|
self.debugOff() |
126 |
|
|
127 |
|
def trace(self, msg): |
128 |
|
if self.__debug: |
129 |
|
print msg |
130 |
|
|
131 |
|
def __getattr__(self,name): |
132 |
|
"""returns the value of attribute name. If the value is a Link object the |
133 |
|
object is called and the return value is returned.""" |
134 |
|
out=self.getAttributeObject(name) |
135 |
|
if isinstance(out,Link): |
136 |
|
return out() |
137 |
|
else: |
138 |
|
return out |
139 |
|
|
140 |
|
def getAttributeObject(self,name): |
141 |
|
"""return the object stored for attribute name.""" |
142 |
|
if self.__dict__.has_key(name): |
143 |
|
out=self.__dict__[name] |
144 |
|
elif self.__linked_attributes.has_key(name): |
145 |
|
out=self.__linked_attributes[name] |
146 |
|
else: |
147 |
|
raise AttributeError,"No attribute %s."%name |
148 |
|
return out |
149 |
|
|
150 |
|
def __setattr__(self,name,value): |
151 |
|
"""sets the value for attribute name. If value is a Link the target |
152 |
|
attribute is set to name if no attribute has been specified.""" |
153 |
|
if self.__dict__.has_key(name): |
154 |
|
del self.__dict__[name] |
155 |
|
if isinstance(value,Link): |
156 |
|
if not value.hasDefinedAttributeName(): |
157 |
|
value.setAttributeName(name) |
158 |
|
self.__linked_attributes[name]=value |
159 |
|
if self.debug(): |
160 |
|
print "DEBUG: %s: attribute %s is now linked by %s."%(self,name,value) |
161 |
|
else: |
162 |
|
self.__dict__[name]=value |
163 |
|
|
164 |
|
def __delattr__(self,name): |
165 |
|
"""removes the attribute name.""" |
166 |
|
if self.__linked_attributes.has_key[name]: |
167 |
|
del self.__linked_attributes[name] |
168 |
|
elif self.__dict__.has_key(name): |
169 |
|
del self.__dict__[name] |
170 |
|
else: |
171 |
|
raise AttributeError,"No attribute %s."%name |
172 |
|
|
173 |
|
class SimulationFrame(LinkableObject): |
174 |
|
"""A SimulationFrame objects represents a processess marching over time |
175 |
|
until a finalizing condition is fullfilled. At each time step an iterative |
176 |
|
process can be performed and the time step size can be controlled |
177 |
|
""" |
178 |
|
UNDEF_DT=1.e300 |
179 |
|
MAX_TIME_STEP_REDUCTION=20 |
180 |
|
MAX_ITER_STEPS=50 |
181 |
|
|
182 |
|
def __init__(self,debug=False): |
183 |
|
"""initiates a simulation""" |
184 |
|
LinkableObject.__init__(self,debug) |
185 |
|
|
186 |
|
def doInitialization(self,t): |
187 |
|
"""initializes the time stepping scheme. This function may be |
188 |
|
overwritten.""" |
189 |
|
pass |
190 |
|
|
191 |
|
def getSafeTimeStepSize(self,dt): |
192 |
|
"""returns a time step size which can savely be used. This function may |
193 |
|
be overwritten.""" |
194 |
|
return self.UNDEF_DT |
195 |
|
|
196 |
|
def finalize(self): |
197 |
|
"""returns True if the time stepping is finalized. This function may be |
198 |
|
overwritten.""" |
199 |
|
return True |
200 |
|
|
201 |
|
def doFinalization(self): |
202 |
|
"""finalizes the time stepping. This function may be overwritten.""" |
203 |
|
pass |
204 |
|
|
205 |
|
def doIterationInitialization(self,dt): |
206 |
|
"""initializes the iteration at time step t. This function may be |
207 |
|
overwritten. (only called if doStep is not overwritten)""" |
208 |
|
pass |
209 |
|
|
210 |
|
def doIterationStep(self,dt): |
211 |
|
"""executes the iteration step. This function may be overwritten. (only |
212 |
|
called if doStep is not overwritten)""" |
213 |
|
pass |
214 |
|
|
215 |
|
def terminate(self): |
216 |
|
"""returns True if iteration on a time step is terminated. (only called |
217 |
|
if doStep is not overwritten)""" |
218 |
|
return True |
219 |
|
|
220 |
|
def doIterationFinalization(self,dt): |
221 |
|
"""finalalizes the iteration process. (only called if doStep is not |
222 |
|
overwritten)""" |
223 |
|
pass |
224 |
|
|
225 |
|
def run(self,check_point=None): |
226 |
|
"""run the simulation by performing essentially |
227 |
|
|
228 |
|
self.doInitialization() |
229 |
|
while not self.finalize(): |
230 |
|
dt=self.getSafeTimeStepSize() |
231 |
|
self.doStep(dt) |
232 |
|
if n%check_point==0: self.writeXML() |
233 |
|
self.doFinalization() |
234 |
|
|
235 |
|
""" |
236 |
|
self.__tn=0. |
237 |
|
self.__n=0 |
238 |
|
self.__dt=None |
239 |
|
self.doInitialization(self.__tn) |
240 |
|
while not self.finalize(): |
241 |
|
self.__n+=1 |
242 |
|
self.__dt=self.getSafeTimeStepSize(self.__dt) |
243 |
|
if self.__dt==None: self.__dt=self.UNDEF_DT |
244 |
|
if not self.__dt>0: |
245 |
|
raise NonPositiveStepSizeError("non-positive step size in step %d",self.__n) |
246 |
|
if self.debug(): print "%s: %d. time step %e (step size %e.)"%(self,self.__n,self.__tn+self.__dt,self.__dt) |
247 |
|
endoftimestep=False |
248 |
|
failcounter=0 |
249 |
|
while not endoftimestep: |
250 |
|
endoftimestep=True |
251 |
|
try: |
252 |
|
self.doStep(self.__dt) |
253 |
|
except FailedTimeStepError: |
254 |
|
self.__dt=self.getSafeTimeStepSize(self.__dt) |
255 |
|
if self.__dt==None: self.__dt=self.UNDEF_DT |
256 |
|
endoftimestep=False |
257 |
|
if self.debug(): print "%s: time step is repeated with new step size %e."%(self,self.__dt) |
258 |
|
except IterationDivergenceError: |
259 |
|
self.__dt*=0.5 |
260 |
|
endoftimestep=False |
261 |
|
failcounter+=1 |
262 |
|
if failcounter>self.MAX_TIME_STEP_REDUCTION: |
263 |
|
raise IterationBreakDownError("reduction of time step to achieve convergence failed.") |
264 |
|
|
265 |
|
self.trace("%s: iteration failes. time step is repeated with new step size %e." |
266 |
|
% (self,self.__dt)) |
267 |
|
self.__tn+=self.__dt |
268 |
|
if not check_point==None: |
269 |
|
if self.__n%check_point==0: |
270 |
|
self.trace("%s: check point is created."%self) |
271 |
|
self.writeXML() |
272 |
|
self.doFinalization() |
273 |
|
|
274 |
|
def writeXML(self): |
275 |
|
raise RuntimeError, "Not implemented" |
276 |
|
|
277 |
|
def doStep(self,dt): |
278 |
|
"""executes a time step by iteration. This function may be overwritten. |
279 |
|
|
280 |
|
basicly it performs : |
281 |
|
|
282 |
|
self.doIterationInitialization(dt) |
283 |
|
while not self.terminate(): self.doIterationStep(dt) |
284 |
|
self.doIterationFinalization(dt) |
285 |
|
|
286 |
|
""" |
287 |
|
self.doIterationInitialization(dt) |
288 |
|
self.__iter=0 |
289 |
|
while not self.terminate(): |
290 |
|
if self.debug(): print "%s: iteration step %d"%(self,self.__iter) |
291 |
|
self.doIterationStep(dt) |
292 |
|
self.__iter+=1 |
293 |
|
if self.__iter>self.MAX_ITER_STEPS: |
294 |
|
raise IterationDivergenceError("%s: divergence in step %d"%(self,self.__iter)) |
295 |
|
self.doIterationFinalization(dt) |
296 |
|
|
297 |
|
class Simulation(SimulationFrame): |
298 |
|
"""A Simulation object is comprised by SimulationFrame(s) called subsimulations.""" |
299 |
|
|
300 |
|
def __init__(self,subsimulations=[],debug=False): |
301 |
|
"""initiates a simulation from a list of subsimulations. """ |
302 |
|
SimulationFrame.__init__(self,debug) |
303 |
|
self.__subsimulations=[] |
304 |
|
for i in range(len(subsimulations)): self[i]=subsimulations[i] |
305 |
|
|
306 |
|
def iterSubsimulations(self): |
307 |
|
"""returns an iterator over the subsimulations""" |
308 |
|
return self.__subsimulations |
309 |
|
|
310 |
|
def __getitem__(self,i): |
311 |
|
"""returns the i-th subsimulation""" |
312 |
|
return self.__subsimulations[i] |
313 |
|
|
314 |
|
def __setitem__(self,i,value): |
315 |
|
"""sets the i-th subsimulation""" |
316 |
|
if not isinstance(value,SimulationFrame): |
317 |
|
raise ValueError("assigned value is not a Simulation") |
318 |
|
for j in range(max(i-len(self.__subsimulations)+1,0)): self.__subsimulations.append(None) |
319 |
|
self.__subsimulations[i]=value |
320 |
|
|
321 |
|
def __len__(self): |
322 |
|
"""returns the number of subsimulations""" |
323 |
|
return len(self.__subsimulations) |
324 |
|
|
325 |
|
def toDom(self, document, node): |
326 |
|
""" toDom method of Simualtion class """ |
327 |
|
simulation = document.createElement('Simulation') |
328 |
|
simulation.setAttribute('type', self.__class__.__name__) |
329 |
|
|
330 |
|
for rank, sim in enumerate(self.iterSubsimulations()): |
331 |
|
component = document.createElement('Component') |
332 |
|
component.setAttribute('rank', str(rank)) |
333 |
|
|
334 |
|
sim.toDom(document, component) |
335 |
|
|
336 |
|
simulation.appendChild(component) |
337 |
|
|
338 |
|
node.appendChild(simulation) |
339 |
|
|
340 |
|
def writeXML(self,ostream=stdout): |
341 |
|
"""writes the object as an XML object into an output stream""" |
342 |
|
document, rootnode = esysDoc() |
343 |
|
self.toDom(document, rootnode) |
344 |
|
ostream.write(document.toprettyxml()) |
345 |
|
|
346 |
|
def getSafeTimeStepSize(self,dt): |
347 |
|
"""returns a time step size which can savely be used by all subsimulations""" |
348 |
|
out=self.UNDEF_DT |
349 |
|
for i in self.iterSubsimulations(): |
350 |
|
dt_new=i.getSafeTimeStepSize(dt) |
351 |
|
if dt_new!=None: out=min(out,dt_new) |
352 |
|
return out |
353 |
|
|
354 |
|
def doInitialization(self,dt): |
355 |
|
"""initializes all subsimulations """ |
356 |
|
for i in self.iterSubsimulations(): i.doInitialization(dt) |
357 |
|
|
358 |
|
def finalize(self): |
359 |
|
"""returns True if all subsimulations are finalized""" |
360 |
|
out=True |
361 |
|
for i in self.iterSubsimulations(): out = out and i.finalize() |
362 |
|
return out |
363 |
|
|
364 |
|
def doFinalization(self): |
365 |
|
"""finalalizes the time stepping for all subsimulations.""" |
366 |
|
for i in self.iterSubsimulations(): i.doFinalization() |
367 |
|
|
368 |
|
def doIterationInitialization(self,dt): |
369 |
|
"""initializes the iteration at time t for all subsimulations.""" |
370 |
|
self.__iter=0 |
371 |
|
if self.debug(): print "%s: iteration starts"%self |
372 |
|
for i in self.iterSubsimulations(): i.doIterationInitialization(dt) |
373 |
|
|
374 |
|
def terminate(self): |
375 |
|
"""returns True if all iterations for all subsimulations are terminated.""" |
376 |
|
out=True |
377 |
|
for i in self.iterSubsimulations(): out = out and i.terminate() |
378 |
|
return out |
379 |
|
|
380 |
|
def doIterationFinalization(self,dt): |
381 |
|
"""finalalizes the iteration process for each of the subsimulations.""" |
382 |
|
for i in self.iterSubsimulations(): i.doIterationFinalization(dt) |
383 |
|
if self.debug(): print "%s: iteration finalized after %s steps"%(self,self.__iter+1) |
384 |
|
|
385 |
|
def doIterationStep(self,dt): |
386 |
|
"""executes the iteration step at time step for each subsimulation""" |
387 |
|
self.__iter+=1 |
388 |
|
if self.debug(): print "%s: iteration step %d"%(self,self.__iter) |
389 |
|
for i in self.iterSubsimulations(): i.doIterationStep(dt) |
390 |
|
|
391 |
|
class ExplicitSimulation(Simulation): |
392 |
|
"""This is a modified form of the Simulation class. In fact it overwrites |
393 |
|
the doStep method by executing the doStep method of all subsimulations |
394 |
|
rather then iterating over all subsimulations.""" |
395 |
|
|
396 |
|
def doStep(self,dt): |
397 |
|
"""executes the time step for all subsimulation""" |
398 |
|
for i in self.iterSubsimulations(): i.doStep(dt) |
399 |
|
|
400 |
|
class _ParameterIterator: |
401 |
|
def __init__(self,parameterset): |
402 |
|
self.__set=parameterset |
403 |
|
self.__iter=iter(parameterset.getParameterList()) |
404 |
|
def next(self): |
405 |
|
o=self.__iter.next() |
406 |
|
return (o,self.__set.getAttributeObject(o)) |
407 |
|
def __iter__(self): |
408 |
|
return self |
409 |
|
|
410 |
|
class ParameterSet(LinkableObject): |
411 |
|
"""a class which allows to emphazise attributes to be written and read to XML |
412 |
|
|
413 |
|
Leaves of an ESySParameters objects can be |
414 |
|
|
415 |
|
a real number |
416 |
|
a integer number |
417 |
|
a string |
418 |
|
a boolean value |
419 |
|
a ParameterSet object |
420 |
|
a Simulation object |
421 |
|
a Model object |
422 |
|
any other object (not considered by writeESySXML and writeXML) |
423 |
|
|
424 |
|
Example how to create an ESySParameters object: |
425 |
|
|
426 |
|
p11=ParameterSet(gamma1=1.,gamma2=2.,gamma3=3.) |
427 |
|
p1=ParameterSet(dim=2,tol_v=0.001,output_file="/tmp/u.%3.3d.dx",runFlag=True,parm11=p11) |
428 |
|
parm=ParameterSet(parm1=p1,parm2=ParameterSet(alpha=Link(p11,"gamma1"))) |
429 |
|
|
430 |
|
This can be accessed as |
431 |
|
|
432 |
|
parm.parm1.gamma=0. |
433 |
|
parm.parm1.dim=2 |
434 |
|
parm.parm1.tol_v=0.001 |
435 |
|
parm.parm1.output_file="/tmp/u.%3.3d.dx" |
436 |
|
parm.parm1.runFlag=True |
437 |
|
parm.parm1.parm11.gamma1=1. |
438 |
|
parm.parm1.parm11.gamma2=2. |
439 |
|
parm.parm1.parm11.gamma3=3. |
440 |
|
parm.parm2.alpha=1. (value of parm.parm1.parm11.gamma1) |
441 |
|
|
442 |
|
""" |
443 |
|
def __init__(self,parameters=[]): |
444 |
|
"""creates a ParameterSet with parameters parameters""" |
445 |
|
LinkableObject.__init__(self,debug=False) |
446 |
|
self.__parameters=[] |
447 |
|
self.declareParameters(parameters) |
448 |
|
|
449 |
|
def getParameterList(self): |
450 |
|
"""returns the list of parameters""" |
451 |
|
return self.__parameters |
452 |
|
|
453 |
|
def isParameter(self,name): |
454 |
|
"""returns true if name is a parameter""" |
455 |
|
return name in self.getParameterList() |
456 |
|
|
457 |
|
def declareParameter(self,**parameters): |
458 |
|
"""declares a new parameter(s) and its (their) inital value.""" |
459 |
|
self.declareParameters(parameters) |
460 |
|
|
461 |
|
def declareParameters(self,parameters): |
462 |
|
"""declares a set of parameters. parameters can be a list, a dictonary or a ParameterSet.""" |
463 |
|
if isinstance(parameters,ListType): |
464 |
|
for prm in parameters: |
465 |
|
setattr(self,prm,None) |
466 |
|
if not self.isParameter(prm): self.getParameterList().append(prm) |
467 |
|
if self.debug(): print "%s: parameter %s has been declared."%(self,prm) |
468 |
|
elif isinstance(parameters,DictType): |
469 |
|
for prm,value in parameters.iteritems(): |
470 |
|
setattr(self,prm,value) |
471 |
|
if not self.isParameter(prm): self.getParameterList().append(prm) |
472 |
|
if self.debug(): print "%s: parameter %s has been declared."%(self,prm) |
473 |
|
else: |
474 |
|
for prm,value in parameters: |
475 |
|
setattr(self,prm,value) |
476 |
|
if not self.isParameter(prm): self.getParameterList().append(prm) |
477 |
|
if self.debug(): print "%s: parameter %s has been declared."%(self,prm) |
478 |
|
|
479 |
|
def releaseParameters(self,name): |
480 |
|
"""removes parameter name from the paramameters""" |
481 |
|
if self.isParameter(name): |
482 |
|
self.getParameterList().remove(name) |
483 |
|
if self.debug(): print "%s: parameter %s has been removed."%(self,prm) |
484 |
|
|
485 |
|
def __iter__(self): |
486 |
|
"""creates an iterator over the parameter and their values""" |
487 |
|
return _ParameterIterator(self) |
488 |
|
|
489 |
|
def showParameters(self): |
490 |
|
"""returns a descrition of the parameters""" |
491 |
|
out="{" |
492 |
|
notfirst=False |
493 |
|
for i,v in self: |
494 |
|
if notfirst: out=out+"," |
495 |
|
notfirst=True |
496 |
|
if isinstance(v,ParameterSet): |
497 |
|
out="%s\"%s\" : %s"%(out,i,v.showParameters()) |
498 |
|
else: |
499 |
|
out="%s\"%s\" : %s"%(out,i,v) |
500 |
|
return out+"}" |
501 |
|
|
502 |
|
def __delattr__(self,name): |
503 |
|
"""removes the attribute name.""" |
504 |
|
LinkableObject.__delattr__(self,name) |
505 |
|
try: |
506 |
|
self.releaseParameter(name) |
507 |
|
except: |
508 |
|
pass |
509 |
|
|
510 |
|
def toDom(self, document, node): |
511 |
|
""" toDom method of ParameterSet class """ |
512 |
|
pset = document.createElement('ParameterSet') |
513 |
|
node.appendChild(pset) |
514 |
|
self._parametersToDom(document, pset) |
515 |
|
|
516 |
|
def _parametersToDom(self, document, node): |
517 |
|
for name,value in self: |
518 |
|
param = document.createElement('Parameter') |
519 |
|
param.setAttribute('type', value.__class__.__name__) |
520 |
|
|
521 |
|
param.appendChild(dataNode(document, 'Name', name)) |
522 |
|
|
523 |
|
val = document.createElement('Value') |
524 |
|
|
525 |
|
if isinstance(value,ParameterSet): |
526 |
|
value.toDom(document, val) |
527 |
|
elif isinstance(value, Link): |
528 |
|
value.toDom(document, val) |
529 |
|
param.appendChild(val) |
530 |
|
elif isinstance(value,StringType): |
531 |
|
param.appendChild(dataNode(document, 'Value', value)) |
532 |
|
else: |
533 |
|
param.appendChild(dataNode(document, 'Value', str(value))) |
534 |
|
|
535 |
|
node.appendChild(param) |
536 |
|
|
537 |
|
def writeXML(self,ostream=stdout): |
538 |
|
"""writes the object as an XML object into an output stream""" |
539 |
|
# ParameterSet(d) with d[Name]=Value |
540 |
|
document, node = esysDoc() |
541 |
|
self.toDom(document, node) |
542 |
|
ostream.write(document.toprettyxml()) |
543 |
|
|
544 |
|
class Model(ParameterSet,SimulationFrame): |
545 |
|
"""a Model is a SimulationFrame which is also a ParameterSet.""" |
546 |
|
|
547 |
|
def __init__(self,debug=False): |
548 |
|
"""creates a model""" |
549 |
|
ParameterSet.__init__(self) |
550 |
|
SimulationFrame.__init__(self,debug=debug) |
551 |
|
|
552 |
|
def writeXML(self,ostream=stdout,esysheader=True,modelheader=True): |
553 |
|
"""writes the object as an XML object into an output stream""" |
554 |
|
# x=type() with x.Name=Value where type is a Model from the model library. |
555 |
|
if esysheader: ostream.write(_HEADER_START) |
556 |
|
ostream.write("<Model type=\"%s\" module=\"%s\">\n"%(self.__class__.__name__,self.__class__.__module__)) |
557 |
|
self. writeParameterXML(ostream) |
558 |
|
ostream.write("</Model>\n") |
559 |
|
if esysheader: ostream.write(_HEADER_END) |
560 |
|
|
561 |
def __init__(self,**args): |
class IterationDivergenceError(Exception): |
562 |
Model.__init__(self,{"tend" : 1., "dt" : 0.1 ,"a" : 10. ,"u" : 1. , "tol " : 1.e-8},"test","bla",None,True) |
"""excpetion which should be thrown if there is no convergence of the iteration process at a time step but there is a chance taht a smaller step could help |
563 |
|
to reach convergence.""" |
564 |
|
pass |
565 |
|
|
566 |
|
class IterationBreakDownError(Exception): |
567 |
|
"""excpetion which should be thrown if there is no conevregence and there is no chance that a time step reduction would help""" |
568 |
|
pass |
569 |
|
|
570 |
def doInitialization(self): |
class FailedTimeStepError(Exception): |
571 |
self.__tn=0 |
"""excpetion which should be thrown if the time step fails because of a step size that have been choosen to be to large""" |
572 |
|
pass |
573 |
|
|
574 |
def doIterationInitialization(self,t): |
class NonPositiveStepSizeError(Exception): |
575 |
self.__iter=0 |
"""excpetion which is thrown if the step size is not positive""" |
576 |
self.u_last=self.u |
pass |
|
self.current_dt=t-self.tn |
|
|
self.__tn=t |
|
577 |
|
|
578 |
def doIterationStep(self): |
# |
579 |
self.__iter+=1 |
# ignore this text: |
580 |
self.u_old=self.u |
# |
581 |
self.u=(self.current_dt*self.a*self.u**2-self.u_last)/(2*self.current_dt*self.a*self.u-1.) |
""" the Model class provides a framework to run a time-dependent simulation. A |
582 |
|
Model has a set of parameter which may be fixed or altered by the Model itself |
583 |
|
or other Models over time. |
584 |
|
|
585 |
def terminate(self): |
The parameters of a models are declared at instantion, e.g. |
|
return abs(self.u_old-self.u)<self.tol*abs(self.u) |
|
586 |
|
|
587 |
def doIterationFinalization(self) |
m=Model({"message" : "none" }) |
|
print "all done" |
|
588 |
|
|
589 |
def getSafeTimeStepSize(self): |
creates a Model with parameters p1 and p2 with inital values 1 and 2. |
590 |
return self.dt |
Typically a particular model is defined as a subclass of Model: |
591 |
|
|
592 |
def finalize(self): |
class Messenger(Model): |
593 |
return self.__tn>self.tend |
def __init__(self): |
594 |
|
Model.__init__(self,parameters={"message" : "none" }) |
595 |
|
|
596 |
A model can be composed from submodels. Submodels are treated as model parameters. If a model parameter is set or a value of |
m=MyModel() |
|
a model parameter is requested, the model will search for this parameter its submodels in the case the model does not have this |
|
|
parameter itself. The order in which the submodels are searched is critical. By default a Model initializes all its submodels, |
|
|
is finalized when all its submodels are finalized and finalizes all its submodels. In the case an iterative process is applied |
|
|
on a particular time step the iteration is initialized for all submodels, then the iteration step is performed for each submodel |
|
|
until all submodels indicate termination. Then the iteration is finalized for all submodels. Finally teh doStop() method for all |
|
|
submethods is called. |
|
597 |
|
|
598 |
Here we are creating a model which groups ab instantiation of the Ode2 and the Messenger Model |
There are various ways how model parameters can be changed: |
599 |
|
|
600 |
o=Ode2() |
1) use object attributes: |
|
m=Messenger() |
|
|
om=Model(submodels=[o,m],debug=True) |
|
|
om.dt=0.01 |
|
|
om.u=1. |
|
|
m.message="it's me!" |
|
|
om.run() |
|
601 |
|
|
602 |
Notice that dt and u are parameters of class Ode2 and message is a parameter of the Messenger class. The Model formed from these models |
m.message="Hello World!" |
|
automatically hand the assignment of new values down to the submodel. om.run() starts this combined model where now the soStep() method |
|
|
of the Messenger object printing the value of its parameter message together with a time stamp is executed in each time step introduced |
|
|
by the Ode2 model. |
|
603 |
|
|
604 |
A parameter of a Model can be linked to an attribute of onother object, typically an parameter of another Model object. |
2) use setParamter method |
605 |
|
|
606 |
|
|
607 |
which is comprised by a set of submodels. |
m.setParameters(message="Hello World!") |
|
The simulation is run through its run method which in the simplest case has the form: |
|
608 |
|
|
609 |
s=Model() |
3) or dictonaries |
610 |
s.run() |
|
611 |
|
d={ message : "Hello World!" } |
612 |
|
m.setParameters(**d) |
613 |
|
|
|
The run has an initializion and finalization phase. The latter is called if all submodels are to be finalized. The |
|
|
simulation is processing in time through calling the stepForward methods which updates the observables of each submodel. |
|
|
A time steps size which is save for all submodel is choosen. |
|
614 |
|
|
615 |
At given time step an iterative process may be performed to make sure that all observables are consistent across all submodels. |
A model executed buy staring the run method of the model: |
616 |
In this case, similar the time dependence, an initialization and finalization of the iteration is performed. |
|
617 |
|
m=Messenger() |
618 |
|
m.run() |
619 |
|
|
620 |
A Model has input and output parameters where each input parameter can be constant, time dependent or may depend on an |
The run methods marches through time. It first calls the |
621 |
output parameter of another model or the model itself. To create a parameter name of a model and to |
doInitialization() method of the Model to set up the process. In each |
622 |
assign a value to it one can use the statement |
time step the doStep() method is called to get from the current to the |
623 |
|
next time step. The step size is defined by calling the |
624 |
|
getSafeTimeStepSize() method. the time integration process is |
625 |
|
terminated when the finalize() methods return true. Final the |
626 |
|
doFinalization() method is called to finalize the process. To implement |
627 |
|
a particular model a subclass of the Model class is defined. The |
628 |
|
subclass overwrites the default methods of Model. |
629 |
|
|
630 |
|
The following class defines a messenger printing in the doStep method |
631 |
|
what ever the current value of its parameter message is: |
632 |
|
|
633 |
|
class Messenger(Model): |
634 |
|
def __init__(self): |
635 |
|
Model.__init__(self,parameters={"message" : "none" }) |
636 |
|
|
637 |
|
def doInitialization(self): |
638 |
|
print "I start talking now!" |
639 |
|
|
640 |
|
def doStep(self,t): |
641 |
|
print "Message (time %e) : %s "%(t,self.message) |
642 |
|
|
643 |
|
def doFinalization(self): |
644 |
|
print "I have no more to say!" |
645 |
|
|
646 |
|
If a instance of the Messenger class is run, it will print the |
647 |
|
initialization and finalization message only. This is because the |
648 |
|
default method for finalize() does always returns True and therefore the |
649 |
|
transition is terminated startcht away. |
650 |
|
|
651 |
|
Following example for solving the ODE using a forward euler scheme: |
652 |
|
|
653 |
|
u(t=0)=u0 |
654 |
|
u_t=a*u**2 for all 0<t<=ten |
655 |
|
|
656 |
|
exact solution is given by u(t)=1/(1/u0-a*t) |
657 |
|
|
658 |
|
class Ode1(Model): |
659 |
|
def __init__(self,**args): |
660 |
|
Model.__init__(self,parameters={"tend" : 1., "dt" : 0.0001 ,"a" : 0.1 ,"u" : 1. },name="test",debug=True) |
661 |
|
|
662 |
|
def doInitialization(self): |
663 |
|
self._tn=0 |
664 |
|
|
665 |
|
def doStep(self,t): |
666 |
|
self.u=self.u+(t-self._tn)*self.a*self.u**2 |
667 |
|
self._tn=t |
668 |
|
|
669 |
|
def doFinalization(self): |
670 |
|
print "all done final error = ",abs(self.u-1./(1./3.-self.a*self._tn)) |
671 |
|
|
672 |
|
def getSafeTimeStepSize(self): |
673 |
|
return self.dt |
674 |
|
|
675 |
|
def finalize(self): |
676 |
|
return self._tn>=self.tend |
677 |
|
|
678 |
|
In some cases at a given time step an iteration process has to be |
679 |
|
performed to get the state of the Model for the next time step. ` In |
680 |
|
this case the doStep() method is replaced by a sequance of methods which |
681 |
|
implements this iterative process. The method then will control the |
682 |
|
iteration process by initializing the iteration through calling the |
683 |
|
doIterationInitialization() method. The iteration is preformed by |
684 |
|
calling the doIterationStep() method until the terminate() method |
685 |
|
returns True. The doIterationFinalization() method is called to end the |
686 |
|
iteration. |
687 |
|
For a particular model these methods have to overwritten by a suitable |
688 |
|
subclass without touching the doStep() method. |
689 |
|
|
690 |
|
following example is a modification of the example above. Here an |
691 |
|
implicit euler scheme is used. in each time step the problem |
692 |
|
|
693 |
|
0= u_{n+1}-u_{n}+a*dt*u_{n+1}**2 |
694 |
|
|
695 |
model.name=object |
has to be solved for u_{n+1}. The Newton scheme is used to solve this non-linear problem. |
696 |
|
|
697 |
|
|
698 |
|
class Ode2(Model): |
699 |
|
|
700 |
At any time the current value of the parameter name can be obtained by |
def __init__(self,**args): |
701 |
|
Model.__init__(self,{"tend" : 1., "dt" : 0.1 ,"a" : 10. ,"u" : 1. , "tol " : 1.e-8},"test","bla",None,True) |
702 |
|
|
703 |
value=model.name |
def doInitialization(self): |
704 |
|
self.__tn=0 |
705 |
|
|
706 |
If the object that has been assigned to the paramter/attribute name has the attribute/parameter name isself the current value of this |
def doIterationInitialization(self,t): |
707 |
attribute of the object is returned (e.g. for model.name=object where object has an attribute name, the statement value=model.name whould assign |
self.__iter=0 |
708 |
the value object.name to value.). If the name of the parameters of a model and an object don't match the setParameter method of model can be used. So |
self.u_last=self.u |
709 |
|
self.current_dt=t-self.tn |
710 |
|
self.__tn=t |
711 |
|
|
712 |
|
def doIterationStep(self): |
713 |
|
self.__iter+=1 |
714 |
|
self.u_old=self.u |
715 |
|
self.u=(self.current_dt*self.a*self.u**2-self.u_last)/(2*self.current_dt*self.a*self.u-1.) |
716 |
|
|
717 |
|
def terminate(self): |
718 |
|
return abs(self.u_old-self.u)<self.tol*abs(self.u) |
719 |
|
|
720 |
|
def doIterationFinalization(self) |
721 |
|
print "all done" |
722 |
|
|
723 |
|
def getSafeTimeStepSize(self): |
724 |
|
return self.dt |
725 |
|
|
726 |
|
def finalize(self): |
727 |
|
return self.__tn>self.tend |
728 |
|
|
729 |
|
A model can be composed from subsimulations. Subsimulations are treated |
730 |
|
as model parameters. If a model parameter is set or a value of a model |
731 |
|
parameter is requested, the model will search for this parameter its |
732 |
|
subsimulations in the case the model does not have this parameter |
733 |
|
itself. The order in which the subsimulations are searched is critical. |
734 |
|
By default a Model initializes all its subsimulations, is finalized when |
735 |
|
all its subsimulations are finalized and finalizes all its |
736 |
|
subsimulations. In the case an iterative process is applied on a |
737 |
|
particular time step the iteration is initialized for all |
738 |
|
subsimulations, then the iteration step is performed for each |
739 |
|
subsimulation until all subsimulations indicate termination. Then the |
740 |
|
iteration is finalized for all subsimulations. Finally teh doStop() |
741 |
|
method for all submethods is called. |
742 |
|
|
743 |
|
Here we are creating a model which groups ab instantiation of the Ode2 and the Messenger Model |
744 |
|
|
745 |
|
o=Ode2() |
746 |
|
m=Messenger() |
747 |
|
om=Model(subsimulations=[o,m],debug=True) |
748 |
|
om.dt=0.01 |
749 |
|
om.u=1. |
750 |
|
m.message="it's me!" |
751 |
|
om.run() |
752 |
|
|
753 |
|
Notice that dt and u are parameters of class Ode2 and message is a |
754 |
|
parameter of the Messenger class. The Model formed from these models |
755 |
|
automatically hand the assignment of new values down to the |
756 |
|
subsimulation. om.run() starts this combined model where now the |
757 |
|
soStep() method of the Messenger object printing the value of its |
758 |
|
parameter message together with a time stamp is executed in each time |
759 |
|
step introduced by the Ode2 model. |
760 |
|
|
761 |
|
A parameter of a Model can be linked to an attribute of onother object, |
762 |
|
typically an parameter of another Model object. |
763 |
|
|
764 |
|
|
765 |
|
which is comprised by a set of subsimulations. |
766 |
|
The simulation is run through its run method which in the simplest case has the form: |
767 |
|
|
768 |
|
s=Model() |
769 |
|
s.run() |
770 |
|
|
771 |
|
The run has an initializion and finalization phase. The latter is called |
772 |
|
if all subsimulations are to be finalized. The simulation is processing |
773 |
|
in time through calling the stepForward methods which updates the |
774 |
|
observables of each subsimulation. A time steps size which is save for |
775 |
|
all subsimulation is choosen. |
776 |
|
|
777 |
|
At given time step an iterative process may be performed to make sure |
778 |
|
that all observables are consistent across all subsimulations. In this |
779 |
|
case, similar the time dependence, an initialization and finalization of |
780 |
|
the iteration is performed. |
781 |
|
|
782 |
|
A Model has input and output parameters where each input parameter can |
783 |
|
be constant, time dependent or may depend on an output parameter of |
784 |
|
another model or the model itself. To create a parameter name of a model |
785 |
|
and to assign a value to it one can use the statement |
786 |
|
|
787 |
|
model.name=object |
788 |
|
|
789 |
|
|
790 |
|
At any time the current value of the parameter name can be obtained by |
791 |
|
|
792 |
|
value=model.name |
793 |
|
|
794 |
|
If the object that has been assigned to the paramter/attribute name has |
795 |
|
the attribute/parameter name isself the current value of this attribute |
796 |
|
of the object is returned (e.g. for model.name=object where object has |
797 |
|
an attribute name, the statement value=model.name whould assign the |
798 |
|
value object.name to value.). If the name of the parameters of a model |
799 |
|
and an object don't match the setParameter method of model can be used. |
800 |
|
So |
801 |
|
|
802 |
model.setParameter(name,object,name_for_object) |
model.setParameter(name,object,name_for_object) |
803 |
|
|
804 |
links the parameter name of model with the parameter name_for_object of object. |
links the parameter name of model with the parameter name_for_object of |
805 |
|
object. |
806 |
|
|
807 |
The run method initiates checkpointing (it is not clear how to do this yet) |
The run method initiates checkpointing (it is not clear how to do this |
808 |
|
yet) |
809 |
===== |
===== |
810 |
|
|
811 |
""" |
""" |
|
# step size used in case of an undefined value for the step size |
|
|
UNDEF_DT=1.e300 |
|
812 |
|
|
|
def __init__(self,submodels=[],parameters={},name="model",description="none",check_pointing=None,debug=False): |
|
|
"""initiates a model from a list of submodels. """ |
|
|
self.setDebug(debug) |
|
|
self.__check_pointing=check_pointing |
|
|
self.__parameters={} |
|
|
self.setName(name) |
|
|
self.setDescription(description) |
|
|
self.declareParameter(**parameters) |
|
|
# get the models defined in parameters: |
|
|
self.__submodels=[] |
|
|
# submodels==None means no submodels used: |
|
|
if submodels==None: |
|
|
pass |
|
|
# no submodel list given means all submodels are used as defined by the parameters dictionary: |
|
|
elif len(submodels)==0: |
|
|
for i in parameters.keys(): |
|
|
if isinstance(parameters[i],Model): self.__submodels.append(i) |
|
|
# submodel list of strings and Models is given, submodels defines the order in which the |
|
|
# submodels are processed. if new models are found in the list they are added to the parameter dictionary. |
|
|
else: |
|
|
c=0 |
|
|
for i in submodels: |
|
|
if isinstance(i,StringType): |
|
|
m=self.getParameter(i) |
|
|
if not isinstance(m,Model): |
|
|
raise ValueError,"submodel %s is not a model."%i |
|
|
else: |
|
|
if not isinstance(i,Model): |
|
|
raise ValueError,"submodel list does contain item which is not a Model class object." |
|
|
m=i |
|
|
i="__submodel%d__"%c |
|
|
self.declareParameter(**{i : m}) |
|
|
c+=1 |
|
|
self.__submodels.append(i) |
|
|
if self.debug(): print "%s: model %s is added as parameter %s."%(self,m,i) |
|
|
if len(self.__submodels)>0 and self.debug(): print "%s: model ordering is %s"%(self,self.__submodels) |
|
|
def setSubmodelOrder(submodels=[]): |
|
|
"""sets a new ordering for submodels""" |
|
|
|
|
|
|
|
|
# |
|
|
# some basic fuctions: |
|
|
# |
|
|
def debugOn(self): |
|
|
"""sets debugging to on""" |
|
|
self.__debug=True |
|
|
def debugOff(self): |
|
|
"""sets debugging to off""" |
|
|
self.__debug=False |
|
|
def debug(self): |
|
|
"""returns True if debug mode is set to on""" |
|
|
return self.__debug |
|
|
def setDebug(self,flag=False): |
|
|
"""sets debugging to flag""" |
|
|
if flag: |
|
|
self.debugOn() |
|
|
else: |
|
|
self.debugOff() |
|
|
def setDebug(self,flag=False): |
|
|
"""sets debugging to flag""" |
|
|
if flag: |
|
|
self.debugOn() |
|
|
else: |
|
|
self.debugOff() |
|
|
# name and description handling |
|
|
def __str__(self): |
|
|
"""returns the name of the model""" |
|
|
return self.getName() |
|
|
|
|
|
def getName(self): |
|
|
"""returns the name of the model""" |
|
|
return self.__name |
|
|
|
|
|
def getFullName(self): |
|
|
"""returns the full name of the model including all the names of the submodels""" |
|
|
out=str(self)+"(" |
|
|
notfirst=False |
|
|
for i in self.__submodels: |
|
|
if notfirst: out=out+"," |
|
|
out=out+i.getFullName() |
|
|
notfirst=True |
|
|
return out+")" |
|
|
|
|
|
def setName(self,name): |
|
|
"""sets the name of the model""" |
|
|
self.__name=name |
|
|
|
|
|
def setDescription(self,description="none"): |
|
|
"""sets new description""" |
|
|
self.__description=description |
|
|
if self.debug(): print "%s: description is set to %s."%(self,description) |
|
|
def getDescription(self): |
|
|
"""returns the description of the model""" |
|
|
return self.__description |
|
|
# |
|
|
# parameter/attribute handling: |
|
|
# |
|
|
def declareParameter(self,**parameters): |
|
|
"""declares a new parameter and its inital value.""" |
|
|
for prm in parameters.keys(): |
|
|
if prm in self.__dict__.keys(): |
|
|
raise ValueError,"object attribute %s of %s cannot be used as a model parameter."%(prm,self) |
|
|
self.__parameters[prm]=parameters[prm] |
|
|
if self.debug(): print "%s: parameter %s has been declared."%(self,prm) |
|
|
|
|
|
|
|
|
|
|
|
def showParameters(self): |
|
|
"""returns a descrition of the parameters""" |
|
|
out="" |
|
|
notfirst=False |
|
|
for i in self.__parameters: |
|
|
if notfirst: out=out+"," |
|
|
notfirst=True |
|
|
out="%s%s=%s"%(out,i,self.__parameters[i]) |
|
|
return out |
|
|
|
|
|
|
|
|
def deleteParameter(self,name): |
|
|
"""removes parameter name from the model""" |
|
|
raise IllegalParameterError("Cannot delete parameter %s."%name) |
|
|
|
|
|
def getParameter(self,name): |
|
|
"""returns the value of parameter name. If the parameter is not declared in self, the submodels are searched. |
|
|
if the parameter is a Link, the current value of the obejective is returned.""" |
|
|
if self.__parameters.has_key(name): |
|
|
if isinstance(self.__parameters[name],Link): |
|
|
out=self.__parameters[name].getValue(name) |
|
|
else: |
|
|
out=self.__parameters[name] |
|
|
else: |
|
|
out=None |
|
|
for i in self.__submodels: |
|
|
try: |
|
|
out=self.__parameters[i].getParameter(name) |
|
|
except IllegalParameterError: |
|
|
pass |
|
|
if out==None: raise IllegalParameterError("Cannot find parameter %s."%name) |
|
|
return out |
|
|
|
|
|
def setParameter(self,**parameters): |
|
|
"""sets parameter name to value. If the initial value for the parameter is a Model, the new value has to be a Model.""" |
|
|
for name in parameters.keys(): |
|
|
if self.__parameters.has_key(name): |
|
|
if not isinstance(parameters[name],Model) and isinstance(self.__parameters[name],Model): |
|
|
raise ValueError,"%s: parameter %s can assigned to a Model object only."%(self,name) |
|
|
if isinstance(parameters[name],Model) and not isinstance(self.__parameters[name],Model): |
|
|
raise ValueError,"%s: parameter %s is not declared as a Model."%(self,name) |
|
|
self.__parameters[name]=parameters[name] |
|
|
if isinstance(self.__parameters[name],Link): |
|
|
if not self.__parameters[name].hasAttributeName(): self.__parameters[name].setAttributeName(name) |
|
|
if self.debug(): print "%s: parameter %s has now value %s"%(self,name,self.__parameters[name]) |
|
|
else: |
|
|
set=False |
|
|
for i in self.__submodels: |
|
|
try: |
|
|
self.__parameters[i].setParameter(**{name : parameters[name]}) |
|
|
set=True |
|
|
except IllegalParameterError: |
|
|
pass |
|
|
if not set: raise IllegalParameterError("%s: Attempt to set undeclared parameter %s."%(self,name)) |
|
|
|
|
|
def hasParameter(self,name): |
|
|
"""returns True if self or one of the submodels has parameter name""" |
|
|
if self.__parameters.has_key(name): |
|
|
out=True |
|
|
else: |
|
|
out=False |
|
|
for i in self.__submodels: out= out or self.__parameters[i].hasParameter(name) |
|
|
return out |
|
|
|
|
|
def checkParameter(self,name): |
|
|
"""checks if self has the parameter name. Otherewise ParameterError is thrown.""" |
|
|
if not self.hasParameter(name): |
|
|
raise ParameterError("%s has no parameter %s."%(str(self),name)) |
|
|
|
|
|
def __getattr__(self,name): |
|
|
"""returns the value for attribute name. If name is in the Link list, the corresponding attribute is returned.""" |
|
|
if self.__dict__.has_key(name): |
|
|
return self.__dict__[name] |
|
|
elif self.__dict__.has_key("_Model__parameters") and self.__dict__.has_key("_Model__submodels"): |
|
|
return self.getParameter(name) |
|
|
else: |
|
|
raise AttributeError,"No attribute %s."%name |
|
|
|
|
|
def __setattr__(self,name,value): |
|
|
"""returns the value for attribute name.""" |
|
|
if self.__dict__.has_key("_Model__parameters") and self.__dict__.has_key("_Model__submodels"): |
|
|
if self.hasParameter(name): |
|
|
self.setParameter(**{ name : value }) |
|
|
else: |
|
|
self.__dict__[name]=value |
|
|
else: |
|
|
self.__dict__[name]=value |
|
|
|
|
|
def __delattr__(self,name): |
|
|
"""removes the attribute name.""" |
|
|
if self.__dict__.has_key(name): |
|
|
del self.__dict__[name] |
|
|
elif self.__dict__.has_key("_Model__parameters"): |
|
|
self.deleteParameter(name) |
|
|
else: |
|
|
raise AttributeError,"No attribute %s."%name |
|
|
|
|
|
# |
|
|
# submodel handeling: |
|
|
# |
|
|
def doInitializationOfSubmodels(self): |
|
|
"""initializes the time stepping for all submodels.""" |
|
|
for i in self.__submodels: self.getParameter(i).doInitialization() |
|
|
|
|
|
def getSafeTimeStepSizeFromSubmodels(self): |
|
|
"""returns a time step size which can savely be used by all submodels. To avoid a big increase in the step size, |
|
|
the new step size is restricted to the double of the precious step size.""" |
|
|
out=None |
|
|
for i in self.__submodels: |
|
|
dt=self.getParameter(i).getSafeTimeStepSize() |
|
|
if not dt==None: |
|
|
if out==None: |
|
|
out=dt |
|
|
else: |
|
|
out=min(out,dt) |
|
|
return out |
|
|
|
|
|
def doStepOfSubmodels(self,t): |
|
|
"""executes the time step for each submodel""" |
|
|
for i in self.__submodels: self.getParameter(i).doStep(t) |
|
|
|
|
|
def finalizeAllSubmodels(self): |
|
|
"""returns True if all submodels can be finalized""" |
|
|
out=True |
|
|
for i in self.__submodels: out = out and self.getParameter(i).finalize() |
|
|
return out |
|
|
|
|
|
def doFinalizationOfSubmodels(self): |
|
|
"""finalalizes the time stepping for each of the submodels.""" |
|
|
for i in self.__submodels: self.getParameter(i).doFinalization() |
|
|
|
|
|
def doIterationInitializationOfSubmodels(self,t): |
|
|
"""initializes the iteration for each of the submodels.""" |
|
|
for i in self.__submodels: self.getParameter(i).doIterationInitialization(t) |
|
|
|
|
|
def doIterationStepOfSubmodels(self): |
|
|
"""executes the iteration step at time step for each submodel""" |
|
|
for i in self.__submodels: self.getParameter(i).doIterationStep() |
|
|
|
|
|
def terminateAllSubmodels(self): |
|
|
"""returns True if all iterations for all submodels are terminated.""" |
|
|
out=True |
|
|
for i in self.__submodels: out = out and self.getParameter(i).terminate() |
|
|
return out |
|
|
|
|
|
def doIterationFinalizationOfSubmodels(self): |
|
|
"""finalalizes the iteration process for each of the submodels.""" |
|
|
for i in self.__submodels: self.getParameter(i).doIterationFinalization() |
|
|
|
|
|
def checkPointSubmodels(self): |
|
|
"""performs check pointing for each submodel""" |
|
|
for i in self.__submodels: self.getParameter(i).checkPoint() |
|
|
|
|
|
# |
|
|
# these methods control the time stepping |
|
|
# |
|
|
def doInitialization(self): |
|
|
"""initializes the time stepping""" |
|
|
self.doInitializationOfSubmodels() |
|
|
|
|
|
def getSafeTimeStepSize(self): |
|
|
"""returns a time step size which can savely be used""" |
|
|
return self.getSafeTimeStepSizeFromSubmodels() |
|
|
|
|
|
def doStep(self,t): |
|
|
"""executes the time step by first iterating over time step t and then step forward""" |
|
|
# run iteration on simulation until terminated: |
|
|
self.doIterationInitialization(t) |
|
|
while not self.terminate(): self.doIterationStep() |
|
|
self.doIterationFinalization() |
|
|
self.doStepOfSubmodels(t) |
|
|
|
|
|
def finalize(self): |
|
|
"""returns True if all submodels are to be finalized""" |
|
|
return self.finalizeAllSubmodels() |
|
|
|
|
|
def doFinalization(self): |
|
|
"""finalizes the time stepping.""" |
|
|
self.doFinalizationOfSubmodels() |
|
|
# |
|
|
# methods deal with iterations: |
|
|
# |
|
|
def doIterationInitialization(self,t): |
|
|
"""initializes the iteration on a time step""" |
|
|
self.__iter=0 |
|
|
if self.debug(): print "%s: iteration starts"%self |
|
|
self.doIterationInitializationOfSubmodels(t) |
|
|
|
|
|
def doIterationStep(self): |
|
|
"""executes the iteration step""" |
|
|
self.__iter+=1 |
|
|
if self.debug(): print "%s: iteration step %d"%(self,self.__iter) |
|
|
try: |
|
|
self.doIterationStepOfSubmodels() |
|
|
except IterationDivergenceError,e: |
|
|
raise IterationDivergenceError("divergence at time step %s in iteration step %s by reason: \n%s."%(self.__n,self.__iter,e.value)) |
|
|
|
|
|
def terminate(self): |
|
|
"""returns True if time steping is terminated""" |
|
|
return self.terminateAllSubmodels() |
|
|
|
|
|
def doIterationFinalization(self): |
|
|
"""finalalizes the iteration process.""" |
|
|
self.doIterationFinalizationOfSubmodels() |
|
|
if self.debug(): print "%s: iteration finalized after %s step"%(self,self.__iter) |
|
|
# |
|
|
# sum other method: |
|
|
# |
|
|
def checkPoint(self): |
|
|
"""performs check pointing for each submodel""" |
|
|
if not self.__check_pointing==None: |
|
|
if self.__n%self.__check_pointing==0: self.checkPointsSubmodels() |
|
|
|
|
|
def run(self): |
|
|
"""After check_pointing time steps the model will start to create checkpoint files for each of the submodels""" |
|
|
self.__tn=0. |
|
|
self.__n=0 |
|
|
self.__dt=None |
|
|
self.doInitialization() |
|
|
while not self.finalize(): |
|
|
self.__n+=1 |
|
|
self.__dt=self.getSafeTimeStepSize() |
|
|
if self.__dt==None: self.__dt=self.UNDEF_DT |
|
|
if self.debug(): print "%s: %d. time step %e (step size %e.)"%(self,self.__n,self.__tn+self.__dt,self.__dt) |
|
|
endoftimestep=False |
|
|
while not endoftimestep: |
|
|
endoftimestep=True |
|
|
try: |
|
|
self.doStep(self.__tn+self.__dt) |
|
|
except FailedTimeStepError: |
|
|
self.__dt=self.getSafeTimeStepSize() |
|
|
if self.__dt==None: self.__dt=self.UNDEF_DT |
|
|
endoftimestep=False |
|
|
if self.debug(): print "%s: time step is repeated with new step size %e."%(self,self.__dt) |
|
|
except IterationDivergenceError: |
|
|
self.__dt*=0.5 |
|
|
endoftimestep=False |
|
|
if self.debug(): print "%s: iteration failes. time step is repeated with new step size %e."%(self,self.__dt) |
|
|
self.checkPoint() |
|
|
self.__tn+=self.__dt |
|
|
self.doFinalization() |
|
813 |
|
|
|
class IterationDivergenceError(Exception): |
|
|
"""excpetion which should be thrown if an iteration at a time step fails""" |
|
|
pass |
|
814 |
|
|
815 |
class FailedTimeStepError(Exception): |
if __name__=="__main__": |
816 |
"""excpetion which should be thrown if the time step fails because of a step size that have been choosen to be to large""" |
import math |
817 |
pass |
# |
818 |
|
# test for parameter set |
819 |
|
# |
820 |
|
p11=ParameterSet() |
821 |
|
p11.declareParameter(gamma1=1.,gamma2=2.,gamma3=3.) |
822 |
|
p1=ParameterSet() |
823 |
|
p1.declareParameter(dim=2,tol_v=0.001,output_file="/tmp/u.%3.3d.dx",runFlag=True,parm11=p11) |
824 |
|
parm=ParameterSet({ "parm1" : p1 , "parm2" : ParameterSet(["alpha"])}) |
825 |
|
parm.parm2.alpha=Link(p11,"gamma1") |
826 |
|
parm.x="that should not be here!" |
827 |
|
print parm.showParameters() |
828 |
|
# should be something like: {"parm2" : {"alpha" : reference to attribute |
829 |
|
# gamma1 of <__main__.ParameterSet instance at 0xf6db51cc>},"parm1" : {"dim" |
830 |
|
# : 2,"runFlag" : True,"tol_v": 0.001,"parm11" : {"gamma3" : 3.0,"gamma2" : |
831 |
|
# 2.0,"gamma1" : 1.0},"output_file" : /tmp/u.%3.3d.dx}} |
832 |
|
assert parm.parm2.alpha==1. |
833 |
|
parm.writeXML() |
834 |
|
|
835 |
|
#======================= |
836 |
|
class Messenger(Model): |
837 |
|
def __init__(self): |
838 |
|
Model.__init__(self) |
839 |
|
self.declareParameter(message="none") |
840 |
|
|
841 |
|
def doInitialization(self,t): |
842 |
|
self.__t=t |
843 |
|
print "I start talking now!" |
844 |
|
|
845 |
|
def doStep(self,dt): |
846 |
|
self.__t+=dt |
847 |
|
print "Message (time %e) : %s "%(self.__t,self.message) |
848 |
|
|
849 |
class IllegalParameterError(Exception): |
def doFinalization(self): |
850 |
"""excpetion which is thrown if model has not the desired parameter""" |
print "I have no more to say!" |
851 |
pass |
|
852 |
|
class ODETEST(Model): |
853 |
|
""" implements a solver for the ODE |
854 |
|
|
855 |
|
du/dt=a*u+f(t) |
856 |
|
|
857 |
if __name__=="__main__": |
we use a implicit euler scheme : |
|
class Messenger(Model): |
|
|
def __init__(self): |
|
|
Model.__init__(self,parameters={"message" : "none" },name="messenger") |
|
858 |
|
|
859 |
def doInitialization(self): |
u_n-u_{n-1}= dt*a u_n + st*f(t_n) |
|
print "I start talking now!" |
|
860 |
|
|
861 |
def doStep(self,t): |
to get u_n we run an iterative process |
862 |
print "Message (time %e) : %s "%(t,self.message) |
|
863 |
|
u_{n.k}=u_{n-1}+dt*(a u_{n.i-1} + f(t_n)) |
864 |
|
|
865 |
def doFinalization(self): |
|
866 |
print "I have no more to say!" |
input for this model are step size dt, end time tend and a value for |
867 |
|
a, f and initial value for u. we need also a tolerance tol for a |
868 |
# explicit scheme |
stopping criterion. |
869 |
class Ode1(Model): |
|
870 |
def __init__(self,**args): |
""" |
871 |
Model.__init__(self,parameters={"tend" : 1., "dt" : 0.0001 ,"a" : 0.1 ,"u" : 1. , "message" : "none" },name="Ode1",debug=True) |
|
872 |
|
def __init__(self): |
873 |
def doInitialization(self): |
Model.__init__(self,debug=True) |
874 |
self._tn=0 |
self.declareParameter(tend=1.,dt=0.1,a=0.9,u=10.,f=0.,message="",tol=1.e-8) |
875 |
|
|
876 |
def doStep(self,t): |
def doInitialization(self,t): |
877 |
self.u=self.u+(t-self._tn)*self.a*self.u**2 |
self.__tn=t |
878 |
self._tn=t |
self.__iter=0 |
879 |
|
|
880 |
def doFinalization(self): |
def doIterationInitialization(self,dt): |
881 |
self.message="current error = %e"%abs(self.u-1./(1./3.-self.a*self._tn)) |
self.__iter=0 |
882 |
print self.message |
self.__u_last=self.u |
883 |
|
|
884 |
def getSafeTimeStepSize(self): |
def doIterationStep(self,dt): |
885 |
return self.dt |
self.__iter+=1 |
886 |
|
self.__u_old=self.u |
887 |
def finalize(self): |
self.u=self.__u_last+dt*(self.a*self.__u_old+self.f) |
888 |
return self._tn>=self.tend |
|
889 |
# explicit scheme |
def terminate(self): |
890 |
class Ode2(Model): |
if self.__iter<1: |
891 |
|
return False |
892 |
def __init__(self,**args): |
else: |
893 |
Model.__init__(self,parameters={"tend" : 1., "dt" : 0.0001 ,"a" : 0.1 ,"u" : 10000. },name="Ode2",debug=True) |
return abs(self.__u_old-self.u)<self.tol*abs(self.u) |
894 |
self.declareParameter(tol=1.e-8,message="none") |
|
895 |
|
def doIterationFinalization(self,dt): |
896 |
|
self.__tn+=dt |
897 |
def doInitialization(self): |
self.message="current error = %e"%abs(self.u-10.*math.exp((self.a-1.)*self.__tn)) |
898 |
self._tn=0 |
|
899 |
self._iter=0 |
def getSafeTimeStepSize(self,dt): |
900 |
|
return min(self.dt,1./(abs(self.a)+1.)) |
901 |
def doIterationInitialization(self,t): |
|
902 |
self._iter=0 |
def finalize(self): |
903 |
self._u_last=self.u |
return self.__tn>=self.tend |
904 |
self._dt=t-self._tn |
|
905 |
self._tn=t |
# |
906 |
|
# s solves the coupled ODE: |
907 |
def doIterationStep(self): |
# |
908 |
self._iter+=1 |
# du/dt=a*u+ v |
909 |
self._u_old=self.u |
# dv/dt= u+a*v |
910 |
self.u=(self._dt*self.a*self.u**2-self._u_last)/(2*self._dt*self.a*self.u-1.) |
# |
911 |
|
# each equation is treated through the ODETEST class. The equations are |
912 |
def terminate(self): |
# linked and iteration over each time step is performed. the current |
913 |
if self._iter<1: |
# error of v is reported by the Messenger class. |
914 |
return False |
# |
915 |
else: |
o1=ODETEST() |
916 |
return abs(self._u_old-self.u)<self.tol*abs(self.u) |
o1.u=10 |
917 |
|
o2=ODETEST() |
918 |
def doIterationFinalization(self): |
o2.u=-10. |
919 |
self.message="current error = %e"%abs(self.u-1./(1-self.a*self._tn)) |
o1.f=Link(o2,"u") |
920 |
print self.message |
o2.f=Link(o1,"u") |
921 |
|
m=Messenger() |
922 |
def getSafeTimeStepSize(self): |
o1.dt=0.01 |
923 |
return self.dt |
m.message=Link(o1) |
924 |
|
s=ExplicitSimulation([Simulation([o1,o2],debug=True),m],debug=True) |
925 |
def finalize(self): |
s.run() |
926 |
return self._tn>=self.tend |
s.writeXML() |
|
|
|
|
# a simple model with paramemter tend, dt, p1, p2, and p3 |
|
|
class Test1(Model): |
|
|
|
|
|
def __init__(self,**args): |
|
|
Model.__init__(self,{"tend" : 1., "dt" : 0.1 ,"p1" : 0 ,"p2" : 0 ,"p3" : 0 },"test","bla",None,True) |
|
|
self.setParameters(args) |
|
|
|
|
|
def doInitialization(self): |
|
|
self.__tn=0 |
|
|
self.__n=0 |
|
|
|
|
|
def doStep(self,t): |
|
|
self.p3=self.p1+t*self.p2 |
|
|
self.__tn=t |
|
|
print "test1 set the value out1 to ",self.p3 |
|
|
|
|
|
def doFinalization(self): |
|
|
pass |
|
|
|
|
|
def getSafeTimeStepSize(self): |
|
|
return self.dt |
|
|
|
|
|
def finalize(self): |
|
|
return self._tn>self.tend |
|
|
|
|
|
|
|
|
class Test2(Model): |
|
|
|
|
|
def __init__(self): |
|
|
Model.__init__(self,{"q1": None},"test2","",None,True) |
|
|
|
|
|
|
|
|
def doInitialization(self): |
|
|
print "the whole thing starts" |
|
|
|
|
|
def doStep(self,t): |
|
|
print "test2 things that out1 is now ",self.out1 |
|
|
|
|
|
def doFinalization(self): |
|
|
print "all done" |
|
|
|
|
|
def finalize(self): |
|
|
return True |
|
|
|
|
|
class Test12(Model): |
|
|
"""model build from two models in a transperent way""" |
|
|
def __init__(self): |
|
|
Model.__init__(self,{"sm1": None, a : 0, "sm2": None},"test2","",None,True) |
|
|
self.setExecutionOrder(["sm2","sm1"]) |
|
|
|
|
|
# test messenger |
|
|
m=Messenger() |
|
|
m.run() |
|
|
# ode1 |
|
|
o=Ode1() |
|
|
o.dt=0.001 |
|
|
o.u=3. |
|
|
o.run() |
|
|
# ode1 |
|
|
o=Ode2() |
|
|
o.dt=0.01 |
|
|
o.a=0.1 |
|
|
o.u=1. |
|
|
o.run() |
|
|
# and they are linked together: |
|
|
o=Ode2() |
|
|
m=Messenger() |
|
|
om=Model(submodels=[o,m],debug=True) |
|
|
om.dt=0.01 |
|
|
om.u=1. |
|
|
m.message=Link(o) |
|
|
om.run() |
|
|
print om.showParameters() |
|
|
1/0 |
|
|
|
|
|
t=Test1() |
|
|
t.tend=1. |
|
|
t.dt=0.25 |
|
|
t.in1=1. |
|
|
t.in2=3. |
|
|
t.run() |
|
|
# and a coupled problem: |
|
|
t2=Test2() |
|
|
t2.out1=Link(t) |
|
|
Model([t,t2],debug=True).run() |
|