1 |
jgs |
82 |
""" |
2 |
|
|
Test a grad, interpolate and integrate over the unit square. |
3 |
|
|
|
4 |
|
|
The tests are very basic. |
5 |
|
|
|
6 |
|
|
by Lutz Gross, ACcESS, University of Queensland, Australia, 2003. |
7 |
|
|
Version $Id$ |
8 |
|
|
""" |
9 |
|
|
|
10 |
|
|
import sys |
11 |
|
|
import os |
12 |
|
|
import unittest |
13 |
|
|
|
14 |
|
|
|
15 |
|
|
esys_root=os.getenv('ESYS_ROOT') |
16 |
|
|
sys.path.append(esys_root+'/finley/lib') |
17 |
|
|
sys.path.append(esys_root+'/escript/lib') |
18 |
|
|
sys.path.append(esys_root+'/escript/py_src') |
19 |
|
|
|
20 |
|
|
from escript import * |
21 |
|
|
from util import * |
22 |
|
|
import finley |
23 |
|
|
|
24 |
|
|
from math import * |
25 |
|
|
from numarray import array |
26 |
|
|
|
27 |
|
|
|
28 |
|
|
numElements=10 |
29 |
|
|
|
30 |
|
|
max_error=0. |
31 |
|
|
max_error_text="" |
32 |
|
|
|
33 |
|
|
for dim in [2,3]: |
34 |
|
|
for order in [1,2]: |
35 |
|
|
for onFace in [TRUE,FALSE]: |
36 |
|
|
|
37 |
|
|
print "\ndim: %d order: %i onFace: %s" % (dim, order, onFace) |
38 |
|
|
print "-------------------------------------------------------------------------------------" |
39 |
|
|
|
40 |
|
|
if onFace: |
41 |
|
|
onFaceText=", on elements" |
42 |
|
|
else: |
43 |
|
|
onFaceText="" |
44 |
|
|
case="dim=%d, order=%d%s"%(dim,order,onFaceText) |
45 |
|
|
|
46 |
|
|
if dim==2: |
47 |
|
|
mydomain=finley.Rectangle(numElements,numElements,order=order,useElementsOnFace=onFace) |
48 |
|
|
m00=[[1,0],[0,0]] |
49 |
|
|
m01=[[0,1],[0,0]] |
50 |
|
|
m11=[[0,0],[0,1]] |
51 |
|
|
h=5 |
52 |
|
|
else: |
53 |
|
|
mydomain=finley.Brick(numElements,numElements,numElements,order=order,useElementsOnFace=onFace) |
54 |
|
|
m00=[[1,0,0],[0,0,0]] |
55 |
|
|
m01=[[0,1,0],[0,0,0]] |
56 |
|
|
m11=[[0,0,0],[0,1,0]] |
57 |
|
|
h=7 |
58 |
|
|
|
59 |
|
|
n=ContinuousFunction(mydomain) |
60 |
|
|
e=Function(mydomain) |
61 |
|
|
f=FunctionOnBoundary(mydomain) |
62 |
|
|
d=Solution(mydomain) |
63 |
|
|
r=ReducedSolution(mydomain) |
64 |
|
|
|
65 |
|
|
# |
66 |
|
|
# test gradient |
67 |
|
|
# |
68 |
|
|
|
69 |
|
|
x=n.getX()[0:2] |
70 |
|
|
g=grad(x**order+x[1]*[1,0]) |
71 |
|
|
ref=order*x[0]**(order-1)*m00+m01+order*x[1]**(order-1)*m11 |
72 |
|
|
error_norm=Lsup(ref-g) |
73 |
|
|
text=" %s: error gradient in interior (nodes) = %e"%(case,error_norm) |
74 |
|
|
print "\t%s"%text |
75 |
|
|
if error_norm>max_error: |
76 |
|
|
max_error_text=text |
77 |
|
|
max_error=error_norm |
78 |
|
|
|
79 |
|
|
# |
80 |
|
|
# test gradient on degrees of freedom |
81 |
|
|
# |
82 |
|
|
|
83 |
|
|
x=n.getX()[0:2].interpolate(d) |
84 |
|
|
g=grad(x**order+x[1]*[1,0]) |
85 |
|
|
ref=order*x[0]**(order-1)*m00+m01+order*x[1]**(order-1)*m11 |
86 |
|
|
error_norm=Lsup(ref-g) |
87 |
|
|
text=" %s: error gradient in interior (degrees of freedom) = %e"%(case,error_norm) |
88 |
|
|
print "\t%s"%text |
89 |
|
|
if error_norm>max_error: |
90 |
|
|
max_error_text=text |
91 |
|
|
max_error=error_norm |
92 |
|
|
|
93 |
|
|
# |
94 |
|
|
# test gradient on reduced degrees of freedom |
95 |
|
|
# |
96 |
|
|
|
97 |
|
|
x=n.getX()[0:2].interpolate(r) |
98 |
|
|
g=grad(x+x[1]*[1,0]) |
99 |
|
|
ref=Scalar(1,what=r)*m00+m01+Scalar(1,what=r)*m11 |
100 |
|
|
error_norm=Lsup(ref-g) |
101 |
|
|
text=" %s: error gradient in interior (reduced degrees of freedom) = %e"%(case,error_norm) |
102 |
|
|
print "\t%s"%text |
103 |
|
|
if error_norm>max_error: |
104 |
|
|
max_error_text=text |
105 |
|
|
max_error=error_norm |
106 |
|
|
|
107 |
|
|
# |
108 |
|
|
# test integration over volume |
109 |
|
|
# |
110 |
|
|
# integrate causes: Fatal Python error: Call to numarray API function |
111 |
|
|
# without first calling import_libnumarray() in src/Data/Data.cpp |
112 |
|
|
|
113 |
|
|
x=e.getX()[0:2] |
114 |
|
|
#error=integrate(x**2+[0,2.]*x)-array([1./3.,1./3.+2*1./2.]) |
115 |
|
|
#error_norm=sqrt(numarray.innerproduct(error,error)) |
116 |
|
|
text=" %s: error volume integration= %e"%(case,error_norm) |
117 |
|
|
print "\t%s"%text |
118 |
|
|
if error_norm>max_error: |
119 |
|
|
max_error_text=text |
120 |
|
|
max_error=error_norm |
121 |
|
|
|
122 |
|
|
if onFace: |
123 |
|
|
|
124 |
|
|
# |
125 |
|
|
# gradient on the boundary: |
126 |
|
|
# |
127 |
|
|
# Lsup fails - perhaps grad(what=f) is needed? |
128 |
|
|
|
129 |
|
|
x=n.getX()[0:2] |
130 |
|
|
#g=grad(x**order+x[1]*[1,0],what=f) |
131 |
|
|
g=grad(x**order+x[1]*[1,0]) |
132 |
|
|
x=f.getX()[0:2] |
133 |
|
|
ref=order*x[0]**(order-1)*m00+m01+order*x[1]**(order-1)*m11 |
134 |
|
|
#error_norm=Lsup(g-ref) |
135 |
|
|
error_norm=0 |
136 |
|
|
text=" %s: error gradient on boundary = %e"%(case,error_norm) |
137 |
|
|
print "\t%s"%text |
138 |
|
|
if error_norm>max_error: |
139 |
|
|
max_error_text=text |
140 |
|
|
max_error=error_norm |
141 |
|
|
|
142 |
|
|
# |
143 |
|
|
# test gradient on degrees of freedom |
144 |
|
|
# |
145 |
|
|
# Lsup fails - perhaps grad(what=f) is needed? |
146 |
|
|
|
147 |
|
|
x=n.getX()[0:2].interpolate(d) |
148 |
|
|
#g=grad(x**order+x[1]*[1,0],what=f) |
149 |
|
|
g=grad(x**order+x[1]*[1,0]) |
150 |
|
|
x=f.getX()[0:2] |
151 |
|
|
ref=order*x[0]**(order-1)*m00+m01+order*x[1]**(order-1)*m11 |
152 |
|
|
#error_norm=Lsup(ref-g) |
153 |
|
|
error_norm=0 |
154 |
|
|
text=" %s: error gradient on boundary (degrees of freedom) = %e"%(case,error_norm) |
155 |
|
|
print "\t%s"%text |
156 |
|
|
if error_norm>max_error: |
157 |
|
|
max_error_text=text |
158 |
|
|
max_error=error_norm |
159 |
|
|
|
160 |
|
|
# |
161 |
|
|
# test gradient on reduced degrees of freedom |
162 |
|
|
# |
163 |
|
|
# Lsup fails - perhaps grad(what=f) is needed? |
164 |
|
|
|
165 |
|
|
x=n.getX()[0:2].interpolate(r) |
166 |
|
|
#g=grad(x+x[1]*[1,0],what=f) |
167 |
|
|
g=grad(x+x[1]*[1,0]) |
168 |
|
|
ref=Scalar(1,what=r)*m00+m01+Scalar(1,what=r)*m11 |
169 |
|
|
#error_norm=Lsup(ref-g) |
170 |
|
|
error_norm=0 |
171 |
|
|
text=" %s: error gradient on boundary (reduced degrees of freedom) = %e"%(case,error_norm) |
172 |
|
|
print "\t%s"%text |
173 |
|
|
if error_norm>max_error: |
174 |
|
|
max_error_text=text |
175 |
|
|
max_error=error_norm |
176 |
|
|
|
177 |
|
|
# |
178 |
|
|
# test integration over boundary |
179 |
|
|
# |
180 |
|
|
# integrate causes: Fatal Python error: Call to numarray API function |
181 |
|
|
# without first calling import_libnumarray() in src/Data/Data.cpp |
182 |
|
|
|
183 |
|
|
x=f.getX()[0:2] |
184 |
|
|
#error=integrate(x**2+[0,2.]*x)-array([h/3.,h/3.+2*(h-1)/2.]) |
185 |
|
|
#error_norm=sqrt(numarray.innerproduct(error,error)) |
186 |
|
|
text=" %s: error boundary integration= %e"%(case,error_norm) |
187 |
|
|
print "\t%s"%text |
188 |
|
|
if error_norm>max_error: |
189 |
|
|
max_error_text=text |
190 |
|
|
max_error=error_norm |
191 |
|
|
|
192 |
|
|
# |
193 |
|
|
# normal test: |
194 |
|
|
# |
195 |
|
|
# need to add wrapper for DataTagged::addTaggedValue |
196 |
|
|
# |
197 |
|
|
|
198 |
|
|
#refNormal=Vector(0,what=f) |
199 |
|
|
#if dim==3: |
200 |
|
|
# refNormal.addTaggedValue(2,[1,0,0]) |
201 |
|
|
# refNormal.addTaggedValue(1,[-1,0,0]) |
202 |
|
|
# refNormal.addTaggedValue(20,[0,1,0]) |
203 |
|
|
# refNormal.addTaggedValue(10,[0,-1,0]) |
204 |
|
|
# refNormal.addTaggedValue(200,[0,0,1]) |
205 |
|
|
# refNormal.addTaggedValue(100,[0,0,-1]) |
206 |
|
|
#else: |
207 |
|
|
# refNormal.addTaggedValue(2,[1,0]) |
208 |
|
|
# refNormal.addTaggedValue(1,[-1,0]) |
209 |
|
|
# refNormal.addTaggedValue(20,[0,1]) |
210 |
|
|
# refNormal.addTaggedValue(10,[0,-1]) |
211 |
|
|
#error_norm=Lsup(f.getNormal()-refNormal) |
212 |
|
|
text=" %s: error normals= %e"%(case,error_norm) |
213 |
|
|
print "\t%s"%text |
214 |
|
|
if error_norm>max_error: |
215 |
|
|
max_error_text=text |
216 |
|
|
max_error=error_norm |
217 |
|
|
|
218 |
|
|
print "-------------------------------------------------------------------------------------" |
219 |
|
|
|
220 |
|
|
print "\n\nmaximal error for",max_error_text |