1 |
jgs |
97 |
# $Id$ |
2 |
jgs |
82 |
""" |
3 |
|
|
Test a grad, interpolate and integrate over the unit square. |
4 |
|
|
|
5 |
|
|
The tests are very basic. |
6 |
|
|
|
7 |
|
|
by Lutz Gross, ACcESS, University of Queensland, Australia, 2003. |
8 |
|
|
Version $Id$ |
9 |
|
|
""" |
10 |
|
|
|
11 |
|
|
import sys |
12 |
|
|
import os |
13 |
|
|
import unittest |
14 |
|
|
|
15 |
jgs |
97 |
from esys.escript import * |
16 |
|
|
from esys.linearPDEs import * |
17 |
|
|
from esys import finley |
18 |
jgs |
82 |
|
19 |
|
|
from math import * |
20 |
|
|
from numarray import array |
21 |
|
|
|
22 |
|
|
numElements=10 |
23 |
|
|
max_error=0. |
24 |
|
|
max_error_text="" |
25 |
|
|
|
26 |
|
|
for dim in [2,3]: |
27 |
|
|
for order in [1,2]: |
28 |
jgs |
97 |
for onFace in [True,False]: |
29 |
jgs |
82 |
|
30 |
jgs |
97 |
print "\n" |
31 |
|
|
print "-----------------------------------------------------------------------------------------------------" |
32 |
|
|
print "dim: %d, order: %i, onFace: %s." % (dim, order, onFace) |
33 |
|
|
print "-----------------------------------------------------------------------------------------------------" |
34 |
jgs |
82 |
|
35 |
|
|
if onFace: |
36 |
|
|
onFaceText=", on elements" |
37 |
|
|
else: |
38 |
|
|
onFaceText="" |
39 |
jgs |
97 |
|
40 |
|
|
case="dim=%d, order=%d%s" % (dim,order,onFaceText) |
41 |
jgs |
82 |
|
42 |
|
|
if dim==2: |
43 |
|
|
mydomain=finley.Rectangle(numElements,numElements,order=order,useElementsOnFace=onFace) |
44 |
|
|
m00=[[1,0],[0,0]] |
45 |
|
|
m01=[[0,1],[0,0]] |
46 |
|
|
m11=[[0,0],[0,1]] |
47 |
|
|
h=5 |
48 |
|
|
else: |
49 |
|
|
mydomain=finley.Brick(numElements,numElements,numElements,order=order,useElementsOnFace=onFace) |
50 |
|
|
m00=[[1,0,0],[0,0,0]] |
51 |
|
|
m01=[[0,1,0],[0,0,0]] |
52 |
|
|
m11=[[0,0,0],[0,1,0]] |
53 |
|
|
h=7 |
54 |
|
|
|
55 |
|
|
n=ContinuousFunction(mydomain) |
56 |
|
|
e=Function(mydomain) |
57 |
|
|
f=FunctionOnBoundary(mydomain) |
58 |
|
|
d=Solution(mydomain) |
59 |
|
|
r=ReducedSolution(mydomain) |
60 |
|
|
|
61 |
|
|
# |
62 |
|
|
# test gradient |
63 |
|
|
# |
64 |
|
|
|
65 |
jgs |
97 |
test="error gradient in interior (nodes)" |
66 |
|
|
|
67 |
jgs |
82 |
x=n.getX()[0:2] |
68 |
|
|
g=grad(x**order+x[1]*[1,0]) |
69 |
|
|
ref=order*x[0]**(order-1)*m00+m01+order*x[1]**(order-1)*m11 |
70 |
|
|
error_norm=Lsup(ref-g) |
71 |
jgs |
97 |
|
72 |
|
|
text="%s: %55s = %e" % (case, test, error_norm) |
73 |
|
|
print "%s" % text |
74 |
|
|
|
75 |
jgs |
82 |
if error_norm>max_error: |
76 |
|
|
max_error_text=text |
77 |
|
|
max_error=error_norm |
78 |
|
|
|
79 |
|
|
# |
80 |
|
|
# test gradient on degrees of freedom |
81 |
|
|
# |
82 |
|
|
|
83 |
jgs |
97 |
test="error gradient in interior (degrees of freedom)" |
84 |
|
|
|
85 |
jgs |
82 |
x=n.getX()[0:2].interpolate(d) |
86 |
|
|
g=grad(x**order+x[1]*[1,0]) |
87 |
|
|
ref=order*x[0]**(order-1)*m00+m01+order*x[1]**(order-1)*m11 |
88 |
jgs |
97 |
error_norm=Lsup(ref-g)/Lsup(ref) |
89 |
|
|
|
90 |
|
|
text="%s: %55s = %e" % (case, test, error_norm) |
91 |
|
|
print "%s" % text |
92 |
|
|
|
93 |
jgs |
82 |
if error_norm>max_error: |
94 |
|
|
max_error_text=text |
95 |
|
|
max_error=error_norm |
96 |
|
|
|
97 |
|
|
# |
98 |
|
|
# test gradient on reduced degrees of freedom |
99 |
|
|
# |
100 |
|
|
|
101 |
jgs |
97 |
test="error gradient in interior (reduced degrees of freedom)" |
102 |
|
|
|
103 |
jgs |
82 |
x=n.getX()[0:2].interpolate(r) |
104 |
|
|
g=grad(x+x[1]*[1,0]) |
105 |
|
|
ref=Scalar(1,what=r)*m00+m01+Scalar(1,what=r)*m11 |
106 |
jgs |
97 |
error_norm=Lsup(ref-g)/Lsup(ref) |
107 |
|
|
|
108 |
|
|
text="%s: %55s = %e" % (case, test, error_norm) |
109 |
|
|
print "%s" % text |
110 |
|
|
|
111 |
jgs |
82 |
if error_norm>max_error: |
112 |
|
|
max_error_text=text |
113 |
|
|
max_error=error_norm |
114 |
|
|
|
115 |
|
|
# |
116 |
|
|
# test integration over volume |
117 |
|
|
# |
118 |
|
|
|
119 |
jgs |
97 |
test="error volume integration" |
120 |
|
|
|
121 |
jgs |
82 |
x=e.getX()[0:2] |
122 |
jgs |
97 |
error=integrate(x**2+[0,2.]*x)-array([1./3.,1./3.+2*1./2.]) |
123 |
|
|
error_norm=sqrt(numarray.innerproduct(error,error)) |
124 |
|
|
|
125 |
|
|
text="%s: %55s = %e" % (case, test, error_norm) |
126 |
|
|
print "%s" % text |
127 |
|
|
|
128 |
jgs |
82 |
if error_norm>max_error: |
129 |
|
|
max_error_text=text |
130 |
|
|
max_error=error_norm |
131 |
|
|
|
132 |
|
|
if onFace: |
133 |
|
|
|
134 |
|
|
# |
135 |
|
|
# gradient on the boundary: |
136 |
|
|
# |
137 |
|
|
|
138 |
jgs |
97 |
test="error gradient on boundary" |
139 |
|
|
|
140 |
jgs |
82 |
x=n.getX()[0:2] |
141 |
jgs |
97 |
g=grad(x**order+x[1]*[1,0],where=f) |
142 |
jgs |
82 |
x=f.getX()[0:2] |
143 |
|
|
ref=order*x[0]**(order-1)*m00+m01+order*x[1]**(order-1)*m11 |
144 |
jgs |
97 |
error_norm=Lsup(g-ref) |
145 |
|
|
|
146 |
|
|
text="%s: %55s = %e" % (case, test, error_norm) |
147 |
|
|
print "%s" % text |
148 |
|
|
|
149 |
jgs |
82 |
if error_norm>max_error: |
150 |
|
|
max_error_text=text |
151 |
|
|
max_error=error_norm |
152 |
|
|
|
153 |
|
|
# |
154 |
|
|
# test gradient on degrees of freedom |
155 |
|
|
# |
156 |
|
|
|
157 |
jgs |
97 |
test="error gradient on boundary (degrees of freedom)" |
158 |
|
|
|
159 |
jgs |
82 |
x=n.getX()[0:2].interpolate(d) |
160 |
jgs |
97 |
g=grad(x**order+x[1]*[1,0],where=f) |
161 |
jgs |
82 |
x=f.getX()[0:2] |
162 |
|
|
ref=order*x[0]**(order-1)*m00+m01+order*x[1]**(order-1)*m11 |
163 |
jgs |
97 |
error_norm=Lsup(ref-g)/Lsup(ref) |
164 |
|
|
|
165 |
|
|
text="%s: %55s = %e" % (case, test, error_norm) |
166 |
|
|
print "%s" % text |
167 |
|
|
|
168 |
jgs |
82 |
if error_norm>max_error: |
169 |
|
|
max_error_text=text |
170 |
|
|
max_error=error_norm |
171 |
|
|
|
172 |
|
|
# |
173 |
|
|
# test gradient on reduced degrees of freedom |
174 |
|
|
# |
175 |
|
|
|
176 |
jgs |
97 |
test="error gradient on boundary (reduced degrees of freedom)" |
177 |
|
|
|
178 |
jgs |
82 |
x=n.getX()[0:2].interpolate(r) |
179 |
jgs |
97 |
g=grad(x+x[1]*[1,0],where=f) |
180 |
jgs |
82 |
ref=Scalar(1,what=r)*m00+m01+Scalar(1,what=r)*m11 |
181 |
jgs |
97 |
error_norm=Lsup(ref-g)/Lsup(ref) |
182 |
|
|
|
183 |
|
|
text="%s: %55s = %e" % (case, test, error_norm) |
184 |
|
|
print "%s" % text |
185 |
|
|
|
186 |
jgs |
82 |
if error_norm>max_error: |
187 |
|
|
max_error_text=text |
188 |
|
|
max_error=error_norm |
189 |
|
|
|
190 |
|
|
# |
191 |
|
|
# test integration over boundary |
192 |
|
|
# |
193 |
|
|
|
194 |
jgs |
97 |
test="error boundary integration" |
195 |
|
|
|
196 |
jgs |
82 |
x=f.getX()[0:2] |
197 |
jgs |
97 |
error=integrate(x**2+[0,2.]*x)-array([h/3.,h/3.+2*(h-1)/2.]) |
198 |
|
|
error_norm=sqrt(numarray.innerproduct(error,error)) |
199 |
|
|
|
200 |
|
|
text="%s: %55s = %e" % (case, test, error_norm) |
201 |
|
|
print "%s" % text |
202 |
|
|
|
203 |
jgs |
82 |
if error_norm>max_error: |
204 |
|
|
max_error_text=text |
205 |
|
|
max_error=error_norm |
206 |
|
|
|
207 |
|
|
# |
208 |
|
|
# normal test: |
209 |
|
|
# |
210 |
|
|
|
211 |
jgs |
97 |
test="error normals" |
212 |
|
|
|
213 |
|
|
refNormal=Vector(0,what=f) |
214 |
|
|
if dim==3: |
215 |
|
|
refNormal.setTaggedValue(2,[1,0,0]) |
216 |
|
|
refNormal.setTaggedValue(1,[-1,0,0]) |
217 |
|
|
refNormal.setTaggedValue(20,[0,1,0]) |
218 |
|
|
refNormal.setTaggedValue(10,[0,-1,0]) |
219 |
|
|
refNormal.setTaggedValue(200,[0,0,1]) |
220 |
|
|
refNormal.setTaggedValue(100,[0,0,-1]) |
221 |
|
|
else: |
222 |
|
|
refNormal.setTaggedValue(2,[1,0]) |
223 |
|
|
refNormal.setTaggedValue(1,[-1,0]) |
224 |
|
|
refNormal.setTaggedValue(20,[0,1]) |
225 |
|
|
refNormal.setTaggedValue(10,[0,-1]) |
226 |
|
|
error_norm=Lsup(f.getNormal()-refNormal) |
227 |
|
|
|
228 |
|
|
text="%s: %55s = %e" % (case, test, error_norm) |
229 |
|
|
print "%s" % text |
230 |
|
|
|
231 |
jgs |
82 |
if error_norm>max_error: |
232 |
|
|
max_error_text=text |
233 |
|
|
max_error=error_norm |
234 |
|
|
|
235 |
jgs |
97 |
print "-----------------------------------------------------------------------------------------------------" |
236 |
jgs |
82 |
|
237 |
jgs |
97 |
print "\n\n" |
238 |
|
|
print "******************************************************************************************************************" |
239 |
|
|
print "maximal error:", max_error_text |
240 |
|
|
print "******************************************************************************************************************" |