1 |
# $Id$ |
2 |
|
3 |
# Test for the AdvectivePDE class |
4 |
# |
5 |
# for a single equation the test problem is |
6 |
# |
7 |
# -(K_{ij}u_{,j})_{,i} - (w_i u)_{,i} + v_j u_{,j} =0 |
8 |
# |
9 |
# + constraints on the surface |
10 |
# |
11 |
# for system of two equation the test problem is |
12 |
# |
13 |
# -(K_{milj}u_{l,j})_{,i} - (w_{mil} u_l)_{,i} + v_{mlj} u_{l,j} =0 |
14 |
# |
15 |
# + constraints on the surface |
16 |
# |
17 |
# K,w and v are constant (we will set v=0 or w=0) |
18 |
# |
19 |
# the test solution is u(x)=e^{z_i*x_i} and u_l(x)=e^{z_{li}*x_i} |
20 |
# |
21 |
# an easy caculation shows that |
22 |
# |
23 |
# z_i*K_{ij}*z_j=(v_i-w_i)*z_i and z_{li}*K_{milj}*z_{lj}=(v_{mjl}-w_{mlj})*z_{lj} |
24 |
# |
25 |
# obviously one can choose: v_i-w_i=K_{ji}z_j and v_{mjl}-w_{mlj}=z_{li}*K_{milj} (no summation over l) |
26 |
# |
27 |
|
28 |
from esys.escript import * |
29 |
from esys.linearPDEs import AdvectivePDE,LinearPDE |
30 |
from esys import finley |
31 |
from random import random |
32 |
|
33 |
def printError(u,u_ex): |
34 |
if u.getRank()==0: |
35 |
out=" error = %e range = [%e:%e] [%e:%e]"%(Lsup(u-u_ex)/Lsup(u_ex),sup(u),inf(u),sup(u_ex),inf(u_ex)) |
36 |
else: |
37 |
out="\n" |
38 |
for i in range(u.getShape()[0]): |
39 |
out+=" %d error = %e range = [%e:%e] [%e:%e]\n"%(i,Lsup(u[i]-u_ex[i])/Lsup(u_ex[i]),sup(u[i]),inf(u[i]),sup(u_ex[i]),inf(u_ex[i])) |
40 |
return out |
41 |
|
42 |
|
43 |
def makeRandomFloats(n,val_low=0.,val_up=1.): |
44 |
out=[] |
45 |
for i in range(n): |
46 |
out.append((val_up-val_low)*random()+val_low) |
47 |
return out |
48 |
|
49 |
def makeRandomFloatMatrix(m,n,val_low=0.,val_up=1.): |
50 |
out=[] |
51 |
for i in range(m): |
52 |
out.append(makeRandomFloats(n,val_low,val_up)) |
53 |
return out |
54 |
|
55 |
def makeRandomFloatTensor(l,k,m,n,val_low=0.,val_up=1.): |
56 |
out=[] |
57 |
for j in range(l): |
58 |
out2=[] |
59 |
for i in range(k): out2.append(makeRandomFloatMatrix(m,n,val_low,val_up)) |
60 |
out.append(out2) |
61 |
return out |
62 |
|
63 |
ne=20 |
64 |
# for d in [2,3]: |
65 |
for d in [3]: |
66 |
# create domain: |
67 |
if d==2: |
68 |
mydomain=finley.Rectangle(ne,ne,1) |
69 |
x=mydomain.getX() |
70 |
msk=x[0].whereZero()+(x[0]-1.).whereZero()+x[1].whereZero()+(x[1]-1.).whereZero() |
71 |
else: |
72 |
mydomain=finley.Brick(ne,ne,ne,1) |
73 |
x=mydomain.getX() |
74 |
msk=x[0].whereZero()+(x[0]-1.).whereZero()+x[1].whereZero()+(x[1]-1.).whereZero()+x[2].whereZero()+(x[2]-1.).whereZero() |
75 |
print "@ generated %d-dimension mesh with %d elements in each direction"%(d,ne) |
76 |
# for ncomp in [1,2]: |
77 |
for ncomp in [2]: |
78 |
if ncomp==1: |
79 |
maskf=1. |
80 |
Z=makeRandomFloats(d,-1.,0.) |
81 |
K_sup=makeRandomFloatMatrix(d,d,-1.,1.) |
82 |
K=numarray.identity(d)*1. |
83 |
else: |
84 |
maskf=numarray.ones(ncomp) |
85 |
Z=makeRandomFloatMatrix(ncomp,d,-1.,0.) |
86 |
K_sup=makeRandomFloatTensor(ncomp,d,ncomp,d,-1.,1.) |
87 |
K=numarray.zeros([ncomp,d,ncomp,d])*0. |
88 |
for i in range(ncomp): |
89 |
K[i,:,i,:]=numarray.identity(d)*1. |
90 |
K_sup=numarray.array(K_sup) |
91 |
Z=numarray.array(Z) |
92 |
Z/=length(Z) |
93 |
if ncomp==1: |
94 |
Zx=Z[0]*x[0] |
95 |
for j in range(1,d): |
96 |
Zx+=Z[j]*x[j] |
97 |
else: |
98 |
Zx=x[0]*Z[:,0] |
99 |
for j in range(1,d): |
100 |
Zx+=x[j]*Z[:,j] |
101 |
K+=0.02*K_sup/length(K_sup) |
102 |
K/=length(K) |
103 |
if ncomp==1: |
104 |
U=numarray.matrixmultiply(numarray.transpose(K),Z) |
105 |
else: |
106 |
U=numarray.zeros([ncomp,d,ncomp])*1. |
107 |
for m in range(ncomp): |
108 |
for l in range(ncomp): |
109 |
for j in range(d): |
110 |
for i in range(d): |
111 |
U[m,j,l]+=K[m,i,l,j]*Z[l,i] |
112 |
|
113 |
# create domain: |
114 |
mypde=AdvectivePDE(mydomain) |
115 |
# mypde.setSolverMethod(mypde.DIRECT) |
116 |
mypde.setValue(q=msk*maskf,A=K) |
117 |
mypde.checkSymmetry() |
118 |
# run Peclet |
119 |
for Pe in [0.001,1.,1.,10.,100,1000.,10000.,100000.,1000000.,10000000.]: |
120 |
peclet=Pe*length(U)/2./length(K)/ne |
121 |
print "@@@ Peclet Number :",peclet |
122 |
u_ex=exp(Pe*Zx) |
123 |
mypde.setValue(r=u_ex) |
124 |
# mypde.setValue(B=Data(),C=Pe*U) |
125 |
# u=mypde.getSolution() |
126 |
# print "@@@@ C=U: Pe = ",peclet,printError(u,u_ex) |
127 |
mypde.setValue(C=Data(),B=-Pe*U) |
128 |
u=mypde.getSolution() |
129 |
print "@@@@ B=-U: Pe = ",peclet,printError(u,u_ex) |