1 |
# $Id$ |
2 |
|
3 |
|
4 |
from esys.escript import * |
5 |
from esys.escript.linearPDEs import Poisson |
6 |
from esys import finley |
7 |
|
8 |
ne_list=[10,15,22,33,50,75] |
9 |
height_list=[0.25,0.5,1.] |
10 |
|
11 |
|
12 |
def getDomain(dim,ne,height): |
13 |
|
14 |
if dim==2: |
15 |
ne1=int(ne*height+0.5) |
16 |
mydomain=finley.Rectangle(n0=ne,n1=ne1,l1=height,order=1) |
17 |
totne=ne1*ne |
18 |
else: |
19 |
ne2=int(ne*height+0.5) |
20 |
mydomain=finley.Brick(n0=ne,n1=ne,n2=ne2,l2=height,order=2) |
21 |
totne=ne2*ne*ne |
22 |
print "%d -dimensional domain generated."%dim |
23 |
print "height of the domain is ",height |
24 |
print "total number of elements is ",totne |
25 |
return mydomain |
26 |
|
27 |
|
28 |
def Solve1(mydomain,height): |
29 |
print "Fully constraint solution" |
30 |
l=[1.,1.,1.] |
31 |
l[mydomain.getDim()-1]=height |
32 |
cf=ContinuousFunction(mydomain) |
33 |
x=cf.getX() |
34 |
#construct exact solution: |
35 |
u_ex=Scalar(1.,cf) |
36 |
for i in range(mydomain.getDim()): |
37 |
u_ex*=x[i]*(x[i]-l[i]) |
38 |
#construct mask: |
39 |
msk=Scalar(0.,cf) |
40 |
for i in range(mydomain.getDim()): |
41 |
msk+=x[i].whereZero()+(x[i]-l[i]).whereZero() |
42 |
#construct right hand side |
43 |
f=Scalar(0,cf) |
44 |
for i in range(mydomain.getDim()): |
45 |
f_p=Scalar(1,cf) |
46 |
for j in range(mydomain.getDim()): |
47 |
if i==j: |
48 |
f_p*=-2. |
49 |
else: |
50 |
f_p*=x[j]*(x[j]-l[j]) |
51 |
f+=f_p |
52 |
|
53 |
mypde=Poisson(mydomain) |
54 |
mypde.setTolerance(1.e-10) |
55 |
mypde.setValue(f=f,q=msk) |
56 |
u=mypde.getSolution() |
57 |
error=Lsup(u-u_ex)/Lsup(u_ex) |
58 |
print "error = ",error |
59 |
return error |
60 |
|
61 |
def Solve2(mydomain,height): |
62 |
print "Partially constraint solution" |
63 |
l=[1.,1.,1.] |
64 |
l[mydomain.getDim()-1]=height |
65 |
print l |
66 |
cf=ContinuousFunction(mydomain) |
67 |
x=cf.getX() |
68 |
#construct exact solution: |
69 |
u_ex=Scalar(1.,cf) |
70 |
for i in range(mydomain.getDim()): |
71 |
u_ex*=x[i]*(2*l[i]-x[i]) |
72 |
#construct mask: |
73 |
msk=Scalar(0.,cf) |
74 |
for i in range(mydomain.getDim()): |
75 |
msk+=x[i].whereZero() |
76 |
#construct right hand side |
77 |
f=Scalar(0,cf) |
78 |
for i in range(mydomain.getDim()): |
79 |
f_p=Scalar(1,cf) |
80 |
for j in range(mydomain.getDim()): |
81 |
if i==j: |
82 |
f_p*=2. |
83 |
else: |
84 |
f_p*=x[j]*(2*l[j]-x[j]) |
85 |
f+=f_p |
86 |
mypde=Poisson(mydomain) |
87 |
mypde.setTolerance(1.e-10) |
88 |
mypde.setValue(f=f,q=msk) |
89 |
u=mypde.getSolution() |
90 |
error=Lsup(u-u_ex)/Lsup(u_ex) |
91 |
print "error = ",error |
92 |
return error |
93 |
|
94 |
|
95 |
def main() : |
96 |
error=0 |
97 |
for ne in ne_list: |
98 |
for dim in [2,3]: |
99 |
# for dim in [2]: |
100 |
for height in height_list: |
101 |
print "***************************************************************" |
102 |
mydomain= getDomain(dim,ne,height) |
103 |
print "---------------------------------------------------------------" |
104 |
error=max(error,Solve1(mydomain,height)) |
105 |
print "---------------------------------------------------------------" |
106 |
error=max(error,Solve2(mydomain,height)) |
107 |
print "***************************************************************" |
108 |
|
109 |
print "***************************************************************" |
110 |
print "maximum error: ",error |
111 |
print "***************************************************************" |
112 |
|
113 |
|
114 |
|
115 |
import profile as Pr, pstats as Ps |
116 |
|
117 |
|
118 |
if __name__ == "__main__": |
119 |
pr = Pr.Profile() |
120 |
pr.calibrate(10000) |
121 |
Pr.run('main()','eos_stats') |
122 |
stats = Ps.Stats('eos_stats') |
123 |
stats.strip_dirs() |
124 |
stats.sort_stats('time') |
125 |
stats.print_stats() |