1 |
jgs |
82 |
# assemble test: |
2 |
|
|
# |
3 |
|
|
# $Id$ |
4 |
|
|
|
5 |
|
|
import sys |
6 |
|
|
import os |
7 |
|
|
import unittest |
8 |
|
|
|
9 |
|
|
esys_root=os.getenv('ESYS_ROOT') |
10 |
|
|
sys.path.append(esys_root+'/finley/lib') |
11 |
|
|
sys.path.append(esys_root+'/escript/lib') |
12 |
|
|
sys.path.append(esys_root+'/escript/py_src') |
13 |
|
|
|
14 |
|
|
from escript import * |
15 |
|
|
from util import * |
16 |
|
|
from linearPDE import * |
17 |
|
|
|
18 |
|
|
import finley |
19 |
|
|
from math import * |
20 |
|
|
global seed |
21 |
|
|
num_elem=2 # number of elements in each spatial direction |
22 |
|
|
num_equations=3 # number of equations |
23 |
|
|
integration_order=-1 # order of the integration scheme |
24 |
|
|
order_u=1 # solution order |
25 |
|
|
|
26 |
|
|
|
27 |
|
|
seed=1 |
28 |
|
|
rand_factor=sqrt(2.) |
29 |
|
|
# |
30 |
|
|
# The test solution is represented in the basis |
31 |
|
|
# |
32 |
|
|
# B=[1,x_1,x_2,x_3,x_1**2,x_2**2,x_3**2,....,x_1**order_u,x_2**order_u,x_3**order_u] for dim=3 |
33 |
|
|
# or |
34 |
|
|
# B=[1,x_1,x_2,x_1**2,x_2**2,....,x_1**order_u,x_2**order_u] for dim=2 |
35 |
|
|
# |
36 |
|
|
# length of B is len_Basis. |
37 |
|
|
# |
38 |
|
|
# any test solution u with numComp components is represented by the numComp x len_Basis matrix sol. |
39 |
|
|
# the actual solution is then given by u=matmul(sol,B). |
40 |
|
|
# |
41 |
|
|
|
42 |
|
|
global maxError,coeff,total_maxError,total_coeff |
43 |
|
|
total_maxError=0 |
44 |
|
|
total_coeff="" |
45 |
|
|
maxError=0 |
46 |
|
|
coeff="" |
47 |
|
|
D=() |
48 |
|
|
|
49 |
|
|
|
50 |
|
|
def randomNum(): |
51 |
|
|
global seed |
52 |
|
|
seed+=1 |
53 |
|
|
s=rand_factor*seed |
54 |
|
|
return s-int(s) |
55 |
|
|
|
56 |
|
|
def generateRandom(arg): |
57 |
|
|
if len(arg)==0: |
58 |
|
|
return randomNum() |
59 |
|
|
out=numarray.ones(arg,numarray.Float64) # *randomNum() |
60 |
|
|
return out |
61 |
|
|
|
62 |
|
|
def algebraicGrad(u): |
63 |
|
|
out=numarray.zeros([u.shape[0],dim,len_Basis],numarray.Float64) |
64 |
|
|
for s in range(u.shape[0]): |
65 |
|
|
for i in range(dim): |
66 |
|
|
for k in range(len_Basis): |
67 |
|
|
h=0 |
68 |
|
|
for j in range(len_Basis): |
69 |
|
|
h+=u[s,j]*D[i][k,j] |
70 |
|
|
out[s,i,k]=h |
71 |
|
|
return out |
72 |
|
|
|
73 |
|
|
def algebraicDiv(u): |
74 |
|
|
out=numarray.zeros([u.shape[0],len_Basis],numarray.Float64) |
75 |
|
|
for s in range(u.shape[0]): |
76 |
|
|
for k in range(len_Basis): |
77 |
|
|
h=0 |
78 |
|
|
for i in range(dim): |
79 |
|
|
for j in range(len_Basis): |
80 |
|
|
h+=u[s,i,j]*D[i][k,j] |
81 |
|
|
out[s,k]=h |
82 |
|
|
return out |
83 |
|
|
|
84 |
|
|
def mult4(A,u): |
85 |
|
|
out=numarray.zeros([A.shape[0],A.shape[1],len_Basis],numarray.Float64) |
86 |
|
|
for s in range(A.shape[0]): |
87 |
|
|
for i in range(A.shape[1]): |
88 |
|
|
for k in range(len_Basis): |
89 |
|
|
h=0 |
90 |
|
|
for t in range(A.shape[2]): |
91 |
|
|
for j in range(A.shape[3]): |
92 |
|
|
h+=A[s,i,t,j]*u[t,j,k] |
93 |
|
|
out[s,i,k]=h |
94 |
|
|
return out |
95 |
|
|
|
96 |
|
|
def mult3_2(A,u): |
97 |
|
|
out=numarray.zeros([A.shape[0],A.shape[1],len_Basis],numarray.Float64) |
98 |
|
|
for s in range(A.shape[0]): |
99 |
|
|
for i in range(A.shape[1]): |
100 |
|
|
for k in range(len_Basis): |
101 |
|
|
h=0 |
102 |
|
|
for t in range(A.shape[2]): |
103 |
|
|
h+=A[s,i,t]*u[t,k] |
104 |
|
|
out[s,i,k]=h |
105 |
|
|
return out |
106 |
|
|
|
107 |
|
|
def mult3_1(A,u): |
108 |
|
|
out=numarray.zeros([A.shape[0],len_Basis],numarray.Float64) |
109 |
|
|
for s in range(A.shape[0]): |
110 |
|
|
for k in range(len_Basis): |
111 |
|
|
h=0 |
112 |
|
|
for t in range(A.shape[1]): |
113 |
|
|
for j in range(A.shape[2]): |
114 |
|
|
h+=A[s,t,j]*u[t,j,k] |
115 |
|
|
out[s,k]=h |
116 |
|
|
return out |
117 |
|
|
|
118 |
|
|
def mult2(A,u): |
119 |
|
|
out=numarray.zeros([A.shape[0],len_Basis],numarray.Float64) |
120 |
|
|
for s in range(A.shape[0]): |
121 |
|
|
for k in range(len_Basis): |
122 |
|
|
h=0 |
123 |
|
|
for t in range(A.shape[1]): |
124 |
|
|
h+=A[s,t]*u[t,k] |
125 |
|
|
out[s,k]=h |
126 |
|
|
return out |
127 |
|
|
|
128 |
|
|
|
129 |
|
|
def eval(u,this): |
130 |
|
|
x=this.getX() |
131 |
|
|
if u.rank==2: |
132 |
|
|
out=Data(value=0,shape=(u.shape[0],),what=this,expand=True) |
133 |
|
|
for i0 in range(u.shape[0]): |
134 |
|
|
out[i0]=u[i0,0] |
135 |
|
|
for p in range(order_u): |
136 |
|
|
for j in range(dim): |
137 |
|
|
out[i0]+=u[i0,p*dim+j+1]*x[j]**(p+1) |
138 |
|
|
else: |
139 |
|
|
if u.shape[0]==1: |
140 |
|
|
out=Data(value=0,shape=(u.shape[1],),what=this,expand=True) |
141 |
|
|
for i1 in range(u.shape[1]): |
142 |
|
|
out[i1]=u[0,i1,0] |
143 |
|
|
for p in range(order_u): |
144 |
|
|
for j in range(dim): |
145 |
|
|
out[i1]+=u[0,i1,p*dim+j+1]*x[j]**(p+1) |
146 |
|
|
|
147 |
|
|
elif u.shape[1]==1: |
148 |
|
|
out=Data(value=0,shape=(u.shape[0],),what=this,expand=True) |
149 |
|
|
for i0 in range(u.shape[0]): |
150 |
|
|
out[i0]=u[i0,0,0] |
151 |
|
|
for p in range(order_u): |
152 |
|
|
for j in range(dim): |
153 |
|
|
out[i0]+=u[i0,0,p*dim+j+1]*x[j]**(p+1) |
154 |
|
|
else: |
155 |
|
|
out=Data(value=0,shape=(u.shape[0],u.shape[1]),what=this,expand=True) |
156 |
|
|
for i0 in range(u.shape[0]): |
157 |
|
|
for i1 in range(u.shape[1]): |
158 |
|
|
out[i0,i1]=u[i0,i1,0] |
159 |
|
|
for p in range(order_u): |
160 |
|
|
for j in range(dim): |
161 |
|
|
out[i0,i1]+=u[i0,i1,p*dim+j+1]*x[j]**(p+1) |
162 |
|
|
return out |
163 |
|
|
|
164 |
|
|
def checkSystem(text,operator,u,rhs): |
165 |
|
|
global maxError,coeff |
166 |
|
|
error=Lsup(operator*u-rhs) |
167 |
|
|
print "@@ "+text+" error: ",error |
168 |
|
|
if error>=maxError: |
169 |
|
|
maxError=error |
170 |
|
|
coeff=text |
171 |
|
|
# |
172 |
|
|
# |
173 |
|
|
def TestSystem(numEqu,numComp,mydomain,reduce): |
174 |
|
|
elem=Function(mydomain) |
175 |
|
|
face_elem=FunctionOnBoundary(mydomain) |
176 |
|
|
nodes=ContinuousFunction(mydomain) |
177 |
|
|
nrml=face_elem.getNormal() |
178 |
|
|
# |
179 |
|
|
# test solution: |
180 |
|
|
# |
181 |
|
|
u=generateRandom([numComp,len_Basis]) |
182 |
|
|
# u=numarray.zeros([numComp,len_Basis]) |
183 |
|
|
# u[0,0]=1 |
184 |
|
|
# u[0,1]=1 |
185 |
|
|
U=eval(u,nodes) |
186 |
|
|
gradu=algebraicGrad(u) |
187 |
|
|
# |
188 |
|
|
# test A: |
189 |
|
|
# |
190 |
|
|
for p in range(numEqu): |
191 |
|
|
for q in range(numComp): |
192 |
|
|
for i in range(dim): |
193 |
|
|
for j in range(dim): |
194 |
|
|
|
195 |
|
|
# check div( A grad(u) ) = div( X ) |
196 |
|
|
c_A=numarray.zeros([numEqu,dim,numComp,dim]) |
197 |
|
|
c_A[p,i,q,j]=1 |
198 |
|
|
if numEqu==1 and numComp==1: |
199 |
|
|
c_A2=numarray.reshape(c_A,[dim,dim]) |
200 |
|
|
text="A[%d,%d]"%(i,j) |
201 |
|
|
else: |
202 |
|
|
c_A2=c_A |
203 |
|
|
text="A[%d,%d,%d,%d]"%(p,i,q,j) |
204 |
|
|
x=mult4(c_A,gradu) |
205 |
|
|
mypde1=linearPDE(domain=mydomain,A=c_A2,X=eval(x,elem)) |
206 |
|
|
mypde1.setReducedOrderForSolutionsTo(reduce) |
207 |
|
|
checkSystem(text+" const with X",mypde1.getOperator(),U,mypde1.getRightHandSide()) |
208 |
|
|
# check div( A grad(u) ) = Y |
209 |
|
|
y=-algebraicDiv(x) |
210 |
|
|
mypde2=linearPDE(domain=mydomain,Y=eval(y,elem),y=matmult(eval(x,face_elem),nrml)) |
211 |
|
|
mypde2.setReducedOrderForSolutionsTo(reduce) |
212 |
|
|
checkSystem(text+" const with Y",mypde1.getOperator(),U,mypde2.getRightHandSide()) |
213 |
|
|
|
214 |
|
|
# check div( B u ) = div( X ) |
215 |
|
|
c_B=numarray.zeros([numEqu,dim,numComp]) |
216 |
|
|
c_B[p,i,q]=1 |
217 |
|
|
if numEqu==1 and numComp==1: |
218 |
|
|
c_B2=numarray.reshape(c_B,[dim]) |
219 |
|
|
text="B[%d]"%(i) |
220 |
|
|
else: |
221 |
|
|
c_B2=c_B |
222 |
|
|
text="B[%d,%d,%d]"%(p,i,q) |
223 |
|
|
x=mult3_2(c_B,u) |
224 |
|
|
mypde1=linearPDE(domain=mydomain,B=c_B2,X=eval(x,elem)) |
225 |
|
|
mypde1.setReducedOrderForSolutionsTo(reduce) |
226 |
|
|
checkSystem(text+" const with X",mypde1.getOperator(),U,mypde1.getRightHandSide()) |
227 |
|
|
# check div( B u ) = Y |
228 |
|
|
y=-algebraicDiv(x) |
229 |
|
|
mypde2=linearPDE(domain=mydomain,Y=eval(y,elem),y=matmult(eval(x,face_elem),nrml)) |
230 |
|
|
mypde2.setReducedOrderForSolutionsTo(reduce) |
231 |
|
|
checkSystem(text+" const with Y",mypde1.getOperator(),U,mypde2.getRightHandSide()) |
232 |
|
|
|
233 |
|
|
# check C grad(u) = Y |
234 |
|
|
c_C=numarray.zeros([numEqu,numComp,dim]) |
235 |
|
|
c_C[p,q,i]=1 |
236 |
|
|
if numEqu==1 and numComp==1: |
237 |
|
|
c_C2=numarray.reshape(c_C,[dim]) |
238 |
|
|
text="C[%d]"%(i) |
239 |
|
|
else: |
240 |
|
|
c_C2=c_C |
241 |
|
|
text="C[%d,%d,%d]"%(p,q,i) |
242 |
|
|
y=mult3_1(c_C,gradu) |
243 |
|
|
mypde1=linearPDE(domain=mydomain,C=c_C2,Y=eval(y,elem)) |
244 |
|
|
mypde1.setReducedOrderForSolutionsTo(reduce) |
245 |
|
|
checkSystem(text+" const with Y",mypde1.getOperator(),U,mypde1.getRightHandSide()) |
246 |
|
|
|
247 |
|
|
|
248 |
|
|
# check D u= Y |
249 |
|
|
c_D=numarray.zeros([numEqu,numComp]) |
250 |
|
|
c_D[p,q]=1 |
251 |
|
|
if numEqu==1 and numComp==1: |
252 |
|
|
c_D2=numarray.reshape(c_D,[1]) |
253 |
|
|
text="D" |
254 |
|
|
else: |
255 |
|
|
c_D2=c_D |
256 |
|
|
text="D[%d,%d]"%(p,q) |
257 |
|
|
y=mult2(c_D,u) |
258 |
|
|
mypde1=linearPDE(domain=mydomain,D=c_D2,Y=eval(y,elem)) |
259 |
|
|
mypde1.setReducedOrderForSolutionsTo(reduce) |
260 |
|
|
checkSystem(text+" const with Y",mypde1.getOperator(),U,mypde1.getRightHandSide()) |
261 |
|
|
|
262 |
|
|
# we start: |
263 |
|
|
for dim in [2,3]: |
264 |
|
|
len_Basis=dim*order_u+1 |
265 |
|
|
# |
266 |
|
|
# the differential operators: |
267 |
|
|
# |
268 |
|
|
# D_j(matmul(sol,B))=matmul(sol,D_jB)=matmul(matmul(sol,D[j]),B) |
269 |
|
|
# |
270 |
|
|
D=() |
271 |
|
|
for i in range(dim): |
272 |
|
|
D=D+(numarray.zeros([len_Basis,len_Basis],numarray.Float64),) |
273 |
|
|
for j in range(order_u): |
274 |
|
|
if j==0: |
275 |
|
|
D[i][0,i+j+1]=1 |
276 |
|
|
else: |
277 |
|
|
D[i][(j-1)*dim+i+1,j*dim+i+1]=j+1 |
278 |
|
|
# |
279 |
|
|
# generate mydomain: |
280 |
|
|
# |
281 |
|
|
for order in [1,2]: |
282 |
|
|
for onElements in [False,True]: |
283 |
|
|
if onElements==True: |
284 |
|
|
onElmtext=", with elements on faces" |
285 |
|
|
else: |
286 |
|
|
onElmtext="" |
287 |
|
|
if dim==3: |
288 |
|
|
mydomain=finley.Brick(num_elem,num_elem,num_elem,order=order,integrationOrder=integration_order,useElementsOnFace=onElements) |
289 |
|
|
else: |
290 |
|
|
mydomain=finley.Rectangle(num_elem,num_elem,order=order,integrationOrder=integration_order,useElementsOnFace=onElements) |
291 |
|
|
for reduce in [False,True]: |
292 |
|
|
if reduce==True: |
293 |
|
|
redtext=",reduced" |
294 |
|
|
else: |
295 |
|
|
redtext="" |
296 |
|
|
# |
297 |
|
|
# and start the test process: |
298 |
|
|
# |
299 |
|
|
for numEqu in range(1,num_equations+1): |
300 |
|
|
print "@@@ Start testing assembling with dim=%d and %d equations (order=%d%s%s)"%(dim,numEqu,order,redtext,onElmtext) |
301 |
|
|
TestSystem(numEqu,numEqu,mydomain,reduce) |
302 |
|
|
print "@@@ end testing assembling (order=%d%s%s) with %d equations in %dD with maximum error %e for %s"%(order,redtext,onElmtext,numEqu,dim,maxError,coeff) |
303 |
|
|
if maxError>=total_maxError: |
304 |
|
|
total_maxError=maxError |
305 |
|
|
total_coeff=coeff+" with %d equations in %dD (order=%d%s%s)"%(numEqu,dim,order,redtext,onElmtext) |
306 |
|
|
|
307 |
|
|
print "@@@@ end testing assemblage with maximal error %e for %s"%(total_maxError,total_coeff) |
308 |
|
|
|
309 |
|
|
|