1 |
# $Id$ |
2 |
""" |
3 |
Test a grad, interpolate and integrate over the unit square. |
4 |
|
5 |
The tests are very basic. |
6 |
|
7 |
by Lutz Gross, ACcESS, University of Queensland, Australia, 2003. |
8 |
""" |
9 |
|
10 |
import sys |
11 |
import os |
12 |
import unittest |
13 |
|
14 |
from esys.escript import * |
15 |
from esys.linearPDEs import * |
16 |
from esys import finley |
17 |
|
18 |
from math import * |
19 |
from numarray import array |
20 |
|
21 |
numElements=10 |
22 |
max_error=0. |
23 |
max_error_text="" |
24 |
|
25 |
for dim in [2,3]: |
26 |
for order in [1,2]: |
27 |
for onFace in [True,False]: |
28 |
|
29 |
print "\n" |
30 |
print "-----------------------------------------------------------------------------------------------------" |
31 |
print "dim: %d, order: %i, onFace: %s." % (dim, order, onFace) |
32 |
print "-----------------------------------------------------------------------------------------------------" |
33 |
|
34 |
if onFace: |
35 |
onFaceText=", on elements" |
36 |
else: |
37 |
onFaceText="" |
38 |
|
39 |
case="dim=%d, order=%d%s" % (dim,order,onFaceText) |
40 |
|
41 |
if dim==2: |
42 |
mydomain=finley.Rectangle(numElements,numElements,order=order,useElementsOnFace=onFace) |
43 |
m00=[[1,0],[0,0]] |
44 |
m01=[[0,1],[0,0]] |
45 |
m11=[[0,0],[0,1]] |
46 |
h=5 |
47 |
else: |
48 |
mydomain=finley.Brick(numElements,numElements,numElements,order=order,useElementsOnFace=onFace) |
49 |
m00=[[1,0,0],[0,0,0]] |
50 |
m01=[[0,1,0],[0,0,0]] |
51 |
m11=[[0,0,0],[0,1,0]] |
52 |
h=7 |
53 |
|
54 |
n=ContinuousFunction(mydomain) |
55 |
e=Function(mydomain) |
56 |
f=FunctionOnBoundary(mydomain) |
57 |
d=Solution(mydomain) |
58 |
r=ReducedSolution(mydomain) |
59 |
|
60 |
# |
61 |
# test gradient |
62 |
# |
63 |
|
64 |
test="error gradient in interior (nodes)" |
65 |
|
66 |
x=n.getX()[0:2] |
67 |
g=grad(x**order+x[1]*[1,0]) |
68 |
ref=order*x[0]**(order-1)*m00+m01+order*x[1]**(order-1)*m11 |
69 |
error_norm=Lsup(ref-g) |
70 |
|
71 |
text="%s: %55s = %e" % (case, test, error_norm) |
72 |
print "%s" % text |
73 |
|
74 |
if error_norm>max_error: |
75 |
max_error_text=text |
76 |
max_error=error_norm |
77 |
|
78 |
# |
79 |
# test gradient on degrees of freedom |
80 |
# |
81 |
|
82 |
test="error gradient in interior (degrees of freedom)" |
83 |
|
84 |
x=n.getX()[0:2].interpolate(d) |
85 |
g=grad(x**order+x[1]*[1,0]) |
86 |
ref=order*x[0]**(order-1)*m00+m01+order*x[1]**(order-1)*m11 |
87 |
error_norm=Lsup(ref-g)/Lsup(ref) |
88 |
|
89 |
text="%s: %55s = %e" % (case, test, error_norm) |
90 |
print "%s" % text |
91 |
|
92 |
if error_norm>max_error: |
93 |
max_error_text=text |
94 |
max_error=error_norm |
95 |
|
96 |
# |
97 |
# test gradient on reduced degrees of freedom |
98 |
# |
99 |
|
100 |
test="error gradient in interior (reduced degrees of freedom)" |
101 |
|
102 |
x=n.getX()[0:2].interpolate(r) |
103 |
g=grad(x+x[1]*[1,0]) |
104 |
ref=Scalar(1,what=r)*m00+m01+Scalar(1,what=r)*m11 |
105 |
error_norm=Lsup(ref-g)/Lsup(ref) |
106 |
|
107 |
text="%s: %55s = %e" % (case, test, error_norm) |
108 |
print "%s" % text |
109 |
|
110 |
if error_norm>max_error: |
111 |
max_error_text=text |
112 |
max_error=error_norm |
113 |
|
114 |
# |
115 |
# test integration over volume |
116 |
# |
117 |
|
118 |
test="error volume integration" |
119 |
|
120 |
x=e.getX()[0:2] |
121 |
error=integrate(x**2+[0,2.]*x)-array([1./3.,1./3.+2*1./2.]) |
122 |
error_norm=sqrt(numarray.innerproduct(error,error)) |
123 |
|
124 |
text="%s: %55s = %e" % (case, test, error_norm) |
125 |
print "%s" % text |
126 |
|
127 |
if error_norm>max_error: |
128 |
max_error_text=text |
129 |
max_error=error_norm |
130 |
|
131 |
if onFace: |
132 |
|
133 |
# |
134 |
# gradient on the boundary: |
135 |
# |
136 |
|
137 |
test="error gradient on boundary" |
138 |
|
139 |
x=n.getX()[0:2] |
140 |
g=grad(x**order+x[1]*[1,0],where=f) |
141 |
x=f.getX()[0:2] |
142 |
ref=order*x[0]**(order-1)*m00+m01+order*x[1]**(order-1)*m11 |
143 |
error_norm=Lsup(g-ref) |
144 |
|
145 |
text="%s: %55s = %e" % (case, test, error_norm) |
146 |
print "%s" % text |
147 |
|
148 |
if error_norm>max_error: |
149 |
max_error_text=text |
150 |
max_error=error_norm |
151 |
|
152 |
# |
153 |
# test gradient on degrees of freedom |
154 |
# |
155 |
|
156 |
test="error gradient on boundary (degrees of freedom)" |
157 |
|
158 |
x=n.getX()[0:2].interpolate(d) |
159 |
g=grad(x**order+x[1]*[1,0],where=f) |
160 |
x=f.getX()[0:2] |
161 |
ref=order*x[0]**(order-1)*m00+m01+order*x[1]**(order-1)*m11 |
162 |
error_norm=Lsup(ref-g)/Lsup(ref) |
163 |
|
164 |
text="%s: %55s = %e" % (case, test, error_norm) |
165 |
print "%s" % text |
166 |
|
167 |
if error_norm>max_error: |
168 |
max_error_text=text |
169 |
max_error=error_norm |
170 |
|
171 |
# |
172 |
# test gradient on reduced degrees of freedom |
173 |
# |
174 |
|
175 |
test="error gradient on boundary (reduced degrees of freedom)" |
176 |
|
177 |
x=n.getX()[0:2].interpolate(r) |
178 |
g=grad(x+x[1]*[1,0],where=f) |
179 |
ref=Scalar(1,what=r)*m00+m01+Scalar(1,what=r)*m11 |
180 |
error_norm=Lsup(ref-g)/Lsup(ref) |
181 |
|
182 |
text="%s: %55s = %e" % (case, test, error_norm) |
183 |
print "%s" % text |
184 |
|
185 |
if error_norm>max_error: |
186 |
max_error_text=text |
187 |
max_error=error_norm |
188 |
|
189 |
# |
190 |
# test integration over boundary |
191 |
# |
192 |
|
193 |
test="error boundary integration" |
194 |
|
195 |
x=f.getX()[0:2] |
196 |
error=integrate(x**2+[0,2.]*x)-array([h/3.,h/3.+2*(h-1)/2.]) |
197 |
error_norm=sqrt(numarray.innerproduct(error,error)) |
198 |
|
199 |
text="%s: %55s = %e" % (case, test, error_norm) |
200 |
print "%s" % text |
201 |
|
202 |
if error_norm>max_error: |
203 |
max_error_text=text |
204 |
max_error=error_norm |
205 |
|
206 |
# |
207 |
# normal test: |
208 |
# |
209 |
|
210 |
test="error normals" |
211 |
|
212 |
refNormal=Vector(0,what=f) |
213 |
if dim==3: |
214 |
refNormal.setTaggedValue(2,[1,0,0]) |
215 |
refNormal.setTaggedValue(1,[-1,0,0]) |
216 |
refNormal.setTaggedValue(20,[0,1,0]) |
217 |
refNormal.setTaggedValue(10,[0,-1,0]) |
218 |
refNormal.setTaggedValue(200,[0,0,1]) |
219 |
refNormal.setTaggedValue(100,[0,0,-1]) |
220 |
else: |
221 |
refNormal.setTaggedValue(2,[1,0]) |
222 |
refNormal.setTaggedValue(1,[-1,0]) |
223 |
refNormal.setTaggedValue(20,[0,1]) |
224 |
refNormal.setTaggedValue(10,[0,-1]) |
225 |
error_norm=Lsup(f.getNormal()-refNormal) |
226 |
|
227 |
text="%s: %55s = %e" % (case, test, error_norm) |
228 |
print "%s" % text |
229 |
|
230 |
if error_norm>max_error: |
231 |
max_error_text=text |
232 |
max_error=error_norm |
233 |
|
234 |
print "-----------------------------------------------------------------------------------------------------" |
235 |
|
236 |
print "\n\n" |
237 |
print "******************************************************************************************************************" |
238 |
print "maximal error:", max_error_text |
239 |
print "******************************************************************************************************************" |