1 |
# assemble test: |
2 |
# |
3 |
# $Id$ |
4 |
|
5 |
import sys |
6 |
import os |
7 |
import unittest |
8 |
|
9 |
esys_root=os.getenv('ESYS_ROOT') |
10 |
sys.path.append(esys_root+'/finley/lib') |
11 |
sys.path.append(esys_root+'/escript/lib') |
12 |
sys.path.append(esys_root+'/escript/py_src') |
13 |
|
14 |
from escript import * |
15 |
from util import * |
16 |
from linearPDE import * |
17 |
|
18 |
import finley |
19 |
from math import * |
20 |
global seed |
21 |
num_elem=2 # number of elements in each spatial direction |
22 |
num_equations=3 # number of equations |
23 |
integration_order=-1 # order of the integration scheme |
24 |
order_u=1 # solution order |
25 |
|
26 |
|
27 |
seed=1 |
28 |
rand_factor=sqrt(2.) |
29 |
# |
30 |
# The test solution is represented in the basis |
31 |
# |
32 |
# B=[1,x_1,x_2,x_3,x_1**2,x_2**2,x_3**2,....,x_1**order_u,x_2**order_u,x_3**order_u] for dim=3 |
33 |
# or |
34 |
# B=[1,x_1,x_2,x_1**2,x_2**2,....,x_1**order_u,x_2**order_u] for dim=2 |
35 |
# |
36 |
# length of B is len_Basis. |
37 |
# |
38 |
# any test solution u with numComp components is represented by the numComp x len_Basis matrix sol. |
39 |
# the actual solution is then given by u=matmul(sol,B). |
40 |
# |
41 |
|
42 |
global maxError,coeff,total_maxError,total_coeff |
43 |
total_maxError=0 |
44 |
total_coeff="" |
45 |
maxError=0 |
46 |
coeff="" |
47 |
D=() |
48 |
|
49 |
|
50 |
def randomNum(): |
51 |
global seed |
52 |
seed+=1 |
53 |
s=rand_factor*seed |
54 |
return s-int(s) |
55 |
|
56 |
def generateRandom(arg): |
57 |
if len(arg)==0: |
58 |
return randomNum() |
59 |
out=numarray.ones(arg,numarray.Float64) # *randomNum() |
60 |
return out |
61 |
|
62 |
def algebraicGrad(u): |
63 |
out=numarray.zeros([u.shape[0],dim,len_Basis],numarray.Float64) |
64 |
for s in range(u.shape[0]): |
65 |
for i in range(dim): |
66 |
for k in range(len_Basis): |
67 |
h=0 |
68 |
for j in range(len_Basis): |
69 |
h+=u[s,j]*D[i][k,j] |
70 |
out[s,i,k]=h |
71 |
return out |
72 |
|
73 |
def algebraicDiv(u): |
74 |
out=numarray.zeros([u.shape[0],len_Basis],numarray.Float64) |
75 |
for s in range(u.shape[0]): |
76 |
for k in range(len_Basis): |
77 |
h=0 |
78 |
for i in range(dim): |
79 |
for j in range(len_Basis): |
80 |
h+=u[s,i,j]*D[i][k,j] |
81 |
out[s,k]=h |
82 |
return out |
83 |
|
84 |
def mult4(A,u): |
85 |
out=numarray.zeros([A.shape[0],A.shape[1],len_Basis],numarray.Float64) |
86 |
for s in range(A.shape[0]): |
87 |
for i in range(A.shape[1]): |
88 |
for k in range(len_Basis): |
89 |
h=0 |
90 |
for t in range(A.shape[2]): |
91 |
for j in range(A.shape[3]): |
92 |
h+=A[s,i,t,j]*u[t,j,k] |
93 |
out[s,i,k]=h |
94 |
return out |
95 |
|
96 |
def mult3_2(A,u): |
97 |
out=numarray.zeros([A.shape[0],A.shape[1],len_Basis],numarray.Float64) |
98 |
for s in range(A.shape[0]): |
99 |
for i in range(A.shape[1]): |
100 |
for k in range(len_Basis): |
101 |
h=0 |
102 |
for t in range(A.shape[2]): |
103 |
h+=A[s,i,t]*u[t,k] |
104 |
out[s,i,k]=h |
105 |
return out |
106 |
|
107 |
def mult3_1(A,u): |
108 |
out=numarray.zeros([A.shape[0],len_Basis],numarray.Float64) |
109 |
for s in range(A.shape[0]): |
110 |
for k in range(len_Basis): |
111 |
h=0 |
112 |
for t in range(A.shape[1]): |
113 |
for j in range(A.shape[2]): |
114 |
h+=A[s,t,j]*u[t,j,k] |
115 |
out[s,k]=h |
116 |
return out |
117 |
|
118 |
def mult2(A,u): |
119 |
out=numarray.zeros([A.shape[0],len_Basis],numarray.Float64) |
120 |
for s in range(A.shape[0]): |
121 |
for k in range(len_Basis): |
122 |
h=0 |
123 |
for t in range(A.shape[1]): |
124 |
h+=A[s,t]*u[t,k] |
125 |
out[s,k]=h |
126 |
return out |
127 |
|
128 |
|
129 |
def eval(u,this): |
130 |
x=this.getX() |
131 |
if u.rank==2: |
132 |
out=Data(value=0,shape=(u.shape[0],),what=this,expand=True) |
133 |
for i0 in range(u.shape[0]): |
134 |
out[i0]=u[i0,0] |
135 |
for p in range(order_u): |
136 |
for j in range(dim): |
137 |
out[i0]+=u[i0,p*dim+j+1]*x[j]**(p+1) |
138 |
else: |
139 |
if u.shape[0]==1: |
140 |
out=Data(value=0,shape=(u.shape[1],),what=this,expand=True) |
141 |
for i1 in range(u.shape[1]): |
142 |
out[i1]=u[0,i1,0] |
143 |
for p in range(order_u): |
144 |
for j in range(dim): |
145 |
out[i1]+=u[0,i1,p*dim+j+1]*x[j]**(p+1) |
146 |
|
147 |
elif u.shape[1]==1: |
148 |
out=Data(value=0,shape=(u.shape[0],),what=this,expand=True) |
149 |
for i0 in range(u.shape[0]): |
150 |
out[i0]=u[i0,0,0] |
151 |
for p in range(order_u): |
152 |
for j in range(dim): |
153 |
out[i0]+=u[i0,0,p*dim+j+1]*x[j]**(p+1) |
154 |
else: |
155 |
out=Data(value=0,shape=(u.shape[0],u.shape[1]),what=this,expand=True) |
156 |
for i0 in range(u.shape[0]): |
157 |
for i1 in range(u.shape[1]): |
158 |
out[i0,i1]=u[i0,i1,0] |
159 |
for p in range(order_u): |
160 |
for j in range(dim): |
161 |
out[i0,i1]+=u[i0,i1,p*dim+j+1]*x[j]**(p+1) |
162 |
return out |
163 |
|
164 |
def checkSystem(text,operator,u,rhs): |
165 |
global maxError,coeff |
166 |
error=Lsup(operator*u-rhs) |
167 |
print "@@ "+text+" error: ",error |
168 |
if error>=maxError: |
169 |
maxError=error |
170 |
coeff=text |
171 |
# |
172 |
# |
173 |
def TestSystem(numEqu,numComp,mydomain,reduce): |
174 |
elem=Function(mydomain) |
175 |
face_elem=FunctionOnBoundary(mydomain) |
176 |
nodes=ContinuousFunction(mydomain) |
177 |
nrml=face_elem.getNormal() |
178 |
# |
179 |
# test solution: |
180 |
# |
181 |
u=generateRandom([numComp,len_Basis]) |
182 |
# u=numarray.zeros([numComp,len_Basis]) |
183 |
# u[0,0]=1 |
184 |
# u[0,1]=1 |
185 |
U=eval(u,nodes) |
186 |
gradu=algebraicGrad(u) |
187 |
# |
188 |
# test A: |
189 |
# |
190 |
for p in range(numEqu): |
191 |
for q in range(numComp): |
192 |
for i in range(dim): |
193 |
for j in range(dim): |
194 |
|
195 |
# check div( A grad(u) ) = div( X ) |
196 |
c_A=numarray.zeros([numEqu,dim,numComp,dim]) |
197 |
c_A[p,i,q,j]=1 |
198 |
if numEqu==1 and numComp==1: |
199 |
c_A2=numarray.reshape(c_A,[dim,dim]) |
200 |
text="A[%d,%d]"%(i,j) |
201 |
else: |
202 |
c_A2=c_A |
203 |
text="A[%d,%d,%d,%d]"%(p,i,q,j) |
204 |
x=mult4(c_A,gradu) |
205 |
mypde1=linearPDE(domain=mydomain,A=c_A2,X=eval(x,elem)) |
206 |
mypde1.setReducedOrderForSolutionsTo(reduce) |
207 |
checkSystem(text+" const with X",mypde1.getOperator(),U,mypde1.getRightHandSide()) |
208 |
# check div( A grad(u) ) = Y |
209 |
y=-algebraicDiv(x) |
210 |
mypde2=linearPDE(domain=mydomain,Y=eval(y,elem),y=matmult(eval(x,face_elem),nrml)) |
211 |
mypde2.setReducedOrderForSolutionsTo(reduce) |
212 |
checkSystem(text+" const with Y",mypde1.getOperator(),U,mypde2.getRightHandSide()) |
213 |
|
214 |
# check div( B u ) = div( X ) |
215 |
c_B=numarray.zeros([numEqu,dim,numComp]) |
216 |
c_B[p,i,q]=1 |
217 |
if numEqu==1 and numComp==1: |
218 |
c_B2=numarray.reshape(c_B,[dim]) |
219 |
text="B[%d]"%(i) |
220 |
else: |
221 |
c_B2=c_B |
222 |
text="B[%d,%d,%d]"%(p,i,q) |
223 |
x=mult3_2(c_B,u) |
224 |
mypde1=linearPDE(domain=mydomain,B=c_B2,X=eval(x,elem)) |
225 |
mypde1.setReducedOrderForSolutionsTo(reduce) |
226 |
checkSystem(text+" const with X",mypde1.getOperator(),U,mypde1.getRightHandSide()) |
227 |
# check div( B u ) = Y |
228 |
y=-algebraicDiv(x) |
229 |
mypde2=linearPDE(domain=mydomain,Y=eval(y,elem),y=matmult(eval(x,face_elem),nrml)) |
230 |
mypde2.setReducedOrderForSolutionsTo(reduce) |
231 |
checkSystem(text+" const with Y",mypde1.getOperator(),U,mypde2.getRightHandSide()) |
232 |
|
233 |
# check C grad(u) = Y |
234 |
c_C=numarray.zeros([numEqu,numComp,dim]) |
235 |
c_C[p,q,i]=1 |
236 |
if numEqu==1 and numComp==1: |
237 |
c_C2=numarray.reshape(c_C,[dim]) |
238 |
text="C[%d]"%(i) |
239 |
else: |
240 |
c_C2=c_C |
241 |
text="C[%d,%d,%d]"%(p,q,i) |
242 |
y=mult3_1(c_C,gradu) |
243 |
mypde1=linearPDE(domain=mydomain,C=c_C2,Y=eval(y,elem)) |
244 |
mypde1.setReducedOrderForSolutionsTo(reduce) |
245 |
checkSystem(text+" const with Y",mypde1.getOperator(),U,mypde1.getRightHandSide()) |
246 |
|
247 |
|
248 |
# check D u= Y |
249 |
c_D=numarray.zeros([numEqu,numComp]) |
250 |
c_D[p,q]=1 |
251 |
if numEqu==1 and numComp==1: |
252 |
c_D2=numarray.reshape(c_D,[1]) |
253 |
text="D" |
254 |
else: |
255 |
c_D2=c_D |
256 |
text="D[%d,%d]"%(p,q) |
257 |
y=mult2(c_D,u) |
258 |
mypde1=linearPDE(domain=mydomain,D=c_D2,Y=eval(y,elem)) |
259 |
mypde1.setReducedOrderForSolutionsTo(reduce) |
260 |
checkSystem(text+" const with Y",mypde1.getOperator(),U,mypde1.getRightHandSide()) |
261 |
|
262 |
# we start: |
263 |
for dim in [2,3]: |
264 |
len_Basis=dim*order_u+1 |
265 |
# |
266 |
# the differential operators: |
267 |
# |
268 |
# D_j(matmul(sol,B))=matmul(sol,D_jB)=matmul(matmul(sol,D[j]),B) |
269 |
# |
270 |
D=() |
271 |
for i in range(dim): |
272 |
D=D+(numarray.zeros([len_Basis,len_Basis],numarray.Float64),) |
273 |
for j in range(order_u): |
274 |
if j==0: |
275 |
D[i][0,i+j+1]=1 |
276 |
else: |
277 |
D[i][(j-1)*dim+i+1,j*dim+i+1]=j+1 |
278 |
# |
279 |
# generate mydomain: |
280 |
# |
281 |
for order in [1,2]: |
282 |
for onElements in [False,True]: |
283 |
if onElements==True: |
284 |
onElmtext=", with elements on faces" |
285 |
else: |
286 |
onElmtext="" |
287 |
if dim==3: |
288 |
mydomain=finley.Brick(num_elem,num_elem,num_elem,order=order,integrationOrder=integration_order,useElementsOnFace=onElements) |
289 |
else: |
290 |
mydomain=finley.Rectangle(num_elem,num_elem,order=order,integrationOrder=integration_order,useElementsOnFace=onElements) |
291 |
for reduce in [False,True]: |
292 |
if reduce==True: |
293 |
redtext=",reduced" |
294 |
else: |
295 |
redtext="" |
296 |
# |
297 |
# and start the test process: |
298 |
# |
299 |
for numEqu in range(1,num_equations+1): |
300 |
print "@@@ Start testing assembling with dim=%d and %d equations (order=%d%s%s)"%(dim,numEqu,order,redtext,onElmtext) |
301 |
TestSystem(numEqu,numEqu,mydomain,reduce) |
302 |
print "@@@ end testing assembling (order=%d%s%s) with %d equations in %dD with maximum error %e for %s"%(order,redtext,onElmtext,numEqu,dim,maxError,coeff) |
303 |
if maxError>=total_maxError: |
304 |
total_maxError=maxError |
305 |
total_coeff=coeff+" with %d equations in %dD (order=%d%s%s)"%(numEqu,dim,order,redtext,onElmtext) |
306 |
|
307 |
print "@@@@ end testing assemblage with maximal error %e for %s"%(total_maxError,total_coeff) |
308 |
|
309 |
|